
7 Mean Field Theory of Phase Transitions : Worked Examples

(7.1) Find vc, Tc, and pc for the equation of state,

p =
RT

v − b
− α

v3
.

Solution :

We find p′(v):
∂p

∂v
= − RT

(v − b)2
+

3α

v4
.

Setting this to zero yields the equation

f(u) ≡ u4

(u − 1)2
=

3α

RTb2
,

where u ≡ v/b is dimensionless. The function f(u) on the interval [1,∞] has a minimum at u = 2, where fmin =
f(2) = 16. This determines the critical temperature, by setting the RHS of the above equation to fmin. Then
evaluate pc = p(vc, Tc). One finds

vc = 2b , Tc =
3α

16Rb2
, pc =

α

16b3
.
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(7.2) The Dieterici equation of state is

p (v − b) = RT exp

(

− a

vRT

)

.

(a) Find the critical point (pc, vc, Tc) for this equation of state

(b) Writing p̄ = p/pc, v̄ = v/vc, and T̄ = T/Tc, rewrite the equation of state in the form p̄ = p̄
(
v̄, T̄

)
.

(c) For the brave only! Writing p̄ = 1 + π, T̄ = 1 + t, and v̄ = 1 + ǫ, find ǫliq(t) and ǫgas(t) for 0 < (−t) ≪ 1,
working to lowest nontrivial order in (−t).

Solution :

(a) We have

p =
RT

v − b
e−a/vRT ,

hence
(
∂p

∂v

)

T

= p ·
{

− 1

v − b
+

a

v2RT

}

.

Setting the LHS of the above equation to zero, we then have

v2

v − b
=

a

RT
⇒ f(u) ≡ u2

u− 1
=

a

bRT
,

where u = v/b is dimensionless. Setting f ′(u∗) = 0 yields u∗ = 2, hence f(u) on the interval u ∈ (1,∞) has a
unique global minimum at u = 2, where f(2) = 4. Thus,

vc = 2b , Tc =
a

4bR
, pc =

a

4b2
e−2 .

(b) In terms of the dimensionless variables p̄, v̄, and T̄ , the equation of state takes the form

p̄ =
T̄

2v̄ − 1
exp

(

2− 2

v̄T̄

)

.

When written in terms of the dimensionless deviations π, ǫ, and t, this becomes

π =

(
1 + t

1 + 2ǫ

)

exp

(
2(ǫ+ t+ ǫt)

1 + ǫ+ t+ ǫt

)

− 1 .

Expanding via Taylor’s theorem, one finds

π(ǫ, t) = 3t− 2tǫ+ 2t2 − 2
3ǫ

3 + 2ǫ2t− 4ǫt2 − 2
3 t

3 + . . . .

Thus,

πǫt ≡
∂2π

∂ǫ ∂t
= −2 , πǫǫǫ ≡

∂3π

∂ǫ3
= −4 ,

and according to the results in §7.2.2 of the Lecture Notes, we have

ǫL,G = ∓
(
6 πǫt
πǫǫǫ

)1/2

= ∓
(
− 3t

)1/2
.
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(7.3) Consider a ferromagnetic spin-1 triangular lattice Ising model . The Hamiltonian is

Ĥ = −J
∑

〈ij〉
Sz
i S

z
j −H

∑

i

Sz
i ,

where Sz
i ∈ {−1 , 0 , +1} on each site i, H is a uniform magnetic field, and where the first sum is over all links of

the lattice.

(a) Derive the mean field Hamiltonian Ĥ
MF

for this model.

(b) Derive the free energy per site F/N within the mean field approach.

(c) Derive the self consistent equation for the local moment m = 〈Sz
i 〉.

(d) Find the critical temperature Tc(H = 0).

(e) Assuming |H | ≪ k
B
|T − Tc| ≪ J , expand the dimensionless free energy f = F/6NJ in terms of θ = T/Tc,

h = H/k
B
Tc, and m. Minimizing with respect to m, find an expression for the dimensionless magnetic

susceptibility χ = ∂m/∂h close to the critical point.

Solution :

(a) Writing Sz
i = m+ δSz

i , where m = 〈Sz
i 〉 and expanding Ĥ to linear order in the fluctuations δSz

i , we find

Ĥ
MF

= 1
2NzJm

2 − (H + zJm)
∑

i

Sz
i ,

where z = 6 for the triangular lattice.

(b) The free energy per site is

F/N = 1
2zJm

2 − k
B
T lnTr e(H+zJm)Sz

= 1
2zJm

2 − k
B
T ln

{

1 + 2 cosh

(
H + zJm

k
B
T

)}

.

(c) The mean field equation is ∂F/∂m = 0, which is equivalent to m = 〈Sz
i 〉. We obtain

m =
2 sinh

(
H+zJm

k
B
T

)

1 + 2 cosh
(

H+zJm
k
B
T

) .

(d) To find Tc, we set H = 0 in the mean field equation:

m =
2 sinh(βzJm)

1 + 2 cosh(βzJm)

= 2
3βzJm+O(m3) .

The critical temperature is obtained by setting the slope on the RHS of the above equation to unity. Thus,

Tc =
2zJ

3k
B

.

So for the triangular lattice, where z = 6, one has Tc = 4J/k
B

.
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(e) Scaling T and H as indicated, the mean field equation becomes

m =
2 sinh

(
(m+ h)/θ

)

1 + 2 cosh
(
(m+ h)/θ

) =
m+ h

θ/θc
+ . . . ,

where θc =
2
3 , and where we assume θ > θc. Solving for m(h), we have

m =
h

1− θ
c

θ

=
θc h

θ − θc
+O

(
(θ − θc)

2
)

.

Thus, χ = θc/(θ − θc), which reflects the usual mean field susceptibility exponent γ = 1.
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(7.4) Consider a ferromagnetic spin-S Ising model on a lattice of coordination number z. The Hamiltonian is

Ĥ = −J
∑

〈ij〉
σi σj − µ0H

∑

i

σi ,

where σ ∈ {−S,−S + 1, . . . ,+S} with 2S ∈ Z.

(a) Find the mean field Hamiltonian Ĥ
MF

.

(b) Adimensionalize by setting θ ≡ k
B
T/zJ , h ≡ µ0H/zJ , and f ≡ F/NzJ . Find the dimensionless free energy

per site f(m,h) for arbitrary S.

(c) Expand the free energy as

f(m,h) = f0 +
1
2am

2 + 1
4bm

4 − chm+O(h2, hm3,m6)

and find the coefficients f0, a, b, and c as functions of θ and S.

(d) Find the critical point (θc, hc).

(e) Find m(θc, h) to leading order in h.

Solution :

(a) Writing σi = m+ δσi, we find

Ĥ
MF

= 1
2NzJm

2 − (µ0H + zJ)
∑

i

σi .

(b) Using the result
S∑

σ=−S

eβµ0
H

eff
σ =

sinh
(
(S + 1

2 )βµ0H
)

sinh
(
1
2βµ0H

) ,

we have
f = 1

2m
2 − θ ln sinh

(
(2S + 1)(m+ h)/2θ

)
+ θ ln sinh

(
(m+ h)/2θ

)
.

(c) Expanding the free energy, we obtain

f = f0 +
1
2am

2 + 1
4bm

4 − chm+O(h2, hm3,m6)

= −θ ln(2S + 1) +

(
3θ − S(S + 1)

6θ

)

m2 +
S(S + 1)(2S2 + 2S + 1)

360 θ3
m4 − 2

3 S(S + 1)hm+ . . . .

Thus,

f0 = −θ ln(2S + 1) , a = 1− 1
3S(S + 1)θ−1 , b =

S(S + 1)(2S2 + 2S + 1)

90 θ3
, c = 2

3 S(S + 1) .

(d) Set a = 0 and h = 0 to find the critical point: θc =
1
3S(S + 1) and hc = 0.

(e) At θ = θc, we have f = f0 +
1
4bm

4 − chm+ O(m6). Extremizing with respect to m, we obtain m = (ch/b)1/3.
Thus,

m(θc, h) =

(
60

2S2 + 2S + 1

)1/3

θ h1/3 .
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(7.5) Consider the O(2) model,

Ĥ = − 1
2

∑

i,j

Jij n̂i ·n̂j −H ·
∑

i

n̂i ,

where n̂i = cosφi x̂+ sinφi ŷ. Consider the case of infinite range interactions, where Jij = J/N for all i, j, where
N is the total number of sites.

(a) Show that

exp

[

βJ

2N

∑

i,j

n̂i ·n̂j

]

=
NβJ

2π

∫

d2m e−NβJm2/2 eβJm·∑
i
n̂i .

(b) Using the definition of the modified Bessel function I0(z),

I0(z) =

2π∫

0

dφ

2π
ez cosφ ,

show that

Z = Tr e−βĤ =

∫

d2m e−NA(m,h)/θ ,

where θ = k
B
T/J and h = H/J . Find an expression for A(m,h).

(c) Find the equation which extremizes A(m,h) as a function of m.

(d) Look up the properties of I0(z) and write down the first few terms in the Taylor expansion of A(m,h) for
small m and h. Solve for θc.

Solution :

(a) We have

Ĥ

k
B
T

= − J

2Nk
B
T

(
∑

i

n̂i

)2

− H

k
B
T

·
∑

i

n̂i .

Therefore

e−Ĥ/k
B
T = exp

[

1

2Nθ

(
∑

i

n̂i

)2

+
h

θ
·
∑

i

n̂i

]

=
N

2πθ

∫

d2m exp

[

−Nm2

2θ
+

(
m+ h

θ

)

·
∑

i

n̂i

]

.

(b) Integrating the previous expression, we have

Z = Tr e−Ĥ/k
B
T =

∏

i

∫
dn̂i

2π
e−Ĥ[{n̂i}]/kB

T

=
N

2πθ

∫

d2m e−Nm2/2θ
[

I0
(
|m+ h|/θ

)]N

.

Thus, we identify

A(m,h) = 1
2m

2 − θ ln I0
(
|m+ h|/θ

)
− θ

N
ln(N/2πθ) .
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(c) Extremizing with respect to the vector m, we have

∂A

∂m
= m− m+ h

|m+ h| ·
I1
(
|m+ h|/θ

)

I0
(
|m+ h|/θ

) = 0 ,

where I1(z) = I ′0(z). Clearly any solution requires that m and h be colinear, hence

m =
I1
(
(m+ h)/θ

)

I0
(
(m+ h)/θ

) .

(d) To find θc, we first set h = 0. We then must solve

m =
I1(m/θ)

I0(m/θ)
.

The modified Bessel function Iν(z) has the expansion

Iν(z) =
(
1
2z
)ν

∞∑

k=0

(
1
4z

2
)k

k! Γ(k + ν + 1)
.

Thus,

I0(z) = 1 + 1
4z

2 + . . .

I1(z) =
1
2z +

1
16z

3 + . . . ,

and therefore I1(z)/I0(z) =
1
2z − 1

16z
3 +O(z5), and we read off θc =

1
2 .
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(7.6) Consider the O(3) model,

Ĥ = −J
∑

〈ij〉
n̂i · n̂j −H ·

∑

i

n̂i ,

where each n̂i is a three-dimensional unit vector.

(a) Writing
n̂i = m+ δn̂i ,

with m = 〈n̂i〉 and δn̂i = n̂i −m, derive the mean field Hamiltonian.

(b) Compute the mean field free energy f(m, θ,h), where θ = k
B
T/zJ and h = H/zJ , with f = F/NzJ . Here

z is the lattice coordination number and N the total number of lattice sites, as usual. You may assume that
m ‖ h. Note that the trace over the local degree of freedom at each site i is given by

Tr
i
→
∫
dn̂i

4π
,

where the integral is over all solid angle.

(c) Find the critical point (θc, hc).

(d) Find the behavior of the magnetic susceptibility χ = ∂m/∂h as a function of temperature θ just above θc.

Solution :

(a) Making the mean field Ansatz, one obtains the effective field Heff = H+zJm, and the mean field Hamiltonian

Ĥ
MF

= 1
2NzJm

2 − (H + zJm) ·
∑

i

n̂i .

(b) We assume that m ‖ h, in which case

f(m, θ, h) = 1
2m

2 − θ ln

∫
dn̂

4π
e(m+h)ẑ·n̂/θ

= 1
2m

2 − θ ln

(
sinh

(
(m+ h)/θ

)

(m+ h)/θ

)

.

Here we have without loss of generality taken h to lie in the ẑ direction.

(c) We expand f(m, θ, h) for small m and θ, obtaining

f(m, θ, h) = 1
2m

2 − (m+ h)2

6 θ
+

(m+ h)4

180 θ3
+ . . .

= 1
2

(

1− 1

3θ

)

m2 − hm

3 θ
+

m4

180 θ4
+ . . .

We now read off hc = 0 and θc =
1
3 .

(d) Setting ∂f/∂m = 0, we obtain
(

1− θc
θ

)

m =
θc
θ
hm+O(m3) .

We therefore have

m(h, θ > θc) =
θc h

θ − θc
+O(h3) , χ(θ > θc) =

∂m

∂h

∣
∣
∣
∣
h=0

=
θc

θ − θc
.
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(7.7) Consider an Ising model on a square lattice with Hamiltonian

Ĥ = −J
∑

i∈A

∑

j∈B

′
Si σj ,

where the sum is over all nearest-neighbor pairs, such that i is on the A sublattice and j is on the B sublattice (this is
the meaning of the prime on the j sum), as depicted in Fig. 1. The A sublattice spins take values Si ∈ {−1, 0,+1},
while the B sublattice spins take values σj ∈ {−1,+1}.

(a) Make the mean field assumptions 〈Si〉 = m
A

for i ∈ A and 〈σj〉 = m
B

for j ∈ B. Find the mean field free
energy F (T,N,m

A
,m

B
). Adimensionalize as usual, writing θ ≡ k

B
T/zJ (with z = 4 for the square lattice)

and f = F/zJN . Then write f(θ,m
A
,m

B
).

(b) Write down the two mean field equations (one for m
A

and one for m
B

).

(c) Expand the free energy f(θ,m
A
,m

B
) up to fourth order in the order parameters m

A
and m

B
.

(d) Show that the part of f(θ,m
A
,m

B
) which is quadratic in m

A
and m

B
may be written as a quadratic form, i.e.

f(θ,m
A
,m

B
) = f0 +

1
2

(
m

A
m

B

)
(
M11 M12

M21 M22

)(
m

A

m
B

)

+O
(
m4

A
,m4

B

)
,

where the matrix M is symmetric, with components Maa′ which depend on θ. The critical temperature θc
is identified as the largest value of θ for which detM(θ) = 0. Find θc and explain why this is the correct
protocol to determine it.

Solution :

(a) Writing Si = m
A
+ δSi and σj = m

B
+ δσj and dropping the terms proportional to δSi δσj , which are quadratic

in fluctuations, one obtains the mean field Hamiltonian

Ĥ
MF

= 1
2NzJmA

m
B
− zJm

B

∑

i∈A

Si − zJm
A

∑

j∈B

σj ,

with z = 4 for the square lattice. Thus, the internal field on each A site is Hint,A = zJm
B

, and the internal field on
each B site is Hint,B = zJm

A
. The mean field free energy, F

MF
= −k

B
T lnZ

MF
, is then

F
MF

= 1
2NzJmA

m
B
− 1

2NkB
T ln

[

1 + 2 cosh(zJm
B
/k

B
T )
]

− 1
2NkB

T ln
[

2 cosh(zJm
A
/k

B
T )
]

.

Adimensionalizing,

f(θ,m
A
,m

B
) = 1

2mA
m

B
− 1

2θ ln
[

1 + 2 cosh(m
B
/θ)
]

− 1
2θ ln

[

2 cosh(m
A
/θ)
]

.

(b) The mean field equations are obtained from ∂f/∂m
A
= 0 and ∂f/∂m

B
= 0. Thus,

m
A
=

2 sinh(m
B
/θ)

1 + 2 cosh(m
B
/θ)

m
B
= tanh(m

A
/θ) .

(c) Using

ln
(
2 coshx

)
= ln 2 +

x2

2
− x4

12
+O(x6) , ln

(
1 + 2 coshx

)
= ln 3 +

x2

3
− x4

36
+O(x6) ,
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Figure 1: The square lattice and its A and B sublattices.

we have

f(θ,m
A
,m

B
) = f0 +

1
2mA

m
B
− m2

A

4 θ
− m2

B

6 θ
+

m4
A

24 θ3
+

m4
B

72 θ3
+ . . . ,

with f0 = − 1
2θ ln 6.

(d) From the answer to part (c), we read off

M(θ) =





− 1
2θ

1
2

1
2 − 1

3θ



 ,

from which we obtain detM = 1
6θ

−2 − 1
4 . Setting detM = 0 we obtain θc =

√
2
3 .
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(7.8) The spin lattice Hamiltonian for the three state (Z3) clock model is written

Ĥ = −J
∑

〈ij〉
n̂i · n̂j ,

where each local unit vector n̂i is a planar spin which can take one of three possible values:

n̂ = ê1 , n̂ = − 1
2 ê1 +

√
3
2 ê2 , n̂ = − 1

2 ê1 −
√
3
2 ê2 .

Note that the internal space in which each unit vector n̂i exists is distinct from the physical Euclidean space in
which the lattice points reside.

(a) Consider the clock model on a lattice of coordination number z. Make the mean field assumption 〈n̂i〉 =
m ê1. Expanding the Hamiltonian to linear order in the fluctuations, derive the mean field Hamiltonian for

this model Ĥ
MF

.

(b) Rescaling θ = k
B
T/zJ and f = F/NzJ , where F is the Helmholtz free energy and N is the number of sites,

find f(m, θ).

(c) Is the transition second order or first order? Why?

(d) Find the equations which determine the critical temperature θc.

(e) Show that this model is equivalent to the three state Potts model. Is the Z4 clock model equivalent to the
four state Potts model? Why or why not?

Solution :

(a) We can solve the mean field theory on a general lattice of coordination number z. The mean field Hamiltonian
is

Ĥ
MF

= 1
2NzJm

2 − zJm ê1 ·
∑

i

n̂i .

(b) We have

f(m, θ) = 1
2m

2 − θ lnTr
n̂

exp
(
m ê1 · n̂/θ

)

= 1
2m

2 − θ ln
(

1
3e

m/θ + 2
3e

−m/2θ
)

=
1

2

(

1− 1

2 θ

)

m2 − m3

24 θ2
+

m4

64 θ3
+O(m5) .

Here we have defined Tr n̂ = 1
3

∑

n̂ as the normalized trace. The last line is somewhat tedious to obtain, but is not
necessary for this problem.

(c) Since f(m, θ) 6= f(−m, θ), the Landau expansion of the free energy (other than constants) should include terms
of all orders starting with O(m2). This means that there will in general be a cubic term, hence we expect a first
order transition.

(d) At the critical point, the magnetization m = mc is finite. We then have to solve two equations to determine mc

and θc. The first condition is that the free energy have degenerate minima at the transition, i.e. f(m = 0, θ = θc) =
f(m = mc, θ = θc) . Thus,

1
2m

2 = θ ln
(

1
3e

m/θ + 2
3e

−m/2θ
)

.
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The second is the mean field equation itself, i.e.

∂f

∂m
= 0 ⇒ m =

em/θ − e−m/2θ

em/θ + 2 e−m/2θ
.

These equations for (m, θ) = (mc, θc) are nonlinear and hence we cannot expect to solve them analytically.

If, however, the transition were very weakly first order, then mc is by assumption small, which means we should
be able to get away with the fourth order Landau expansion of the free energy. For a free energy f(m) = 1

2am
2 −

1
3ym

3 + 1
4bm

4, setting f(m) = f ′(m) = 0 we obtain m = 3a/y and y2 = 9ab. For our system, a = 1 − 1
2θ , y = 1

8θ2 ,
and b = 1

16θ3 . We then obtain θc = 5
9 . Note that the second order term in f(m) changes sign at θ∗ = 1

2 , so
θc > θ∗ is consistent with the fact that the second order transition is preempted by the first order one. Now we
may ask, just how good was our assumption that the transition is weakly first order. To find out, we compute
mc = 3a/y = 24 θc(θc− 1

2 ) =
20
27 which is not particularly small compared to unity. Hence the assumption that our

transition is weakly first order is not justified.

(e) Let ε(n̂, n̂′) = −Jn̂ · n̂′ be the energy for a given link. The unit vectors n̂ and n̂′ can each point in any of three
directions, which we can label as 0◦, 120◦, and 240◦. The matrix of possible bond energies is shown in Tab. 1.

εclockσσ′ 0◦ 120◦ 240◦

0◦ −J 1
2J

1
2J

120◦ 1
2J −J 1

2J
240◦ 1

2J
1
2J −J

Table 1: Z3 clock model energy matrix.

Now consider the q = 3 Potts model, where the local states are labeled |A 〉, |B 〉, and |C 〉. The Hamiltonian is

Ĥ = −J̃
∑

〈ij〉
δσ

i
,σ

j
.

The interaction energy matrix for the Potts model is given in Tab. 2.

We can in each case label the three states by a local variable σ ∈ {1, 2, 3}, corresponding, respectively, to 0◦, 120◦,
and 240◦ for the clock model and to A, B, and C for the Potts model. We then observe

εclockσσ′ (J) = εPotts

σσ′ (32J) +
1
2J .

Thus, the free energies satisfy
F clock(J) = 1

4NzJ + F Potts(32J) ,

and the models are equivalent. However, the Zq clock model and q-state Potts model are not equivalent for q > 3.
Can you see why? Hint: construct the corresponding energy matrices for q = 4.

εPotts

σσ′ A B C

A −J̃ 0 0

B 0 −J̃ 0

C 0 0 −J̃

Table 2: q = 3 Potts model energy matrix.
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(7.9) Consider the U(1) Ginsburg-Landau theory with

F =

∫

ddr
[
1
2a |Ψ|2 + 1

4b |Ψ|4 + 1
2κ |∇Ψ|2

]

.

Here Ψ(r) is a complex-valued field, and both b and κ are positive. This theory is appropriate for describing the
transition to superfluidity. The order parameter is 〈Ψ(r)〉. Note that the free energy is a functional of the two
independent fields Ψ(r) and Ψ∗(r), where Ψ∗ is the complex conjugate of Ψ. Alternatively, one can consider F a
functional of the real and imaginary parts of Ψ.

(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy can be written in the form

F = ε0

∫

ddx
[

± 1
2 |ψ|

2 + 1
4 |ψ|

4 + 1
2 |∇ψ|2

]

,

where ψ and x are dimensionless, ε0 has dimensions of energy, and where the sign on the first term on the
RHS is sgn(a). Find ε0 and the relations between Ψ and ψ and between r and x.

(b) By extremizing the functional F [ψ, ψ∗] with respect to ψ∗, find a partial differential equation describing the
behavior of the order parameter field ψ(x).

(c) Consider a two-dimensional system (d = 2) and let a < 0 (i.e. T < Tc). Consider the case where ψ(x)
describe a vortex configuration: ψ(x) = f(r) eiφ, where (r, φ) are two-dimensional polar coordinates. Find
the ordinary differential equation for f(r) which extremizes F .

(d) Show that the free energy, up to a constant, may be written as

F = 2πε0

R∫

0

dr r

[

1
2

(
f ′)2 +

f2

2r2
+ 1

4

(
1− f2

)2

]

,

where R is the radius of the system, which we presume is confined to a disk. Consider a trial solution for
f(r) of the form

f(r) =
r√

r2 + a2
,

where a is the variational parameter. Compute F (a,R) in the limit R → ∞ and extremize with respect to a
to find the optimum value of a within this variational class of functions.

Solution :

(a) Taking the ratio of the second and first terms in the free energy density, we learn that Ψ has units of A ≡
(
|a|/b

)1/2
. Taking the ratio of the third to the first terms yields a length scale ξ =

(
κ/|a|

)1/2
. We therefore write

Ψ = Aψ and x̃ = ξx to obtain the desired form of the free energy, with

ε0 = A2 ξd |a| = |a|2− 1

2
d b−1 κ

1

2
d .

(b) We extremize with respect to the field ψ∗. Writing F = ε0
∫
d3x F , with F = ± 1

2 |ψ|2 + 1
4 |ψ|4 + 1

2 |∇ψ|2,

δ(F/ε0)

δψ∗(x)
=

∂F
∂ψ∗ −∇· ∂F

∂∇ψ∗ = ± 1
2 ψ + 1

2 |ψ|
2 ψ − 1

2 ∇
2ψ .

Thus, the desired PDE is
−∇2ψ ± ψ + |ψ|2 ψ = 0 ,
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which is known as the time-independent nonlinear Schrödinger equation.

(c) In two dimensions,

∇
2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
.

Plugging in ψ = f(r) eiφ into ∇2ψ + ψ − |ψ|2ψ = 0, we obtain

d2f

dr2
+

1

r

df

dr
− f

r2
+ f − f3 = 0 .

(d) Plugging ∇ψ = r̂ f ′(r) + i
r f(r) φ̂ into our expression for F , we have

F = 1
2 |∇ψ|2 − 1

2 |ψ|
2 + 1

4 |ψ|
4

= 1
2

(
f ′)2 +

f2

2r2
+ 1

4

(
1− f2

)2 − 1
4 ,

which, up to a constant, is the desired form of the free energy. It is a good exercise to show that the Euler-Lagrange
equations,

∂ (rF)

∂f
− d

dr

(
∂ (rF)

∂f ′

)

= 0

results in the same ODE we obtained for f in part (c). We now insert the trial form for f(r) into F . The resulting
integrals are elementary, and we obtain

F (a,R) = 1
4πε0

{

1− a4

(R2 + a2)2
+ 2 ln

(
R2

a2
+ 1

)

+
R2 a2

R2 + a2

}

.

Taking the limit R → ∞, we have

F (a,R → ∞) = 2 ln

(
R2

a2

)

+ a2 .

We now extremize with respect to a, which yields a =
√
2. Note that the energy in the vortex state is logarith-

mically infinite. In order to have a finite total free energy (relative to the ground state), we need to introduce an
antivortex somewhere in the system. An antivortex has a phase winding which is opposite to that of the vortex,
i.e. ψ = f e−iφ. If the vortex and antivortex separation is r, the energy is

V (r) = 1
2πε0 ln

(
r2

a2
+ 1

)

.

This tends to V (r) = πε0 ln(d/a) for d ≫ a and smoothly approaches V (0) = 0, since when r = 0 the vortex and
antivortex annihilate leaving the ground state condensate. Recall that two-dimensional point charges also interact
via a logarithmic potential, according to Maxwell’s equations. Indeed, there is a rather extensive analogy between
the physics of two-dimensional models with O(2) symmetry and (2 + 1)-dimensional electrodynamics.

14



(7.10) Consider a two-state Ising model, with an added dash of quantum flavor. You are invited to investigate
the transverse Ising model, whose Hamiltonian is written

Ĥ = − 1
2

∑

i,j

Jijσ
x
i σ

x
j −H

∑

i

σz
i ,

where the σα
i are Pauli matrices:

σx
i =

(
0 1
1 0

)

i

, σz
i =

(
1 0
0 −1

)

i

.

(a) Using the trial density matrix,
̺i =

1
2 + 1

2 mx σ
x
i + 1

2 mz σ
z
i

compute the mean field free energy F/NĴ(0) ≡ f(θ, h,mx,mz), where θ = k
B
T/Ĵ(0), and h = H/Ĵ(0). Hint:

Work in an eigenbasis when computing Tr (̺ ln ̺).

(b) Derive the mean field equations for mx and mz .

(c) Show that there is always a solution with mx = 0, although it may not be the solution with the lowest free
energy. What is mz(θ, h) when mx = 0?

(d) Show that mz = h for all solutions with mx 6= 0.

(e) Show that for θ ≤ 1 there is a curve h = h∗(θ) below which mx 6= 0, and along which mx vanishes. That is,
sketch the mean field phase diagram in the (θ, h) plane. Is the mean field transition at h = h∗(θ) first order
or second order?

(f) Sketch, on the same plot, the behavior of mx(θ, h) and mz(θ, h) as functions of the field h for fixed θ. Do this
for θ = 0, θ = 1

2 , and θ = 1.

Solution :

(a) We have Tr (̺ σx) = mx and Tr (̺ σz) = mz . The eigenvalues of ̺ are 1
2 (1±m), wherem = (m2

x+m
2
z)

1/2. Thus,

f(θ, h,mx,mz) = − 1
2m

2
x − hmz + θ

[

1 +m

2
ln

(
1 +m

2

)

+
1−m

2
ln

(
1−m

2

)]

.

(b) Differentiating with respect to mx and mz yields

∂f

∂mx

= 0 = −mx +
θ

2
ln

(
1 +m

1−m

)

· mx

m

∂f

∂mz

= 0 = −h+
θ

2
ln

(
1 +m

1−m

)

· mz

m
.

Note that we have used the result
∂m

∂mµ

=
mµ

m

where mα is any component of the vector m.

(c) If we set mx = 0, the first mean field equation is satisfied. We then have mz = m sgn(h), and the second mean
field equation yields mz = tanh(h/θ). Thus, in this phase we have

mx = 0 , mz = tanh(h/θ) .
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(d) When mx 6= 0, we divide the first mean field equation by mx to obtain the result

m =
θ

2
ln

(
1 +m

1−m

)

,

which is equivalent to m = tanh(m/θ). Plugging this into the second mean field equation, we find mz = h. Thus,
when mx 6= 0,

mz = h , mx =
√

m2 − h2 , m = tanh(m/θ) .

Note that the length of the magnetization vector, m, is purely a function of the temperature θ in this phase and
thus does not change as h is varied when θ is kept fixed. What does change is the canting angle of m, which is
α = tan−1(h/m) with respect to the ẑ axis.

(e) The two solutions coincide when m = h, hence

h = tanh(h/θ) =⇒ θ∗(h) =
2h

ln
(

1+h
1−h

) .

Inverting the above transcendental equation yields h∗(θ). The componentmx, which serves as the order parameter
for this system, vanishes smoothly at θ = θc(h). The transition is therefore second order.

(f) See fig. 2.

Figure 2: Solution to the mean field equations for problem 2. Top panel: phase diagram. The region within the
thick blue line is a canted phase, where mx 6= 0 and mz = h > 0; outside this region the moment is aligned along
ẑ and mx = 0 with mz = tanh(h/θ).
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(7.11) The Landau free energy of a crystalline magnet is given by the expression

f = 1
2α t

(
m2

x +m2
y

)
+ 1

4b1
(
m4

x +m4
y

)
+ 1

2b2m
2
xm

2
y ,

where the constants α and b1 are both positive, and where t is the dimensionless reduced temperature, t = (T −
Tc)/Tc.

(a) Rescale, so that f is of the form

f = ε0

{

1
2 t
(
φ2x + φ2y

)
+ 1

4

(
φ4x + φ4y + 2λφ2x φ

2
y

)
}

,

where mx,y = s φx,y, where s is a scale factor. Find the appropriate scale factor and find expressions for the
energy scale ε0 and the dimensionless parameter λ in terms of α, b1, and b2.

(b) For what values of λ is the free energy unbounded from below?

(c) Find the equations which minimize f as a function of φx,y.

(d) Show that there are three distinct phases: one in which φx = φy = 0 (phase I), another in which one of φx,y
vanishes but the other is finite (phase II) and one in which both of φx,y are finite (phase III). Find f in each
of these phases, and be clear to identify any constraints on the parameters t and λ.

(e) Sketch the phase diagram for this theory in the (t, λ) plane, clearly identifying the unphysical region where
f is unbounded, and indicating the phase boundaries for all phase transitions. Make sure to label the phase
transitions according to whether they are first or second order.

Solution :

(a) It is a simple matter to find

mx,y =

√
α

b1
φx,y , ε0 =

α2

b1
, λ =

b2
b1

.

(b) Note that

f = 1
4 ε0

(
φ2x φ2y

)
(
1 λ
λ 1

)(
φ2x
φ2y

)

+ 1
2 ε0

(
φ2x φ2y

)
(
t
t

)

(1)

We need to make sure that the quartic term goes to positive infinity when the fields φx,y tend to infinity. Else
the free energy will not be bounded from below and the model is unphysical. Clearly the matrix in the first term

on the RHS has eigenvalues 1 ± λ and corresponding (unnormalized) eigenvectors
(

1
±1

)

. Since φ2x,y cannot be

negative, we only need worry about the eigenvalue 1+λ. This is negative for λ < −1. Thus, λ ≤ −1 is unphysical.

(c) Differentiating with respect to φx,y yields the equations

∂f

∂φx
=
(
t+ φ2x + λφ2y

)
φx = 0 ,

∂f

∂φy
=
(
t+ φ2y + λφ2x

)
φy = 0 .

(d) Clearly phase I with φx = φy = 0 is a solution to these equations. In phase II, we set one of the fields to zero,

φy = 0 and solve for φx =
√
−t, which requires t < 0. A corresponding solution exists if we exchange φx ↔ φy . In

phase III, we solve
(
1 λ
λ 1

)(
φ2x
φ2y

)

= −
(
t
t

)

⇒ φ2x = φ2y = − t

1 + λ
.
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Figure 3: Phase diagram for problem (2e).

This phase also exists only for t < 0, and λ > −1 as well, which is required if the free energy is to be bounded
from below. Thus, we find

(φx,I , φy,I) = (0, 0) , fI = 0

and
(φx,II , φy,II) = (±

√
−t , 0) or (0 , ±

√
−t) , fII = − 1

4ε0 t
2

and

(φx,III , φy,III) = ±
√

−t
1+λ (1 , 1) or ±

√
−t
1+λ (1 , −1) , fIII = − ε0 t

2

2 (1 + λ)
.

(e) To find the phase diagram, we note that phase I has the lowest free energy for t > 0. For t < 0 we find

fIII − fII =
1
4 ε0 t

2 λ− 1

λ+ 1
, (2)

which is negative for |λ| < 1. Thus, the phase diagram is as depicted in fig. 3.
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(7.12) A system is described by the Hamiltonian

Ĥ = −J
∑

〈ij〉
ε(µi, µj)−H

∑

i

δµi,A , (3)

where on each site i there are four possible choices for µi: µi ∈ {A,B,C,D}. The interaction matrix ε(µ, µ′) is
given in the following table:

ε A B C D

A +1 −1 −1 0
B −1 +1 0 −1
C −1 0 +1 −1
D 0 −1 −1 +1

(a) Write a trial density matrix

̺(µ1, . . . , µN ) =

N∏

i=1

̺1(µi)

̺1(µ) = x δµ,A + y(δµ,B + δµ,C + δµ,D) .

What is the relationship between x and y? Henceforth use this relationship to eliminate y in terms of x.

(b) What is the variational energy per site, E(x, T,H)/N?

(c) What is the variational entropy per site, S(x, T,H)/N?

(d) What is the mean field equation for x?

(e) What value x∗ does x take when the system is disordered?

(f) Write x = x∗+ 3
4ε and expand the free energy to fourth order in ε. (The factor 3

4 should generate manageable
coefficients in the Taylor series expansion.)

(g) Sketch ε as a function of T for H = 0 and find Tc. Is the transition first order or second order?

Solution :

(a) Clearly we must have y = 1
3 (1− x) in order that Tr(̺1) = x+ 3y = 1.

(b) We have
E

N
= − 1

2zJ
(
x2 − 4 xy + 3 y2 − 4 y2

)
−Hx ,

The first term in the bracket corresponds to AA links, which occur with probability x2 and have energy −J . The
second term arises from the four possibilities AB, AC, BA, CA, each of which occurs with probability xy and with
energy +J . The third term is from the BB, CC, and DD configurations, each with probability y2 and energy −J .
The last term is from the BD, CD, DB, and DC configurations, each with probability y2 and energy +J . Finally,
there is the field term. Eliminating y = 1

3 (1− x) from this expression we have

E

N
= 1

18zJ
(
1 + 10 x− 20 x2

)
−Hx

Note that with x = 1 we recover E = − 1
2NzJ −H , i.e. an interaction energy of −J per link and a field energy of

−H per site.
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(c) The variational entropy per site is

s(x) = −k
B
Tr
(
̺1 ln ̺1

)

= −k
B

(

x ln x+ 3y ln y
)

= −k
B

[

x ln x+ (1 − x) ln

(
1− x

3

)]

.

(d) It is convenient to adimensionalize, writing f = F/Nε0, θ = k
B
T/ε0, and h = H/ε0, with ε0 = 5

9zJ . Then

f(x, θ, h) = 1
10 + x− 2x2 − hx+ θ

[

x lnx+ (1− x) ln

(
1− x

3

)]

.

Differentiating with respect to x, we obtain the mean field equation

∂f

∂x
= 0 =⇒ 1− 4x− h+ θ ln

(
3x

1− x

)

= 0 .

(e) When the system is disordered, there is no distinction between the different polarizations of µ0. Thus, x∗ = 1
4 .

Note that x = 1
4 is a solution of the mean field equation from part (d) when h = 0.

(f) Find
f
(
x = 1

4 + 3
4 ε, θ, h

)
= f0 +

3
2

(
θ − 3

4

)
ε2 − θ ε3 + 7

4 θ ε
4 − 3

4 h ε

with f0 =
9
40 − 1

4h− θ ln 4.

(g) For h = 0, the cubic term in the mean field free energy leads to a first order transition which preempts the
second order one which would occur at θ∗ = 3

4 , where the coefficient of the quadratic term vanishes. We learned
in §7.6 of the Lecture Notes that for a free energy f = 1

2am
2− 1

3ym
3+ 1

4bm
4 that the first order transition occurs for

a = 2
9 b

−1y2, where the magnetization changes discontinuously from m = 0 at a = a+c to m0 = 2
3 b

−1y at a = a−c .
For our problem here, we have a = 3

(
θ − 3

4

)
, y = 3θ, and b = 7θ. This gives

θc =
63
76 ≈ 0.829 , ε0 = 2

7 .

As θ decreases further below θc to θ = 0, ε increases to ε(θ = 0) = 1. No sketch needed!
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(7.13) Consider a q-state Potts model on the body-centered cubic (BCC) lattice. The Hamiltonian is given by

Ĥ = −J
∑

〈ij〉
δσ

i
, σ

j
,

where σi ∈ {1, . . . , q} on each site.

(a) Following the mean field treatment in §7.5.3 of the Lecture Notes, write x =
〈
δσ

i
, 1

〉
= q−1 + s, and expand

the free energy in powers of s up through terms of order s4. Neglecting all higher order terms in the free
energy, find the critical temperature θc, where θ = k

B
T/zJ as usual. Indicate whether the transition is first

order or second order (this will depend on q).

(b) For second order transitions, the truncated Landau expansion is sufficient, since we care only about the sign
of the quadratic term in the free energy. First order transitions involve a discontinuity in the order parameter,
so any truncation of the free energy as a power series in the order parameter involves an approximation.
Find a way to numerically determine θc(q) based on the full mean field (i.e. variational density matrix) free
energy. Compare your results with what you found in part (a), and sketch both sets of results for several
values of q.

Solution :

(a) The expansion of the free energy f(s, θ) is given in eqn. 7.129 of the notes (set h = 0). We have

f = f0 +
1
2a s

2 − 1
3y s

3 + 1
4b s

4 +O(s5) ,

with

a =
q(qθ − 1)

q − 1
, y =

(q − 2) q3θ

2(q − 1)2
, b = 1

3q
3θ
[

1 + (q − 1)−3
]

.

For q = 2 we have y = 0, and there is a second order phase transition when a = 0, i.e. θ = q−1. For q > 2, there
is a cubic term in the Landau expansion, and this portends a first order transition. Restricting to the quartic free
energy above, a first order at a > 0 transition preempts what would have been a second order transition at a = 0.
The transition occurs for y2 = 9

2ab. Solving for θ, we obtain

θL

c =
6(q2 − 3q + 3)

(5q2 − 14q + 14) q
.

The value of the order parameter s just below the first order transition temperature is

s(θ−c ) =
√

2a/b ,

where a and b are evaluated at θ = θc

(b) The full variational free energy, neglecting constants, is

f(x, θ) = − 1
2x

2 − (1− x)2

2(q − 1)
+ θ x lnx+ θ (1 − x) ln

(
1− x

q − 1

)

.

Therefore

∂f

∂x
= −x+

1− x

q − 1
+ θ lnx− θ ln

(
1− x

q − 1

)

∂2f

∂x2
= − q

q − 1
+

θ

x(1 − x)
.

Solving for ∂2f
∂x2 = 0, we obtain

x± =
1

2
± 1

2

√

1− θ

θ0
,
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Figure 4: Variational free energy of the q = 7 Potts model versus variational parameter x. Left: free energy f(x, θ).
Right: derivative f ′(x, θ) with respect to the x. The dot-dash magenta curve in both cases is the locus of points
for which the second derivative f ′′(x, θ) with respect to x vanishes. Three characteristic temperatures are marked
θ = q−1 (blue), where the coefficient of the quadratic term in the Landau expansion changes sign; θ = θ0 (red),
where there is a saddle-node bifurcation and above which the free energy has only one minimum at x = q−1

(symmetric phase); and θ = θc (green), where the first order transition occurs.

Figure 5: Comparisons of order parameter jump at θc
(top) and critical temperature θc (bottom) for untrun-
cated (solid lines) and truncated (dashed lines) expan-
sions of the mean field free energy. Note the agreement
as q → 2, where the jump is small and a truncated ex-
pansion is then valid.

where
θ0 =

q

4(q − 1)
.

For temperatures below θ0, the function f(x, θ) has three ex-
trema: two local minima and one local maximum. The points
x± lie between either minimum and the maximum. The situ-
ation is depicted in fig. 4 for the case q = 7. To locate the first
order transition, we must find the temperature θc for which
the two minima are degenerate. This can be done numerically,
but there is an analytic solution:

θMF

c =
q − 2

2(q − 1) ln(q − 1)
, s(θ−c ) =

q − 2

q
.

A comparison of with results from part (a) is shown in fig. 5.
Note that the truncated free energy is sufficient to obtain the
mean field solution for q = 2. This is because the transition
for q = 2 is continuous (i.e. second order), and we only need
to know f(θ,m) in the vicinity of m = 0.
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(7.14) The Blume-Capel model is a S = 1 Ising model described by the Hamiltonian

Ĥ = − 1
2

∑

i,j

Jij Si Sj +∆
∑

i

S2
i ,

where Jij = J(Ri −Rj) and Si ∈ {−1, 0,+1}. The mean field theory for this model is discussed in section 7.11
of the Lecture Notes, using the ’neglect of fluctuations’ method. Consider instead a variational density matrix
approach. Take ̺(S1, . . . , SN) =

∏

i ˜̺(Si), where

˜̺(S) =

(
n+m

2

)

δS,+1 + (1− n) δS,0 +

(
n−m

2

)

δS,−1 .

(a) Find 〈1〉, 〈Si〉, and 〈S2
i 〉.

(b) Find E = Tr (̺H).

(c) Find S = −k
B
Tr (̺ ln ̺).

(d) Adimensionalizing by writing θ = k
B
T/Ĵ(0), δ = ∆/Ĵ(0), and f = F/NĴ(0), find the dimensionless free

energy per site f(m,n, θ, δ).

(e) Write down the mean field equations.

(f) Show that m = 0 always permits a solution to the mean field equations, and find n(θ, δ) when m = 0.

(g) To find θc, set m = 0 but use both mean field equations. You should recover eqn. 7.322 of the Lecture Notes.

(h) Show that the equation for θc has two solutions for δ < δ∗ and no solutions for δ > δ∗. Find the value of δ∗.1

(i) Assume m2 ≪ 1 and solve for n(m, θ, δ) using one of the mean field equations. Plug this into your result for
part (d) and obtain an expansion of f in terms of powers of m2 alone. Find the first order line. You may find
it convenient to use Mathematica here.

Solution :

(a) From the given expression for ˜̺, we have

〈1〉 = 1 , 〈S〉 = m , 〈S2〉 = n ,

where 〈A〉 = Tr(˜̺A).

(b) From the results of part (a), we have

E = Tr(˜̺Ĥ)

= − 1
2NĴ(0)m

2 +N∆n ,

assuming Jii = 0 for al i.

(c) The entropy is

S = −k
B
Tr (̺ ln ̺)

= −Nk
B

{(
n−m

2

)

ln

(
n−m

2

)

+ (1− n) ln(1− n) +

(
n+m

2

)

ln

(
n+m

2

)}

.

1Nota bene : (θ
∗
, δ

∗
) is not the tricritical point.
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(d) The dimensionless free energy is given by

f(m,n, θ, δ) = − 1
2m

2 + δn+ θ

{(
n−m

2

)

ln

(
n−m

2

)

+ (1− n) ln(1 − n) +

(
n+m

2

)

ln

(
n+m

2

)}

.

(e) The mean field equations are

0 =
∂f

∂m
= −m+ 1

2θ ln

(
n−m

n+m

)

0 =
∂f

∂n
= δ + 1

2θ ln

(
n2 −m2

4 (1− n)2

)

.

These can be rewritten as

m = n tanh(m/θ)

n2 = m2 + 4 (1− n)2 e−2δ/θ .

(f) Setting m = 0 solves the first mean field equation always. Plugging this into the second equation, we find

n =
2

2 + exp(δ/θ)
.

(g) If we set m→ 0 in the first equation, we obtain n = θ, hence

θc =
2

2 + exp(δ/θc)
.

(h) The above equation may be recast as

δ = θ ln

(
2

θ
− 2

)

with θ = θc. Differentiating, we obtain

∂δ

∂θ
= ln

(
2

θ
− 2

)

− 1

1− θ
=⇒ θ =

δ

δ + 1
.

Plugging this into the result for part (g), we obtain the relation δ eδ+1 = 2, and numerical solution yields the
maximum of δ(θ) as

θ∗ = 0.3164989 . . . , δ = 0.46305551 . . . .

This is not the tricritical point.

(i) Plugging in n = m/ tanh(m/θ) into f(n,m, θ, δ), we obtain an expression for f(m, θ, δ), which we then expand
in powers of m, obtaining

f(m, θ, δ) = f0 +
1
2am

2 + 1
4bm

4 + 1
6cm

6 +O(m8) .

We find

a =
2

3θ

{

δ − θ ln

(
2(1− θ)

θ

)}

b =
1

45 θ3

{

4(1− θ) θ ln

(
2(1− θ)

θ

)

+ 15θ2 − 5θ + 4δ(θ − 1)

}

c =
1

1890 θ5(1− θ)2

{

24 (1− θ)2 θ ln

(
2(1− θ)

θ

)

+ 24δ(1− θ)2 + θ
(
35− 154 θ+ 189 θ2

)

}

.
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The tricritical point occurs for a = b = 0, which yields

θt =
1
3 , δt =

2
3 ln 2 .

If, following Landau, we consider terms only up through order m6, we predict a first order line given by the
solution to the equation

b = − 4√
3

√
ac .

The actual first order line is obtained by solving for the locus of points (θ, δ) such that f(m, θ, δ) has a degenerate
minimum, with one of the minima at m = 0 and the other at m = ±m0. The results from Landau theory will
coincide with the exact mean field solution at the tricritical point, where the m0 = 0, but in general the first order
lines obtained by the exact mean field theory solution and by a truncated sixth order Landau expansion of the free
energy will differ.
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(7.15) Consider the following model Hamiltonian,

Ĥ =
∑

〈ij〉
E(σi, σj) ,

where each σi may take on one of three possible values, and

E(σ, σ′) =





−J +J 0
+J −J 0
0 0 +K



 ,

with J > 0 and K > 0. Consider a variational density matrix ̺v(σ1, . . . , σN ) =
∏

i ˜̺(σi), where the normalized
single site density matrix has diagonal elements

˜̺(σ) =

(
n+m

2

)

δσ,1 +

(
n−m

2

)

δσ,2 + (1− n) δσ,3 .

(a) What is the global symmetry group for this Hamiltonian?

(b) Evaluate E = Tr (̺v Ĥ).

(c) Evaluate S = −k
B
Tr (̺v ln ̺v).

(d) Adimensionalize by writing θ = k
B
T/zJ and c = K/J , where z is the lattice coordination number. Find

f(n,m, θ, c) = F/NzJ .

(e) Find all the mean field equations.

(f) Find an equation for the critical temperature θc, and show graphically that it has a unique solution.

Solution :

(a) The global symmetry group is Z2. If we label the spin values as σ ∈ {1, 2, 3}, then the group elements can be
written as permutations, 1 =

(
123
123

)
and J =

(
123
213

)
, with J 2 = 1.

(b) For each nearest neighbor pair (ij), the distribution of {σ,σj} is according to the product ˜̺(σi) ˜̺(σj). Thus, we
have

E = 1
2NzJ

∑

σ,σ′

˜̺(σ) ˜̺(σ′) ε(σ, σ′)

= 1
2NzJ ·

{

˜̺2(1)
︷ ︸︸ ︷
(
n+m

2

)2

(−J)+

˜̺2(2)
︷ ︸︸ ︷
(
n−m

2

)2

(−J)+

2 ˜̺(1) ˜̺(2)
︷ ︸︸ ︷

2

(
n+m

2

)(
n−m

2

)

(+J)+

˜̺2(3)
︷ ︸︸ ︷

(1− n)2 (+K)

}

= − 1
2Nz

[

Jm2 −K(1− n)2
]

.

(c) The entropy is

S = −Nk
B
Tr
(
˜̺ ln ˜̺

)

= −Nk
B

{(
n+m

2

)

ln

(
n+m

2

)

+

(
n−m

2

)

ln

(
n−m

2

)

+ (1− n) ln(1− n)

}

.
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(d) This can be solved by inspection from the results of parts (b) and (c):

f = − 1
2m

2 + 1
2c (1− n)2 + θ

[(
n+m

2

)

ln

(
n+m

2

)

+

(
n−m

2

)

ln

(
n−m

2

)

+ (1− n) ln(1 − n)

]

.

(e) There are two mean field equations, obtained by extremizing with respect to n and to m, respectively:

∂f

∂n
= 0 = c (n− 1) + 1

2θ ln

(
n2 −m2

4 (1− n)2

)

∂f

∂m
= 0 = −m+ 1

2θ ln

(
n−m

n+m

)

.

These may be recast as

n2 = m2 + 4 (1− n)2 e−2c(n−1)/θ

m = n tanh(m/θ) .

(f) To find θc, we take the limit m→ 0. The second mean field equation then gives n = θ. Substituting this into the
first mean field equation yields

θ = 2 (1− θ) e−2c(θ−1)/θ .

If we define u ≡ θ−1 − 1, this equation becomes

2u = e−cu .

It is clear that for c > 0 this equation has a unique solution, since the LHS is monotonically increasing and the
RHS is monotonically decreasing, and the difference changes sign for some u > 0. The low temperature phase is
the ordered phase, which spontaneously breaks the aforementioned Z2 symmetry. In the high temperature phase,
the Z2 symmetry is unbroken.
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(7.16) Consider a set of magnetic moments on a cubic lattice (z = 6). Due to the cubic anisotropy, the system is
modeled by the Hamiltonian

Ĥ = −J
∑

〈ij〉
n̂i · n̂j −H ·

∑

i

n̂i ,

where at each site n̂i can take one of six possible values: n̂i ∈ {±x̂ , ±ŷ , ±ẑ}.

(a) Find the mean field free energy f(θ,m,h), where θ = k
B
T/6J and h = H/6J .

(b) Find the self-consistent mean field equation for m, and determine the critical temperature θc(h = 0). How
does m behave just below θc? Hint: you will have to go beyond O(m2) to answer this.

(c) Find the phase diagram as a function of θ and h when h = h x̂.

Solution :

(a) The effective mean field is Heff = zJm+H , where m = 〈n̂i〉. The mean field Hamiltonian is

Ĥ
MF

= 1
2NzJm

2 −Heff ·
∑

i

n̂i .

With h = H/zJ and θ = k
B
T/zJ , we then have

f(θ ,h ,m) = − k
B
T

NzJ
lnTr e−Ĥ

eff
/k

B
T

= 1
2

(
m2

x +m2
y +m2

z

)
− θ ln

[

2 cosh

(
mx + hx

θ

)

+ 2 cosh

(
my + hy

θ

)

+ 2 cosh

(
mz + hz

θ

)]

.

(b) The mean field equation is obtained by setting ∂f
∂mα

= 0 for each Cartesian component α ∈ {x, y, z} of the order

parameter m. Thus,

mx =
sinh

(
mx+hx

θ

)

cosh
(

mx+hx

θ

)

+ cosh
(

my+hy

θ

)

+ cosh
(

mz+hz

θ

) ,

with corresponding equations for my and mz . We now set h = 0 and expand in powers of m, using coshu =

1 + 1
2u

2 + 1
24u

4 +O(u6) and ln(1 + u) = u− 1
2u

2 +O(u3). We have

f(θ ,h = 0 ,m) = 1
2

(
m2

x +m2
y +m2

z

)
− θ ln

(

6 +
m2

x +m2
y +m2

z

θ2
+
m4

x +m4
y +m4

z

12 θ4
+O(m6)

)

= −θ ln 6 + 1
2

(

1− 1
3θ

)(
m2

x +m2
y +m2

z

)
+
m2

xm
2
y +m2

ym
2
z +m2

zm
2
x

36 θ3
+O(m6) .

We see that the quadratic term is negative for θ < θc = 1
3 . Furthermore, the quadratic term depends only on the

magnitude of m and not its direction. How do we decide upon the direction, then? We must turn to the quartic
term. Note that the quartic term is minimized when m lies along one of the three cubic axes, in which case the
term vanishes. So we know that in the ordered phase m prefers to lie along ±x̂, ±ŷ, or ±ẑ. How can we determine
its magnitude? We must turn to the sextic term in the expansion:

f(θ , h = 0 ,m) = −θ ln 6 + 1
2

(

1− 1
3θ

)

m2 +
m6

3240 θ5
+O(m8) ,

which is valid provided m = mn̂ lies along a cubic axis. Extremizing, we obtain

m(θ) = ±
[

540 θ4 (θc − θ)
]1/4

≃
(
20
3

)1/4
(θc − θ)1/4 ,
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where θc =
1
3 . So due to an accidental cancellation of the quartic term, we obtain a nonstandard mean field order

parameter exponent of β = 1
4 .

(c) When h = h x̂, the magnetization will choose to lie along the x̂ axis in order to minimize the free energy. One
then has

f(θ, h,m) = −θ ln 6 + 1
2m

2 − θ ln

[

2
3 + 1

3 cosh

(
m+ h

θ

)]

= −θ ln 6 + 3
2 (θ − θc)m

2 + 3
40 m

6 − hm+ . . . ,

where in the second line we have assumed θ ≈ θc , and we have expanded for small m and h. The phase diagram
resembles that of other Ising systems. The h field breaks the m → −m symmetry, and there is a first order line
extending along the θ axis (i.e. for h = 0) from θ = 0 and terminating in a critical point at θ = θc . As we have seen,
the order parameter exponent is nonstandard, with β = 1

4 . What of the other critical exponents? Minimizing f
with respect to m, we have

3(θ − θc)m+ 9
20 m

5 − h = 0 .

For θ > θc and m small, we can neglect the O(m5) term and we find m(θ, h) = h
3(θ−θ

c
) , corresponding to the

familiar susceptibility exponent γ = 1.

Consider next the heat capacity. For θ > θc the free energy is f = −θ ln 6 , arising from the entropy term alone,

whereas for θ < θc we have m2 =
√

20
3 (θc − θ)1/2, which yields

f(θ < θc , h = 0) = −θ ln 6−
√

20
3 (θc − θ)3/2 .

Thus, the heat capacity, which is c = −θ ∂2f
∂θ2 , behaves as c(θ) ∝ (θc − θ)−1/2, corresponding to α = 1

2 , rather than
the familiar α = 0 .

Finally, we examine the behavior of m(θc , h). Setting θ = θc , we have

f(θc , h ,m) = −hm+ 9
40 m

6 +O(m8) .

Setting ∂f
∂m = 0, we find m ∝ h1/δ with δ = 5, which is also nonstandard.

29



(7.17) A magnet consists of a collection of local moments which can each take the values Si = −1 or Si = +3.
The Hamiltonian is

Ĥ = − 1
2

∑

i,j

Jij SiSj −H
∑

i

Si .

(a) Define m = 〈Si〉, h = H/Ĵ(0), θ = k
B
T/Ĵ(0). Find the dimensionless mean field free energy per site,

f = F/NĴ(0) as a function of θ, h, and m.

(b) Write down the self-consistent mean field equation for m.

(c) At θ = 0, there is a first order transition as a function of field between the m = +3 state and the m = −1
state. Find the critical field hc(θ = 0).

(d) Find the critical point (θc , hc) and plot the phase diagram for this system.

(e) Solve the problem using the variational density matrix approach.

Solution :

(a) We invoke the usual mean field treatment of dropping terms quadratic in fluctuations, resulting in an effective

field Heff = Ĵ(0)m+H and a mean field Hamiltonian

Ĥ
MF

= 1
2NĴ(0)m

2 −Heff

N∑

i=1

Si .

The free energy is then found to be

f(θ, h,m) = 1
2m

2 − θ ln
(

e3(m+h)/θ + e−(m+h)/θ
)

= 1
2m

2 −m− h− θ ln cosh

(
2(m+ h)

θ

)

− θ ln 2 .

(b) We extremize f with respect to the order parameter m and obtain

m = 1 + 2 tanh

(
2(m+ h)

θ

)

.

(c) When T = 0 there are no fluctuations, and since the interactions are ferromagnetic we may examine the two

uniform states. In the state where Si = +3 for each i, the energy is E1 = 9
2NĴ(0) − 3NH . In the state where

Si = −1 ∀ i, the energy is E2 = 1
2NĴ(0) +NH . Equating these energies gives H = −Ĵ(0) , i.e. h = −1.

(d) The first order transition at h = −1 and θ = 0 continues in a curve emanating from this point into the finite
θ region of the phase diagram. This phase boundary is determined by the requirement that f(θ, h,m) have a
degenerate double minimum as a function of m for fixed θ and h. This provides us with two conditions on the
three quantities (θ, h,m) , which in principle allows the determination of the curve h = hc(θ). The first order line
terminates in a critical point where these two local minima annihilate with a local maximum, which requires that
∂f
∂m = ∂2f

∂m2 = ∂3f
∂m3 = 0 , which provides the three conditions necessary to determine (θc , hc , mc). Now from our
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Figure 6: Phase diagram for problem 17.

expression for f(θ, h,m), we have

∂f

∂m
= m− 1− 2 tanh

(
2(m+ h)

θ

)

∂2f

∂m2
= 1− 4

θ
sech2

(
2(m+ h)

θ

)

∂3f

∂m3
=

16

θ2
tanh

(
2(m+ h)

θ

)

sech2
(
2(m+ h)

θ

)

.

Now set all three of these quantities to zero. From the third of these, we get m+ h = 0, which upon insertion into
the second gives θ = 4. From the first we then get m = 1, hence h = −1.

For a slicker derivation, note that the free energy may be written

f(θ, h,m) = 1
2 (m+ h)2 − θ ln cosh

(
2(m+ h)

θ

)

− (1 + h)(m+ h) + 1
2h

2 − θ ln 2 .

Thus, when h = −1, we have that f is an even function of m− 1. Expanding then in powers of m+ h , we have

f(θ, h = −1,m) = f0 +
1
2

(
1− 4

θ

)
(m− 1)2 + 4

3θ3 (m− 1)4 + . . . ,

whence we conclude θc = 4 and hc = −1.

(e) The most general single site variational density matrix is

̺(S) = x δS,−1 + (1 − x) δS,+3 .

This is normalized by construction. The average magnetization is

m = Tr (S̺) = (−1) · x+ (+3) · (1 − x) = 3− 4x ⇒ x =
3−m

4
.

Thus we have

̺(S) =
3−m

4
δS,−1 +

1 +m

4
δS,+3 .

The variational free energy is then

F = Tr (Ĥ ˆ̺) + k
B
T Tr (ˆ̺ ln ˆ̺)

= − 1
2NĴ(0)m

2 −NHm+ k
B
T

[(
3−m

4

)

ln

(
3−m

4

)

+

(
1 +m

4

)

ln

(
1 +m

4

)]

,
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where we assume all the diagonal elements vanish, i.e. Jii = 0 for all i. Dividing by NĴ(0), we have

f(θ, h,m) = − 1
2m

2 − hm− θ

[(
3−m

4

)

ln

(
3−m

4

)

+

(
1 +m

4

)

ln

(
1 +m

4

)]

.

Minimizing with respect to the variational parameter m yields

∂f

∂m
= −m− h+ 1

4θ ln

(
1 +m

3−m

)

,

which is equivalent to our earlier result m = 1 + 2 tanh
[
2(m+ h)/θ

]
.

If we once again expand in powers of (m− 1), we have

f(θ, h,m) = −
(
1
2 + h+ θ ln 2

)
− (h+ 1)(m− 1) + 1

8 (θ − 4)(m− 1)2 + 1
48 (m− 1)4 + . . . .

Again, we see (θc, hc) = (4,−1).
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