
PHYSICS 140A : STATISTICAL PHYSICS

HW SOLUTIONS #8

(1) Thanksgiving turkey typically cooks at a temperature of 350◦ F. Calculate the total
electromagnetic energy inside an over of volume V = 1.0m3 at this temperature. Compare
it to the thermal energy of the air in the oven at the same temperature.

The total electromagnetic energy is

E = 3pV =
π2

15

V (k
B
T )4

(~c)3
= 3.78 × 10−5 J . (1)

For air, which is a diatomic ideal gas, we have E = 5

2
pV . What do we take for p? If we

assume that oven door is closed at an initial temperature of 63◦ F which is 300K, then with
a final temperature of 350◦ F = 450K, we have an increase in the absolute temperature by
50%, hence a corresponding pressure increase of 50%. So we set p = 3

2
atm and we have

E = 5

2
· 3

2
(1.013 × 105 Pa)(1.0m3) = 3.80 × 105 J , (2)

which is about ten orders of magnitude larger.

(2) In §5.4.4 of the lecture notes we derived the spectral energy density ρε(ν, T ) for a three-
dimensional blackbody. We found that it was peaked at a frequency ν∗ = s∗k

B
T/h where

s∗ = 2.83144 extremizes the function s3/(es − 1). Consider instead the function ρ̃ε(λ, T )
as a function of wavelength λ and temperature T , where λ = c/ν. To relate ρε(ν, T ) and
ρ̃ε(λ, T ), set the fraction of energy of EM radiation between frequencies ν and ν+ dν equal
to the fraction of energy between wavelengths λ and λ+ dλ. Show that this is maximized
at a wavelength λ∗ = t∗hc/k

B
T , where t∗ is a constant. Find t∗ numerically. Is t∗ = 1/s∗?

Why or why not?

Solution:

We must have

ρ̃ε(λ, T ) = ρε(ν, T )

∣

∣

∣

∣

dν

dλ

∣

∣

∣

∣

=
c

λ2
ρε(ν, T )

=
15

π4

k
B
T

hc

(hc/λk
B
T )5

ehc/λkBT − 1
≡

15

π4

k
B
T

hc

(λT /λ)
5

eλT
/λ − 1

,

where λT ≡ hc/k
B
T is not to be confused with the thermal de Broglie wavelength for a

massive particle. The maximum value occurs for λ∗(T ) = u k
B
T where

d

du

(

u5

eu − 1

)

= 0 ⇒ u =
u

1− e−u
= 5 ⇒ u = 4.9651 .

Thus λ∗ = t∗ch/k
B
T where t∗ = 1/u∗ = 0.2014. Note that λ∗(T ) 6= c/ν∗ = 0.3544hc/k

B
T .

This is because the spectral density ρ̃ε(λ, T ) is given by ρ̃ε(λ, T ) = (c/λ2) ρε(ν = c/λ, T )
and so the stationary point for λ is obtained by extremizing a different function.
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(3) A three-dimensional gas of particles obeys the dispersion relation ε(k) = A |k|7/4. The
internal degeneracy is g = 1.

(a) Compute the single particle density of states g(ε).

(b) For photon statistics, compute the pressure p(n).

(c) For photon statistics, compute the entropy density s(n) = S/V .

(d) For Bose-Einstein statistics, compute the condensation temperature T
BEC

(n).

Solution:

(a) For a general power law dispersion ε(k) = A |k|σ in d = 3 dimensions, the density of
states g(ε) is given by1

g(ε) =
1

2π2σA3/σ

kd−1

dε/dk

Thus for σ = 7

4
we have

g(ε) =
2

7π2A12/7
ε5/7 Θ(ε) .

(b) From the results in §5.4.1 of the lecture notes, we have

n(T ) =
1

7π2A12/7
ζ
(

12

7

)

Γ(12
7
) (k

B
T )12/7 , p(T ) =

1

7π2A12/7
ζ
(

19

7

)

Γ(12
7
) (k

B
T )19/7 .

Dividing, we have

p(n) =
ζ(19/7)

ζ(12/7)
nk

B
T = 0.6267nk

B
T .

(c) Since µ = 0, we have dµ = −s dT + v dp = 0 with v = 1/n. Thus

s =
1

n

dp

dT
=

19 ζ(19/7)

7 ζ(12/7)
k
B
= 1.7011 k

B
.

(d) The condition for Bose-Einstein condensation is

n = n(Tc, µ = 0) =

∞
∫

0

g(ε)

eε/kBTc − 1
=

2 ζ(12/7) Γ(12/7)

7π2A12/7
(kBTc)

12/7 ,

hence

k
B
Tc =

(

7π2A12/7n

2 ζ(12/7) Γ(12/7)

)7/12

= 5.5198An7/12 .

1See eqn. 5.57 of the lecture notes.
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(4) A branch of excitations for a three-dimensional system has a dispersion ε(k) = A |k|2/3.
The excitations are bosonic and are not conserved; they therefore obey photon statistics.

(a) Find the single excitation density of states per unit volume, g(ε). You may assume that
there is no internal degeneracy for this excitation branch.

(b) Find the heat capacity CV (T, V ).

(c) Find the ratio E/pV .

(d) If the particles are bosons with number conservation, find the critical temperature Tc

for Bose-Einstein condensation.

Solution:

(a) We have, for three-dimensional systems,

g(ε) =
1

2π2

k2

dε/dk
=

3

4π2A
k7/3 .

Inverting the dispersion to give k(ε) = (ε/A)3/2, we obtain

g(ε) =
3

4π2

ε7/2

A9/2

(b) The energy is then

E = V

∞
∫

0

dε g(ε)
ε

eε/kBT − 1

=
3V

4π2
Γ
(

11

2

)

ζ
(

11

2

) (k
B
T )11/2

A9/2
.

Thus,

CV =

(

∂E

∂T

)

V

=
3V

4π2
Γ
(

13

2

)

ζ
(

11

2

)

k
B

(

k
B
T

A

)9/2
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(c) The pressure is

p = −
Ω

V
= −k

B
T

∞
∫

0

dε g(ε) ln
(

1− e−ε/k
B
T
)

= −k
B
T

∞
∫

0

dε
3

4π2

ε7/2

A9/2
ln
(

1− e−ε/k
B
T
)

= −
3

4π2

(k
B
T )11/2

A9/2

∞
∫

0

ds s7/2 ln
(

1− e−s
)

=
3V

4π2
Γ
(

9

2

)

ζ
(

11

2

) (k
B
T )11/2

A9/2
.

Thus,
E

pV
=

Γ
(

11

2

)

Γ
(

9

2

) = 9

2

(d) To find Tc for BEC, we set z = 1 (i.e. µ = 0) and n
0
= 0, and obtain

n =

∞
∫

0

dε g(ε)
ε

eε/kBTc − 1

Substituting in our form for g(ε), we obtain

n =
3

4π2
Γ
(

9

2

)

ζ
(

9

2

)

(

k
B
T

A

)9/2

,

and therefore

Tc =
A

k
B

(

4π2n

3Γ
(

9

2

)

ζ
(

9

2

)

)2/9
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