and the z component of this part of the field is

; Z(BF(Vn)ir]) + (6/rf)(m/m)Y2 exp(—nrd)

+ (/)P rm)VE exp(—mrP)] = (F(Vgr)/rf) ©)
+ (2/r))(n/m) 2 exp(—nrD)]) .

The total E_ is given by the sum of (8) and (9). The effects of any number of
lattices may be added.

APPENDIX C: QUANTIZATION OF ELASTIC WAVES: PHONONS
o e S e e e

Phonons were introduced in Chapter 4 as quantized elastic waves. How do
we quantize an elastic wave? As a simple model of phonons in a crystal, con-
sider the vibrations of a linear lattice of particles connected by springs. We can
quantize the particle motion exactly as for a harmonic oscillator or set of cou-
pled harmonic oscillators. To do this we make a transformation from particle
coordinates to phonon coordinates, also called wave coordinates because they
represent a traveling wave.

Let N particles of mass M be connected by springs of force constant C and
length a. To fix the boundary conditions, let the particles form a circular ring.
We consider the transverse displacements of the particles out of the plane of
the ring. The displacement of particle s is g, and its momentum is p,. The
Hamiltonian of the system is

)L a1 e
H - ; {2M ps + 2 C(qs+l qs) } - (1)
The Hamiltonian of a harmonic oscillator is

=1 ey leoe
H 2Mp+2Cx, (2)

and the energy eigenvalues are, wheren = 0,1, 2,3, .. .,

€ = (n + %)ﬁw . 3)

The eigenvalue problem is also exactly solvable for a chain with the ditferent
Hamiltonian (1).

To solve (1) we make a Fourier transformation from the coordinates p;, g,
to the coordinates Py, Q;, which arc known as phonon coordinates.
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Phonon Coordinates

The transformation from the particle coordinates g, to the phonon coordi-
nates . is used in all periodic lattice problems. We let

g, = N2 Ek Q. expliksa) | (4)

consistent with the inverse transformation

Q,=N"123Y q. exp(—iksa) . (5)
Here the N values of the wavevector k allowed by the periodic boundary con-

dition g, = ¢, are given by:

k = 2mn/Na ;n:0,+l,t2,..k‘i(%N—l),;N, (6)

We need the transformation from the particle momentum p; to the momen-
tum P, that is canonically conjugate to the coordinate Q,. The transformation is

p, = N2 P exp(—iksa); Po=N Y23 p, expliksa) . (7)
k %

This is not quite what anc would obtain by the naive substitution of p for ¢ and
P for Q in (4) and (5), because k and —k have been interchanged between (4)
and (7).

We verify that our choice of P and Qy satisfies the quantum commutation
relation for canonical variables. We form the commutator

[QnPr] =N"1 l:E g, exp(—ikra), > exp(ik’sa)]
=N~} E E (g..p,] exp[—ilkr — k's)a] .
Because the operators g, p are conjugate, they satisfy the commutation relation

lg,.ps] = ikd(r,s) , (9)

where 8(r,s) is the Kronecker delta symbol.
Thus (8) becomes

(8)

(0Pl = N~ il S, expl—itk — k'ra] = ihib(k, k') | (10)

so that Q. P, also are conjugate variables. Here we have evaluated the summa-
tion as

2 exp[—itk — k")ra] = > exp[—i2m(n — n’)r/N]
r r (11)
= Nb&(n,n') = N8k, k') ,

where we have used (6) and a standard result for the finite series in (11).
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We carry out the transformations (7) and (4) on the hamiltonian (1), and
make use of the summation (11):

zps = N—lE E E PkPk' exp[—‘i(k + k')sa]
s s kK

Z;;Pkpk'g(_k,k’)=;PkP,k N

(g1 —q)*=N"1Y ; ; QxQy expliksa)[explika) — 1]

X exp(ik'sa)lexp(ik'a) — 1] = 2 D040 _1(1 — coska) . (13)
3
Thus the hamiltonian (1) becomes, in phonon coordinates,
H= ; {ﬁ PP_; + COQ_4(1 — cos ka)} : (14)

If we introduce the symbol w; defined by
w, = (2C/M)**(1 — cos ka)'"” | (15)

we have the phonon hamiltonian in the form

H=3 {ﬁ PP, + %wa Qk()_k} : (16)

The equation of motion of the phonon coordinate operator Qy is found by
the standard prescription of quantum mechanics:

ihQy = [Qr, H] = ihP_, /M | (17)
with H given by (14). Further, using the commutator (17),
ihQu=[Qu H] = M™ '[P, H] = i} Qs , (18)
so that
O + Q=0 . (19)

This is the equation of motion of a harmonic oscillator with the frequency ;.
The energy eigenvalues of a quantum harmonic oscillator are

€ = (nk + %)hwk N (20)
where the quantum numbern; =0,1,2, .. .. The energy of the entire system
of all phonons is

U= E (nk + %)ﬁwk . (21)
k

This result demonstrates the quantization of the energy of elastic waves on
a line.
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Creation and Annihilation Operators

It is helpful in advanced work to transform the phonon hamiltonian (16)
into the form of a set of harmonic oscillators:

H=Y, ﬁwk(a,fak + %) i (22)
P

Here a}, a; are harmonic oscillator operators, also called creation and destruc-
tion operators or boson operators. The transformation is derived below.

The boson creation operator a* which “creates a phonon” is defined by
the property

a+|n) =(n+ 1)"n + l> , (23)
when acting on a harmonic oscillator state of quantum number n, and the boson
annihilation operator g which “destroys a phonon” is defined by the property

aln) =nn - 1) . (24)
Tt follows that
a*alny =a*n?In — Ly =n|n) , (25)

so that |n) is an eigenstate of the operator a”a with the integral eigenvalue n,
called the quantum number or occupancy of the oscillator. When the phonon
mode k is in the eigenstate labeled by n;, we may say that there are n; phonons
in the mode. The eigenvalues of (22) are U = X (n;, + Dhwy, in agreement
with (21).
Because

aa*ln>=d(n +1)“Z]n+l>=(n+ l)!n> , (26)

the commutator of the boson wave operators a7 and g, satisfies the relation

(a,a"1=aa* —ata=1. 27

We still have to prove that the hamiltonian (16) can be expressed as (19) in
terms of the phonon operators af, a;. This can be done by the transformation

ap = 2R) V(Mo 2 Q_ — i(Mawy) 2P ; (28)
a;\. = (2ﬁ)71/2[(ka)l/2Qk + i(ka)_mP_k] . (29)
The inverse relations are
Or = (h/2Mw) (@ + aty) ; (30)
P, =i(hMw/2) (0 — a_,) . (31)

By (4), (5), and (29) the particle position operator becomes

g, = 3, (B2NMay) " a; expliks) + o exp(—iks)] . (32)
T
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This equation relates the particle displacement operator to the phonon cre-
ation and annihilation operators.
To obtain (29) {rom (28), we use the properties

QL= Qx5 Pi=P, (33)

which follow from (5) and (7) by use of the quantum mechanical requirement
that ¢, and p, be hermitian operators:

=97 5  ps=ps - (34)

Then (28) follows from the transformations (4), (5), and (7). We verify that the
commutation relation (33) is satisfied by the operators defined by (28) and (29):

(@, a1 = (28) Mo [Qy, Q] — ilQuPi] +ilP_1,Q 4]

+ [P_k,Pk]/M(JJk) . (35)
By use of [Q;,Py] = ih8(k,k’) from (10) we have
lay, ait] = 8(k, k') . (36)

It remains to show that the versions of (16) and (22) of the phonon hamil-
tonian are identical. We note that w, = w_; from (15), and we form

hoaia +ala_y) = ﬁ (PP +P_(P) + % Mo(QiQ—x + Q00 -

This exhibits the equivalence of the two expressions (14) and (22) for H. We
identify w; = (2C/M)"%(1 — cos ka)"* in (15) with the classical frequency of
the oscillator mode of wavevector k.

APPENDIX D: FERMI-DIRAC DISTRIBUTION FUNCTION'
B e e

The Fermi-Dirac distribution function! may be derived in several steps by
use of a modern approach to statistical mechanics. We outline the argument
here. The notation is such that conventional entropy § is related to the funda-
mental entropy o by S = ko, and the Kelvin temperature T is related to the
fundamental temperature T by 7 = kgT, where kg is the Boltzmann constant
with the value 1.38066 X 10" * J K.

The leading quantities are the entropy, the temperature, the Boltzmann fac-
tor, the chemical potential, the Gibbs factor, and the distribution functions. The

"This appendix follows closely the introduction to C. Kittel and H. Kroemer, Thermal
Physics, 2nd ed., Freeman, 1980.





