
4 Statistical Ensembles : Worked Examples

(4.1) Consider a system of N identical but distinguishable particles, each of which has a nondegenerate ground
state with energy zero, and a g-fold degenerate excited state with energy ε > 0.

(a) Let the total energy of the system be fixed at E = Mε, where M is the number of particles in an excited state.
What is the total number of states Ω(E,N)?

(b) What is the entropy S(E,N)? Assume the system is thermodynamically large. You may find it convenient
to define ν ≡ M/N , which is the fraction of particles in an excited state.

(c) Find the temperature T (ν). Invert this relation to find ν(T ).

(d) Show that there is a region where the temperature is negative.

(e) What happens when a system at negative temperature is placed in thermal contact with a heat bath at
positive temperature?

Solution :

(a) Since each excited particle can be in any of g degenerate energy states, we have

Ω(E,N) =

(
N

M

)
gM =

N ! gM

M ! (N −M)!
.

(b) Using Stirling’s approximation, we have

S(E,N) = k
B
lnΩ(E,N) = −Nk

B

{
ν ln ν + (1− ν) ln(1− ν)− ν ln g

}
,

where ν = M/N = E/Nε.

(c) The inverse temperature is

1

T
=

(
∂S

∂E

)

N

=
1

Nε

(
∂S

∂ν

)

N

=
k

B

ε
·
{
ln

(
1− ν

ν

)
+ ln g

}
,

hence
k

B
T =

ε

ln
(
1−ν
ν

)
+ ln g

.

Inverting,

ν(T ) =
g e−ε/k

B
T

1 + g e−ε/k
B
T

.

(d) The temperature diverges when the denominator in the above expression for T (ν) vanishes. This occurs at
ν = ν∗ ≡ g/(g + 1). For ν ∈ (ν∗, 1), the temperature is negative! This is technically correct, and a consequence
of the fact that the energy is bounded for this system: E ∈ [0, Nε]. The entropy as a function of ν therefore has a
maximum at ν = ν∗. The model is unphysical though in that it neglects various excitations such as kinetic energy
(e.g. lattice vibrations) for which the energy can be arbitrarily large.

(e) When a system at negative temperature is placed in contact with a heat bath at positive temperature, heat flows
from the system to the bath. The energy of the system therefore decreases, and since ∂S

∂E < 0, this results in a net
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Figure 1: Bottom: dimensionless temperature θ(ν) ≡ kBT/ε versus dimensionless energy density ν = E/Nε for
problem 1, shown here for g = 3. Note that T → ∓∞ for ν → ν∗±0+, where ν∗ = g/(g+1) is the energy density at
which the entropy is maximum. Top: dimensionless entropy s(ν) ≡ S/NkB versus dimensionless energy density
ν. Note the maximum at ν∗ = g/(g + 1), where g is the degeneracy of the excited level.

entropy increase, which is what is demanded by the Second Law of Thermodynamics. More precisely, let d̄Q be
the heat added to the system from the bath. The first law then says dE = d̄Q. The total entropy change due to
such a differential heat transfer is

dStot = dS + dSb =

(
1

T
− 1

Tb

)
dE ,

where dS = dSsys is the entropy change of the system and T is the system temperature; Tb > 0 is the temperature

of the bath. We see that the Second Law, dStot ≥ 0, requires that dE ≤ 0. For d̄Q = dE < 0, the total entropy
increases. Note that the heat capacity of the system is

C =
∂E

∂T
= Nε

∂ν

∂T
=

Nε2

k
B
T 2

g e−ε/k
B
T

(
1 + g e−ε/k

B
T
)2

and that C ≥ 0. Even though the temperature T can be negative, we always have C(T ) ≥ 0; this is necessary for
thermodynamic stability. We conclude that the system’s temperature changes by dT = dE/C, so if dE < 0 we
have dT < 0 and the system cools.

All should be clear upon examination of Fig. 1. When ν > ν∗, the system temperature is negative. Placing

the system in contact with a bath at temperature Tb > 0 will cause heat to flow from the system to the bath:
d̄Q = dE < 0. This means dν = dE/Nε < 0, hence ν decreases and approaches ν∗ from above, at which point
T = −∞. At this point, a further differential transfer −d̄Q > 0 from the system to the bath continues to result in

an increase of total entropy, with dStot = −d̄Q/Tb at ν = ν∗. Thus, ν crosses ν∗, and the temperature flips from
T = −∞ to T = +∞. At this point, we can appeal to our normal intuition. The system is much hotter than the
bath, and heat continues to flow to the bath. This has the (familiar) effect of lowering the system temperature,
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which will then approach Tb from above. Ultimately, both system and bath will be at temperature Tb, as required
for thermodynamic equilibrium.

3



(4.2) Solve for the model in problem 1 using the ordinary canonical ensemble. The Hamiltonian is

Ĥ = ε

N∑

i=1

(
1− δσ

i
,1

)
,

where σi ∈ {1, . . . , g + 1}.

(a) Find the partition function Z(T,N) and the Helmholtz free energy F (T,N).

(b) Show that M̂ = ∂Ĥ
∂ε counts the number of particles in an excited state. Evaluate the thermodynamic average

ν(T ) = 〈M̂〉/N .

(c) Show that the entropy S = −
(
∂F
∂T

)
N

agrees with your result from problem 1.

Solution :

(a) We have

Z(T,N) = Tr e−βĤ =
(
1 + g e−ε/k

B
T
)N

.

The free energy is

F (T,N) = −k
B
T lnF (T,N) = −Nk

B
T ln

(
1 + g e−ε/k

B
T
)

.

(b) We have

M̂ =
∂Ĥ

∂ε
=

N∑

i=1

(
1− δσ

i
,1

)
.

Clearly this counts all the excited particles, since the expression 1 − δσ
i
,1 vanishes if i = 1, which is the ground

state, and yields 1 if i 6= 1, i.e. if particle i is in any of the g excited states. The thermodynamic average of M̂ is

〈M̂〉 =
(
∂F
∂ε

)
T,N

, hence

ν =
〈M̂〉
N

=
g e−ε/k

B
T

1 + g e−ε/k
B
T

,

which agrees with the result in problem 1c.

(c) The entropy is

S = −
(
∂F

∂T

)

N

= Nk
B
ln
(
1 + g e−ε/k

B
T
)
+

Nε

T

g e−ε/k
B
T

1 + g e−ε/k
B
T

.

Working with our result for ν(T ), we derive

1 + g e−ε/k
B
T =

1

1− ν

ε

k
B
T

= ln

(
g(1− ν)

ν

)
.

Inserting these results into the above expression for S, we verify

S = −Nk
B
ln(1− ν) +Nk

B
ν ln

(
g(1− ν)

ν

)

= −Nk
B

{
ν ln ν + (1− ν) ln(1− ν)− ν ln g

}
,

as we found in problem 1b.
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(4.3) Consider a system of noninteracting spin trimers, each of which is described by the Hamiltonian

Ĥ = −J
(
σ1σ2 + σ2σ3 + σ3σ1

)
− µ0H

(
σ1 + σ2 + σ3

)
.

The individual spin polarizations σi are two-state Ising variables, with σi = ±1.

(a) Find the single trimer partition function ζ.

(b) Find the magnetization per trimer m = µ0 〈σ1 + σ2 + σ3〉.

(c) Suppose there are N△ trimers in a volume V . The magnetization density is M = N△m/V . Find the zero field
susceptibility χ(T ) = (∂M/∂H)H=0.

(d) Find the entropy S(T,H,N△).

(e) Interpret your results for parts (b), (c), and (d) physically for the limits J → +∞, J → 0, and J → −∞.

Solution :

The eight trimer configurations and their corresponding energies are listed in the table below.

|σ1σ2σ3 〉 E |σ1σ2σ3 〉 E

|↑↑↑ 〉 −3J − 3µ0H |↓↓↓ 〉 −3J + 3µ0H
|↑↑↓ 〉 +J − µ0H |↓↓↑ 〉 +J + µ0H
|↑↓↑ 〉 +J − µ0H |↓↑↓ 〉 +J + µ0H
|↓↑↑ 〉 +J − µ0H |↑↓↓ 〉 +J + µ0H

Table 1: Spin configurations and their corresponding energies.

(a) The single trimer partition function is then

ζ =
∑

α

e−βEα = 2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H) .

(b) The magnetization is

m =
1

βζ

∂ζ

∂H
= 3µ0 ·

(
e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)

e3βJ cosh(3βµ0J) + 3 e−βJ cosh(βµ0H)

)

(c) Expanding m(T,H) to lowest order in H , we have

m = 3βµ2
0 H ·

(
3 e3βJ + e−βJ

e3βJ + 3 e−βJ

)
+O(H3) .

Thus,

χ(T ) =
N△
V

· 3µ
2
0

k
B
T

·
(
3 e3J/kB

T + e−J/k
B
T

e3J/kB
T + 3 e−J/k

B
T

)
.

(d) Note that

F =
1

β
lnZ , E =

∂ lnZ

∂β
.
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Thus,

S =
E − F

T
= k

B

(
lnZ − β

∂ lnZ

∂β

)
= N△k

B

(
ln ζ − β

∂ ln ζ

∂β

)
.

So the entropy is

S(T,H,N△) = N△k
B
ln
(
2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)

− 6N△βJk
B
·
(

e3βJ cosh(3βµ0H)− e−βJ cosh(βµ0H)

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)

− 6N△βµ0Hk
B
·
(

e3βJ sinh(3βµ0H) + e−βJ sinh(βµ0H)

2 e3βJ cosh(3βµ0H) + 6 e−βJ cosh(βµ0H)

)
.

Setting H = 0 we have

S(T,H = 0, N△) = N△k
B
ln 2 +N△k

B
ln
(
1 + 3 e−4J/k

B
T
)
+

N△J

T
·
(

12 e−4J/k
B
T

1 + 3 e−4J/k
B
T

)

= N△k
B
ln 6 +N△k

B
ln
(
1 + 1

3 e
4J/k

B
T
)
−

N△J

T
·
(

4 e4J/kB
T

3 + e4J/kB
T

)
.

(e) Note that for J = 0 we have m = 3µ2
0H/k

B
T , corresponding to three independent Ising spins. The H = 0

entropy is then N△k
B
ln 8 = 3N△k

B
ln 2, as expected. As J → +∞ we have m = 9µ2

0H/k
B
T = (3µ0)

2H/k
B
T ,

and each trimer acts as a single Z2 Ising spin, but with moment 3µ0. The zero field entropy in this limit tends
to N△k

B
ln 2, again corresponding to a single Z2 Ising degree of freedom per trimer. For J → −∞, we have

m = µ2
0 H/k

B
T and S = N△k

B
ln 6. This is because the only allowed (i.e. finite energy) states of each trimer are the

three states with magnetization +µ0 and the three states with magnetization −µ0, all of which are degenerate at
H = 0.
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(4.4) In §4.9.4 of the lecture notes, we considered a simple model for the elasticity of wool in which each of N
monomers was in one of two states A or B, with energies ε

A,B
and lengths ℓ

A,B
. Consider now the case where the A

state is doubly degenerate due to a magnetic degree of freedom which does not affect the energy or the length of
the A

± monomers.

(a) Generalize the results from this section of the lecture notes and show that you can write the Hamiltonian Ĥ

and chain length L̂ in terms of spin variables Sj ∈ {−1, 0, 1}, where Sj = ±1 if monomer j is in state A
±,

and Sj = 0 if it is in state B. Construct the appropriate generalization of K̂ − Ĥ − τL̂.

(b) Find the equilibrium length L(T, τ,N) as a function of the temperature, tension, and number of monomers.

(c) Now suppose an external magnetic field is present, so the energies of the A
± states are split, with ε

A± =
εA ∓ µ0H . Find an expression for L(T, τ,H,N).

Solution :

(a) Take

Ĥ =
N∑

j=1

[
ε
B
+ (ε

A
− ε

B
)S2

j

]
, L̂ =

N∑

j=1

[
ℓ
B
+ (ℓ

A
− ℓ

B
)S2

j

]
,

resulting in

K̂ = Ĥ − τL̂ = N(ε
B
− τℓ

B
) + ∆

N∑

j=1

S2
j ,

where
∆ = (ε

A
− ε

B
)− τ(ℓ

A
− ℓ

B
) .

(b) The partition function is

Y (T, τ,N) = e−G/k
B
T = Tr e−K̂/k

B
T

= e−N(εB−τℓB)/kB
T
(
1 + 2 e−∆/k

B
T
)N

.

Thus, the Gibbs free energy is

G(T, τ,N) = −k
B
T lnY (T, τ,N) = N(ε

B
− τℓ

B
)−Nk

B
T ln

(
1 + 2 e−∆/k

B
T
)

.

The equilibrium length is

L = −∂G

∂τ
= Nℓ

B
+N(ℓ

A
− ℓ

B
) · 2 e−∆/k

B
T

1 + 2 e−∆/k
B
T

.

Note that L = Nℓ
A

for ∆ → −∞ and L = Nℓ
B

for ∆ → +∞.

(c) Accounting for the splitting of the two A states,

L = Nℓ
B
+N(ℓ

A
− ℓ

B
) · 2 e−∆/k

B
T cosh(µ0H/k

B
T )

1 + 2 e−∆/k
B
T cosh(µ0H/k

B
T )

.
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(4.5) Consider a generalization of the situation in §4.4 of the notes where now three reservoirs are in thermal
contact, with any pair of systems able to exchange energy.

(a) Assuming interface energies are negligible, what is the total density of states D(E)? Your answer should be
expressed in terms of the densities of states functions D1,2,3 for the three individual systems.

(b) Find an expression for P (E1, E2), which is the joint probability distribution for system 1 to have energy E1

while system 2 has energy E2 and the total energy of all three systems is E1 + E2 + E3 = E.

(c) Extremize P (E1, E2) with respect to E1,2. Show that this requires the temperatures for all three systems
must be equal: T1 = T2 = T3. Writing Ej = E∗

j + δEj , where E∗
j is the extremal solution (j = 1, 2), expand

lnP (E∗
1 + δE1 , E

∗
2 + δE2) to second order in the variations δEj . Remember that

S = k
B
lnD ,

(
∂S

∂E

)

V,N

=
1

T
,

(
∂2S

∂E2

)

V,N

= − 1

T 2CV

.

(d) Assuming a Gaussian form for P (E1, E2) as derived in part (c), find the variance of the energy of system 1,

Var(E1) =
〈
(E1 − E∗

1 )
2
〉

.

Solution :

(a) The total density of states is a convolution:

D(E) =

∞∫

−∞

dE1

∞∫

−∞

dE2

∞∫

−∞

dE3 D1(E1)D2(E2)D3(E3) δ(E − E1 − E2 − E3) .

(b) The joint probability density P (E1, E2) is given by

P (E1, E2) =
D1(E2)D2(E2)D3(E − E1 − E2)

D(E)
.

(c) We set the derivatives ∂ lnP/∂E1,2 = 0, which gives

∂ lnP

∂E1

=
∂ lnD1

∂E1

− ∂D3

∂E3

= 0 ,
∂ lnP

∂E2

=
∂ lnD3

∂E2

− ∂D3

∂E3

= 0 ,

where E3 = E − E1 − E2 in the argument of D3(E3). Thus, we have

∂ lnD1

∂E1

=
∂ lnD2

∂E2

=
∂ lnD3

∂E3

≡ 1

T
.

Expanding lnP (E∗
1 + δE1 , E

∗
2 + δE2) to second order in the variations δEj , we find the first order terms cancel,

leaving

lnP (E∗
1 + δE1 , E

∗
2 + δE2) = lnP (E∗

1 , E
∗
2 )−

(δE1)
2

2k
B
T 2C1

− (δE2)
2

2k
B
T 2C2

− (δE1 + δE2)
2

2k
B
T 2C3

+ . . . ,

where ∂2 lnDj/∂E
2
j = −1/2k

B
T 2Cj , with Cj the heat capacity at constant volume and particle number. Thus,

P (E1, E2) =

√
det(C−1)

2πk
B
T 2

exp
(
− 1

2k
B
T 2

C−1
ij δEi δEj

)
,
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where the matrix C−1 is defined as

C−1 =

(
C−1

1 + C−1
3 C−1

3

C−1
3 C−1

2 + C−1
3

)
.

One finds
det(C−1) = C−1

1 C−1
2 + C−1

1 C−1
3 + C−1

2 C−1
3 .

The prefactor in the above expression forP (E1, E2) has been fixed by the normalization condition
∫
dE1

∫
dE2P (E1, E2) =

1.

(d) Integrating over E2, we obtain P (E1):

P (E1) =

∞∫

−∞

dE2 P (E1, E2) =
1√

2πk
B
C̃1T

2

e−(δE
1
)2/2k

B
C̃

1
T 2

,

where

C̃1 =
C−1

2 + C−1
3

C−1
1 C−1

2 + C−1
1 C−1

3 + C−1
2 C−1

3

.

Thus,

〈(δE1)
2〉 =

∞∫

−∞

dE1 (δE1)
2 = k

B
C̃1T

2 .
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(4.6) Show that the Boltzmann entropyS = −k
B

∑
n Pn lnPn agrees with the statistical entropy S(E) = k

B
lnD(E, V,N)

in the thermodynamic limit.

Solution :

Let’s first examine the canonical partition function, Z =
∞∫
0

dE D(E) e−βE . We compute this integral via the saddle

point method, extremizing the exponent, lnD(E)− βE , with respect to E. The resulting maximum lies at Ē such

that 1
T = ∂S

∂E

∣∣
Ē

, where S(E) = k
B
lnD(E) is the statistical entropy computed in the microcanonical ensemble. The

ordinary canonical partition function is then

Z ≈ D(Ē) e−βĒ

∞∫

−∞

d δE e−(δE)2/2k
B
T 2CV

= (2πk
B
T 2CV )

1/2 D(Ē) e−βĒ .

Taking the logarithm, we obtain the Helmholtz free energy,

F = −k
B
T lnZ = −k

B
lnD(Ē) + Ē − 1

2kB
T ln

(
2πk

B
T 2CV

)
.

Now S
OCE

= −k
B

∑
n Pn lnPn, with Pn = 1

Z e−βEn . Therefore

S
OCE

(T ) =
k

B

Z

∞∫

0

dE D(E) e−βE
(
lnZ + βE

)

= k
B
lnZ +

1

T
·
∫∞
0 dE ED(E) e−βE

∫∞
0 dE D(E) e−βE

.

The denominator of the second term is Z , which we have already evaluated. We evaluate the numerator using the
same expansion about Ē. The only difference is the additional factor of E = Ē+ δE in the integrand. The δE term

integrates to zero, since the remaining factors in the integrand yield D(Ē) e−βĒ e−(δE)2/2k
B
T 2CV , which is even in

δE. Thus, the second term in the above equation is simply Ē/T , and we obtain

S
OCE

= k
B
lnD(Ē) + 1

2kB
ln
(
2πk

B
T 2CV ) .

The RHS here is dominated by the first term, which is extensive, whereas the second term is of order lnV . Thus,

we conclude that S
OCE

(T, V,N) = SµCE
(Ē, V,N), where Ē and T are related by 1

T = ∂S
∂E

∣∣
Ē

.
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(4.7) Consider rod-shaped molecules with moment of inertia I , and a dipole moment µ. The contribution of the
rotational degrees of freedom to the Hamiltonian is

Ĥrot =
p2θ
2I

+
p2φ

2I sin2θ
− µE cos θ ,

where E is the external electric field, and (θ, φ) are polar and azimuthal angles describing the molecular orienta-
tion1.

(a) Calculate the contribution of the rotational degrees of freedom of each dipole to the classical partition func-
tion.

(b) Obtain the mean polarization P = 〈µ cos θ〉 of each dipole.

(c) Find the zero-field isothermal polarizability, χ(T ) =
(
∂P
∂E

)
E=0

.

(d) Calculate the rotational energy per particle at finite field E, and comment on its high and low-temperature
limits.

(e) Sketch the rotational heat capacity per dipole as a function of temperature.

Solution :

(a) The rotational contribution to the single particle partition function is

ξrot =

∞∫

−∞

dpθ

∞∫

−∞

dpφ

π∫

0

dθ

2π∫

0

dφ e−p2

θ/2IkB
T e−p2

φ/2IkB
T sin2θ eµE cos θ/k

B
T

= 2π · (2πIk
B
T )1/2

π∫

0

dθ eµE cos θ/k
B
T

∞∫

−∞

dpθ e
−p2

φ/2IkB
T sin2θ

= 4π2Ik
B
T

π∫

0

dθ sin θ eµE cos θ/k
B
T =

8π2I(k
B
T )2

µE
sinh

(
µE

k
B
T

)
.

The translational contribution is ξtr = V λ−3
T . The single particle free energy is then

f = −k
B
T ln

(
8π2Ik2

B
T 2
)
+ k

B
T ln(µE)− k

B
T ln sinh

(
µE

k
B
T

)
− k

B
T ln

(
V/λ3

T

)
.

(b) The mean polarization of each dipole is

P = − ∂f

∂E
= −k

B
T

E
+ µ ctnh

(
µE

k
B
T

)
.

(c) We expand ctnh (x) = 1
x + x

3 + O(x3) in a Laurent series, whence P = µ2E/3k
B
T + O(E3). Then χ(T ) =

µ2/3k
B
T , which is of the Curie form familiar from magnetic systems.

(d) We have ξrot = Tr e−βĥ
rot , hence

εrot = 〈ĥrot〉 = −∂ ln ξrot
∂β

= − ∂

∂β

{
− 2 lnβ + ln sinh(βµE)

}

= 2k
B
T − µE ctnh

(
µE

k
B
T

)
.

1This is problem 4.12 from vol. 1 of M. Kardar.
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Figure 2: Rotational heat capacity crot(T ) for problem 7.

At high temperatures T ≫ µE/k
B

, the argument of ctnhx is very small, and using the Laurent expansion we find
εrot = k

B
T . This comports with our understanding from equipartition, since there are only two quadratic degrees

of freedom present (pθ and pφ). The orientational degree of freedom θ does not enter because µE cos θ ≪ k
B
T

in this regime. Unlike the rotational kinetic energy, the rotational potential energy is bounded. In the limit T ≪
µE/k

B
, we have that the argument of ctnhx is very large, hence εrot ≈ 2k

B
T − µE. This can be understood as

follows. If we change variables to p̃φ ≡ pφ/ sin θ, then we have

ξrot =

∞∫

−∞

dpθ

∞∫

−∞

dp̃φ

π∫

0

dθ sin θ

2π∫

0

dφ e−p2

θ/2IkB
T e−p̃2

φ/2IkB
T eµE cos θ/k

B
T

=

∞∫

−∞

dpθ

∞∫

−∞

dp̃φ

1∫

−1

dx

2π∫

0

dφ e−p2

θ/2IkB
T e−p̃2

φ/2IkB
T eµEx/k

B
T ,

where x = cos θ. We see that x appears linearly in the energy, and simple dimensional analysis reveals that any
degree of freedom ζ which appears homogeneously as U(ζ) ∝ ζr contributes k

B
T/r to the average energy. In our

case, we have quadratic contributions to the Hamiltonian from pθ and p̃φ, a linear contribution from x = cos θ,

and φ itself does not appear. Hence ε = −µE + 2 × 1
2kB

T + k
B
T = −µE + 2k

B
T . The −µE term is the minimum

value of the potential energy.

(e) The rotational heat capacity per molecule, sketched in Fig. 2, is given by

crot =
∂εrot
∂T

= 2k
B
− k

B

(
µE/k

B
T

sinh(µE/k
B
T )

)2
.
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(4.8) Consider a surface containing Ns adsorption sites which is in equilibrium with a two-component nonrela-
tivistic ideal gas containing atoms of types A and B . (Their respective masses are mA and mB). Each adsorption
site can be in one of three possible states: (i) vacant, (ii) occupied by an A atom, with energy −∆A, and (ii) occupied
with a B atom, with energy −∆B.

(a) Find the grand partition function for the surface, Ξsurf(T, µA, µB, Ns).

(b) Suppose the number densities of the gas atoms are nA and nB. Find the fraction fA(nA, nB, T ) of adsorption
sites with A atoms, and the fraction f0(nA, nB, T ) of adsorption sites which are vacant.

Solution :

(a) The surface grand partition function is

Ξsurf(T, µA, µB, Ns) =
(
1 + e(∆A+µA)/kB

T + e(∆B+µB)/kB
T
)Ns

.

(b) From the grand partition function of the gas, we have

nA = λ−3
T,A eµA/kB

T , nB = λ−3
T,B eµB/kB

T ,

with

λT,A =

√
2π~2

mAkB
T

, λT,B =

√
2π~2

mBkB
T

.

Thus,

f0 =
1

1 + nA λ
3
T,A e∆A

/k
B
T + nB λ

3
T,B e∆B

/k
B
T

fA =
nA λ

3
T,A e∆A/kB

T

1 + nA λ
3
T,A e∆A

/k
B
T + nB λ

3
T,B e∆B

/k
B
T

fB =
nB λ

3
T,B e∆B/kB

T

1 + nA λ
3
T,A e∆A

/k
B
T + nB λ

3
T,B e∆B

/k
B
T

.

Note that f0 + fA + fB = 1.
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(4.9) Consider a two-dimensional gas of identical classical, noninteracting, massive relativistic particles with

dispersion ε(p) =
√
p2c2 +m2c4.

(a) Compute the free energy F (T, V,N).

(b) Find the entropy S(T, V,N).

(c) Find an equation of state relating the fugacity z = eµ/kB
T to the temperature T and the pressure p.

Solution :

(a) We have Z = (ζA)N/N ! where A is the area and

ζ(T ) =

∫
d2p

h2
e−β

√
p2c2+m2c4 =

2π

(βhc)2
(
1 + βmc2

)
e−βmc2 .

To obtain this result it is convenient to change variables to u = β
√
p2c2 +m2c4, in which case p dp = u du/β2c2,

and the lower limit on u is mc2. The free energy is then

F = −k
B
T lnZ = Nk

B
T ln

(
2π~2c2N

(k
B
T )2A

)
−Nk

B
T ln

(
1 +

mc2

k
B
T

)
+Nmc2 .

where we are taking the thermodynamic limit with N → ∞.

(b) We have

S = −∂F

∂T
= −Nk

B
ln

(
2π~2c2N

(k
B
T )2A

)
+Nk

B
ln

(
1 +

mc2

k
B
T

)
+Nk

B

(
mc2 + 2k

B
T

mc2 + k
B
T

)
.

(c) The grand partition function is

Ξ(T, V, µ) = e−βΩ = eβpV =

∞∑

N=0

ZN(T, V,N) eβµN .

We then find Ξ = exp
(
ζA eβµ

)
, and

p =
(k

B
T )3

2π(~c)2

(
1 +

mc2

k
B
T

)
e(µ−mc2)/k

B
T .

Note that

n =
∂(βp)

∂µ
=

p

k
B
T

=⇒ p = nk
B
T .

14



(4.10) A nonrelativistic gas of spin- 12 particles of mass m at temperature T and pressure p is in equilibrium with
a surface. There is no magnetic field in the bulk, but the surface itself is magnetic, so the energy of an adsorbed
particle is −∆− µ0Hσ, where σ = ±1 is the spin polarization and H is the surface magnetic field. The surface has
NS adsorption sites.

(a) Compute the Landau free energy of the gas Ωgas(T, V, µ). Remember that each particle has two spin polar-
ization states.

(b) Compute the Landau free energy of the surface Ωsurf(T,H,NS). Remember that each adsorption site can be
in one of three possible states: empty, occupied with σ = +1, and occupied with σ = −1.

(c) Find an expression for the fraction f(p, T,∆, H) of occupied adsorption sites.

(d) Find the surface magnetization, M = µ0

(
Nsurf,↑ −Nsurf,↓

)
.

Solution :

(a) We have

Ξgas(T, V, µ) =

∞∑

N=0

eNµ/k
B
T Z(T, V,N) =

∞∑

N=0

V N

N !
eNµ/k

B
T 2N λ−3N

T

= exp
(
2V k

B
Tλ−3

T eµ/kB
T
)

,

where λT =
√
2π~2/mk

B
T is the thermal wavelength. Thus,

Ωgas = −k
B
T ln Ξgas = −2V k

B
Tλ−3

T eµ/kB
T .

(b) Each site on the surface is independent, with three possible energy states: E = 0 (vacant), E = −∆ − µ0H
(occupied with σ = +1), and E = −∆+ µ0H (occupied with σ = −1). Thus,

Ξsurf(T,H,NS) =
(
1 + e(µ+∆+µ

0
H)/k

B
T + e(µ+∆−µ

0
H)/k

B
T
)NS

.

The surface free energy is

Ωsurf(T,H,NS) = −k
B
T ln Ξsurf = −NSkB

T ln
(
1 + 2 e(µ+∆)/k

B
T cosh(µ0H/k

B
T )
)

.

(c) The fraction of occupied surface sites is f = 〈Nsurf/NS〉. Thus,

f = − 1

NS

∂Ωsurf

∂µ
=

2 e(µ+∆)/k
B
T cosh(µ0H/k

B
T )

1 + 2 e(µ+∆)/k
B
T cosh(µ0H/k

B
T )

=
2

2 + e−(µ+∆)/k
B
T sech(µ0H/k

B
T )

.

To find f(p, T,∆, H), we must eliminate µ in favor of p, the pressure in the gas. This is easy! From Ωgas = −pV ,

we have p = 2k
B
Tλ−3

T eµ/kB
T , hence

e−µ/k
B
T =

2k
B
T

p λ3
T

.

Thus,

f(p, T,∆, H) =
p λ3

T

p λ3
T + k

B
T e−∆/k

B
T sech(µ0H/k

B
T )

.
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Note that f → 1 when ∆ → ∞, when T → 0, when p → ∞, or when H → ∞.

(d) The surface magnetization is

M = −∂Ωsurf

∂H
= NS µ0 ·

2 e(µ+∆)/k
B
T sinh(µ0H/k

B
T )

1 + 2 e(µ+∆)/k
B
T cosh(µ0H/k

B
T )

=
NS µ0 p λ

3
T tanh(µ0H/k

B
T )

p λ3
T + k

B
T e−∆/k

B
T sech(µ0H/k

B
T )

.
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(4.11) A classical gas consists of particles of two species: A and B. The dispersions for these species are

ε
A
(p) =

p2

2m
, ε

B
(p) =

p2

4m
−∆ .

In other words, m
A
= m and m

B
= 2m, and there is an additional energy offset −∆ associated with the B species.

(a) Find the grand potential Ω(T, V, µ
A
, µ

B
).

(b) Find the number densities n
A
(T, µ

A
, µ

B
) and n

B
(T, µ

A
, µ

B
).

(c) If 2A ⇋ B is an allowed reaction, what is the relation between n
A

and n
B

?
(Hint : What is the relation between µ

A
and µ

B
?)

(d) Suppose initially that n
A
= n and n

B
= 0. Find n

A
in equilibrium, as a function of T and n and constants.

Solution :

(a) The grand partition function Ξ is a product of contributions from the A and B species, and the grand potential
is a sum:

Ω = −V k
B
T λ−3

T eµA
/k

B
T − 23/2 V k

B
T λ−3

T e(µB
+∆)/k

B
T

Here, we have defined the thermal wavelength for the A species as λT ≡ λT,A =
√
2π~2/mk

B
T . For the B species,

since the mass is twice as great, we have λT,B = 2−1/2 λT,A.

(b) The number densities are

n
A
= − 1

V
· ∂Ω

∂µ
A

= V λ−3
T eµA

/k
B
T

n
B
= − 1

V
· ∂Ω

∂µ
B

= 23/2 V λ−3
T e(µB

+∆)/k
B
T .

If the reaction 2A ⇋ B is allowed, then the chemical potentials of the A and B species are related by µ
B
= 2µ

A
≡ 2µ.

We then have
n

A
λ3
T = eµ/kB

T , n
B
λ3
T = 23/2 e(2µ+∆)/k

B
T .

(c) The relation we seek is therefore
n

B
= 23/2 n2

Aλ
3
T e∆/k

B
T .

(d) If we initially have n
A
= n and n

B
= 0, then in general we must have

n
A
+ 2n

B
= n =⇒ n

B
= 1

2

(
n− n

A

)
.

Thus, eliminating n
B

, we have a quadratic equation,

23/2 λ3
T e∆/k

B
T n2

A
= 1

2 (n− n
A
) ,

the solution of which is

n
A
=

−1 +
√
1 + 16

√
2nλ3

T e∆/k
B
T

8
√
2λ3

T e∆/k
B
T

.
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(4.12) The potential energy density for an isotropic elastic solid is given by

U(x) = µTr ε2 + 1
2λ (Tr ε)

2

= µ
∑

α,β

ε2αβ(x) +
1
2λ
(∑

α

εαα(x)
)2

,

where µ and λ are the Lamé parameters and

εαβ =
1

2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
,

with u(x) the local displacement field, is the strain tensor. The Cartesian indices α and β run over x, y, z. The
kinetic energy density is

T (x) = 1
2ρ u̇

2(x) .

(a) Assume periodic boundary conditions, and Fourier transform to wavevector space,

uα(x, t) = 1√
V

∑

k

ûα
k(t) e

ik·x

ûα
k(t) =

1√
V

∫
d3x uα(x, t) e−ik·x .

Write the Lagrangian L =
∫
d3x
(
T − U

)
in terms of the generalized coordinates ûα

k(t) and generalized

velocities ˙̂uα
k(t).

(b) Find the Hamiltonian H in terms of the generalized coordinates ûα
k(t) and generalized momenta π̂α

k (t).

(c) Find the thermodynamic average 〈u(0) · u(x)〉.

(d) Suppose we add in a nonlocal interaction of the strain field of the form

∆U = 1
2

∫
d3x

∫
d3x′

Tr ε(x) Tr ε(x′) v(x− x′) .

Repeat parts (b) and (c).

Solution :

To do the mode counting we are placing the system in a box of dimensions Lx × Ly × Lz and imposing periodic
boundary conditions. The allowed wavevectors k are of the form

k =

(
2πnx

Lx

,
2πny

Ly

,
2πnz

Lz

)
.

We shall repeatedly invoke the orthogonality of the plane waves:

Lx∫

0

dx

Ly∫

0

dy

Lz∫

0

dz ei(k−k′)·x = V δk,k′ ,

where V = LxLyLz is the volume. When we Fourier decompose the displacement field, we must take care to note

that ûα
k

is complex, and furthermore that ûα
−k

=
(
ûα
k

)∗
, since uα(x) is a real function.

(a) We then have

T =

∞∫

−∞

dx 1
2ρ u̇

2(x, t) = 1
2ρ
∑

k

∣∣ ˙̂uα

k(t)
∣∣2
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and

U =

∞∫

−∞

dx

[
1
2µ

∂uα

∂xβ

∂uα

∂xβ
+ 1

2 (λ+ µ) (∇·u)2
]

= 1
2

∑

k

(
µ δαβ + (λ+ µ) k̂α k̂β

)
k2 ûα

k(t) û
β
−k

(t) .

The Lagrangian is of course L = T − U .

(b) The momentum π̂α
k conjugate to the generalized coordinate ûα

k is

π̂α
k =

∂L

∂ ˙̂u
α

k

= ρ ˙̂uα
−k ,

and the Hamiltonian is

H =
∑

k

π̂α
k
˙̂uα
k − L

=
∑

k

{∣∣π̂α
k

∣∣2

2ρ
+ 1

2

[
µ
(
δαβ − k̂α k̂β

)
+ (λ+ 2µ) k̂α k̂β

]
k2 ûα

k ûβ
−k

}
.

Note that we have added and subtracted a term µ k̂α k̂β within the expression for the potential energy. This is

because Pαβ = k̂α k̂β and Qαβ = δαβ − k̂α k̂β are projection operators satisfying P2 = P and Q2 = Q, with P+Q = I,

the identity. P projects any vector onto the direction k̂, and Q is the projector onto the (two-dimensional) subspace

orthogonal to k̂.

(c) We can decompose û
k

into a longitudinal component parallel to k̂ and a transverse component perpendicular to

k̂, writing

ûk = ik̂ û
‖
k
+ iêk,1 û

⊥,1
k

+ iêk,2 û
⊥,2
k

,

where {êk,1 , êk,2 , k̂} is a right-handed orthonormal triad for each direction k̂. A factor of i is included so that

û
‖
−k

=
(
û
‖
k

)∗
, etc. With this decomposition, the potential energy takes the form

U = 1
2

∑

k

[
µk2

(∣∣û⊥,1
k

∣∣2 +
∣∣û⊥,2

k

∣∣2
)
+ (λ+ 2µ)k2

∣∣û‖
k

∣∣2
]

.

Equipartition then means each independent degree of freedom which is quadratic in the potential contributes an

average of 1
2kB

T to the total energy. Recalling that u
‖
k

and u⊥,j
k

(j = 1, 2) are complex functions, and that they are
each the Fourier transform of a real function (so that k and −k terms in the sum for U are equal), we have

〈
µk2

∣∣û⊥,1
k

∣∣2
〉
=
〈
µk2

∣∣û⊥,2
k

∣∣2
〉
= 2× 1

2kB
T

〈
(λ+ 2µ)k2

∣∣û‖
k

∣∣2
〉
= 2× 1

2kB
T .

Thus,

〈
|ûk|2

〉
= 4× 1

2kB
T × 1

µk2
+ 2× 1

2kB
T × 1

(λ+ 2µ)k2

=

(
2

µ
+

1

λ+ 2µ

)
k

B
T

k2
.
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Then

〈
u(0) · u(x)

〉
=

1

V

∑

k

〈
|ûk|2

〉
eik·x

=

∫
d3k

(2π)3

(
2

µ
+

1

λ+ 2µ

)
k

B
T

k2
eik·x

=

(
2

µ
+

1

λ+ 2µ

)
k

B
T

4π|x| .

Recall that in three space dimensions the Fourier transform of 4π/k2 is 1/|x|.

(d) The k-space representation of ∆U is

∆U = 1
2

∑

k

k2 v̂(k) k̂α k̂β ûα
k ûβ

−k
,

where v̂(k) is the Fourier transform of the interaction v(x− x′):

v̂(k) =

∫
d3r v(r) e−ik·r .

We see then that the effect of ∆U is to replace the Lamé parameter λ with the k-dependent quantity,

λ → λ(k) ≡ λ+ v̂(k) .

With this simple replacement, the results of parts (b) and (c) retain their original forms, mutatis mutandis.
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(4.13) For polyatomic molecules, the full internal partition function is written as the product

ξ(T ) =
gel · gnuc
gsym

· ξvib(T ) · ξrot(T ) ,

where gel is the degeneracy of the lowest electronic state2, gnuc =
∏

j(2Ij + 1) is the total nuclear spin degeneracy,

ξvib(T ) is the vibrational partition function, and ξrot(T ) is the rotational partition function3. The integer gsym
is the symmetry factor of the molecule, which is defined to be the number of identical configurations of a given
molecule which are realized by rotations when the molecule contains identical nuclei. Evaluate gnuc and gsym
for the molecules CH4 (methane), CH3D, CH2D2, CHD3, and CD4. Discuss how the successive deuteration of
methane will affect the vibrational and rotational partition functions. For the vibrations your discussion can be
qualitative, but for the rotations note that all one needs, as we derived in problem (6), is the product I1I2I3 of the
moments of inertia, which is the determinant of the inertia tensor Iαβ in a body-fixed center-of-mass frame. Using the
parallel axis theorem, one has

Iαβ =
∑

j

mj

(
r2
j δαβ − rαj rβj

)
+M

(
R2 δαβ −RαRβ

)

where M =
∑

j mj and R = M−1
∑

j mjrj . Recall that methane is structurally a tetrahedron of hydrogen atoms
with a carbon atom at the center, so we can take r1 = (0, 0, 0) to be the location of the carbon atom and r2,3,4,5 =
(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1) to be the location of the hydrogen atoms, with all distances in units
of 1√

3
times the C−H separation.

Solution :

The total partition function is given by

Z(T, V,N) =
V N

N !

(
2π~2

Mk
B
T

)3N/2

ξNint(T ) ,

The Gibbs free energy per particle is

µ(T, p) =
G(T, p,N)

N
= k

B
T ln

(
p λd

T

k
B
T

)
− k

B
T ln ξ(T )

= k
B
T ln

(
p λd

T

k
B
T

)
− k

B
T ln

(
gel · gnuc
gsym

)

+ k
B
T
∑

a

ln
(
2 sinh(Θa/2T )

)
− k

B
T ln

[(
2k

B
T

~2

)3/2√
πI1I2I3

]
.

The electronic degeneracy is gel = 1 for all stages of deuteration. The nuclear spin of the proton is I = 1
2 and

that of the deuteron is I = 1. Thus there is a nuclear degeneracy of 2Ip + 1 = 2 for each hydrogen nucleus and
2Id + 1 = 3 for each deuterium nucleus. The symmetry factor is analyzed as follows. For methane CH4, there are
four threefold symmetry axes, resulting in gsym = 12. The same result holds for CD4. For CH3D or CHD3, there
is a single threefold axis, hence gsym = 3. For CH2D2, the two hydrogen nuclei lie in a plane together with the
carbon, and the two deuterium nuclei lie in a second plane together with the carbon. The intersection of these two
planes provides a twofold symmetry axis, about which a 180◦ rotation will rotate one hydrogen into the other and
one deuterium into the other. Thus gsym = 2.

To analyze the rotational partition function, we need the product I1I2I3 of the principal moments of inertia, which
is to say the determinant of the inertia tensor det I . We work here in units of amu for mass and 1√

3
times the C−H

2We assume the temperature is low enough that we can ignore electronic excitations.
3Note that for linear polyatomic molecules such as CO

2
and HCN, we must treat the molecule as a rotor, i.e. we use eqn. 4.261 of the notes.
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separation for distance. The inertia tensor is

Iαβ =
∑

j

mj

(
r2
j δαβ − rαj rβj

)
+M

(
R2 δαβ −RαRβ

)

where

M =
∑

j

mj

R = M−1
∑

j

mjrj .

The locations of the four hydrogen/deuterium ions are:

L1 : (+1,+1,+1)

L2 : (+1,−1,−1)

L3 : (−1,+1,−1)

L4 : (−1,−1,+1) .

For CH4 we have M = 16 and R = 0. The inertia tensor is

ICH
4
=



8 0 0
0 8 0
0 0 8


 .

Similarly, for CD4 we have

ICD
4

=




16 0 0
0 16 0
0 0 16



 .

For CH3D, there is an extra mass unit located at L1 relative to methane, so M = 17. The CM is at R =
1
17 (+1,+1,+1). According to the general formula above for Iαβ , thie results in two changes to the inertia ten-
sor, relative to ICH

4

. We find

∆I =




2 −1 −1
−1 2 −1
−1 −1 2



+
1

17




2 −1 −1
−1 2 −1
−1 −1 2



 ,

where the first term accounts for changes in I in the frame centered at the carbon atom, and the second term shifts
to the center-of-mass frame. Thus,

ICH
3
D =




10 + 2
17 − 18

17 − 18
17

− 18
17 10 + 2

17 − 18
17

− 18
17 − 18

17 10 + 2
17




.

For CHD3, we regard the system as CD4 with a missing mass unit at L1, hence M = 19. The CM is now at
R = 1

17 (−1,−1,−1). The change in the inertia tensor relative to ICD
4

is then

∆I = −




2 −1 −1
−1 2 −1
−1 −1 2


+

1

19




2 −1 −1
−1 2 −1
−1 −1 2


 .

Thus,
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mass M degeneracy symmetry det I
molecule (amu) factor gnuc factor gsym (amu) · a2/3

CH4 16 24 = 16 4× 3 = 12 83

CH3D 17 23 · 3 = 24 1× 3 = 3 8 ·
(
11 + 3

17

)2

CH2D2 18 22 · 32 = 36 1× 2 = 2 12 ·
(
8 + 2

9

)
·
(
16 + 2

9

)

CHD3 19 2 · 33 = 54 1× 3 = 3 16 ·
(
13 + 3

19

)2

CD4 20 34 = 81 4× 3 = 12 163

Table 2: Nuclear degeneracy, symmetry factor, and I1I2I3 product for successively deuterated methane.

ICHD
3

=




14 + 2
19

18
19

18
19

18
19 14 + 2

19
18
19

18
19

18
19 14 + 2

19




.

Finally, for CH2D2. we start with methane and put extra masses at L1 and L2, so M = 18 and R = 1
9 (+1, 0, 0).

Then

∆I = −




4 0 0
0 4 −2
0 −2 4



+
2

9




0 0 0
0 1 0
0 0 1





and

ICH
2
D

2

=




12 0 0

0 12 + 2
9 −2

0 −2 12 + 2
9




.

For the vibrations, absent a specific model for the small oscillations problem the best we can do is to say that

adding mass tends to lower the normal mode frequencies since ω ∼
√
k/M .
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