0.1 Ideal Gases

0.1.1 Basic stuff

• First law of thermodynamics:

$$\Delta E = Q - W \quad \Rightarrow \quad dE = dQ - dW \quad \text{(differential form)}$$

• Equation of state:

$$pV = nRT$$

with $n = N/N_A$ the number of moles, which is assumed conserved unless explicitly stated otherwise.

• Energy:

$$E = \frac{1}{2}fnRT = \frac{nRT}{\gamma - 1} = \frac{pV}{\gamma - 1}$$

with $\gamma = 1 + \frac{2}{f}$ and *f* is the number of molecular degrees of freedom (translations plus rotations). We then have

$$\begin{pmatrix} f_{\text{mono}} \\ f_{\text{dia}} \\ f_{\text{poly}} \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix} \qquad , \qquad \begin{pmatrix} \gamma_{\text{mono}} \\ \gamma_{\text{dia}} \\ \gamma_{\text{poly}} \end{pmatrix} = \begin{pmatrix} 5/3 \\ 7/5 \\ 4/3 \end{pmatrix}$$

• Heat capacity:

$$C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V,N} = \frac{1}{2}fnR = \frac{nR}{\gamma - 1} \qquad , \qquad C_{p} = C_{V} + R = (\frac{1}{2}f + 1)nR = \frac{nR}{1 - \gamma^{-1}} \quad ,$$

with $C_p/C_V = \gamma$. Per mole, $c_V = \frac{1}{2}fR = R/(\gamma - 1)$ and $c_p = (1 + \frac{1}{2}f)R = R/(1 - \gamma^{-1})$.

• Adiabatic equation of state:

$$dQ = C_V dT + p dV = 0 \quad \Rightarrow \quad d\log T + (\gamma - 1)d\log V = 0$$
.

Thus,

$$TV^{\gamma-1} = \text{const.}$$
, $pV^{\gamma} = \text{const.}$, $T^{\gamma}p^{1-\gamma} = \text{const.}$

0.1.2 Reversible ideal gas engine cycle components

 \diamond Isotherms: dT = 0 and p(V) = nRT/V. Thus

$$W_{12} = \int_{V_1}^{V_2} p \, dV = nRT \log(V_2/V_1) \quad ,$$

with $T_1 = T_2 = T$. Then $\Delta E_{12} = 0$ and $Q_{12} = \Delta E_{12} + W_{12} = W_{12}$.

 \diamond Isobars: dp = 0,

$$W_{12} = \int_{V_1}^{V_2} p \, dV = p(V_2 - V_1) = nR(T_2 - T_1) \quad ,$$

since $p_1 = p_2 = p$. We also have $\Delta E_{12} = \frac{1}{2} fnR(T_2 - T_1)$ and therefore

$$Q_{12} = \Delta E_{12} + W_{12} = \left(\frac{1}{2}f + 1\right)nR(T_2 - T_1)$$

 \diamond Isochores: dV = 0. Here there is no work because p dV = 0 along the path. Therefore $W_{12} = 0$. We then have

$$\Delta E_{12} = Q_{12} = \frac{1}{2} f n R (T_2 - T_1)$$

 \diamond Adiabats: $d\!\!\!/ Q = T \, dS = 0.$ We can use $pV^\gamma = p_1 V_1^\gamma = p_2 V_2^\gamma$ to write

$$W_{12} = \int_{V_1}^{V_2} p \, dV = p_1 V_1^{\gamma} \int_{V_1}^{V_2} dV \, V^{-\gamma} = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1} = \frac{1}{2} f(p_1 V_1 - p_2 V_2) = \frac{1}{2} fnR(T_1 - T_2) \quad A = \frac{1}{2} f(p_1 V_1 - p_2 V_2) = \frac{1}{2} fnR(T_1 - T_2) \quad A = \frac{1}{2} fnR(T_1 - T_2) \quad$$

But there is an easier way! Since $Q_{12} = 0$ we have $W_{12} = -\Delta E_{12} = \frac{1}{2}fnR(T_1 - T_2)$.

 \diamond General p(V): In this case we have to bite the bullet and compute

$$W_{12} = \int_{V_1}^{V_2} p(V) \, dV$$

The energy change is $\Delta E_{12} = \frac{1}{2} f n R (T_2 - T_1) = \frac{1}{2} f (p_2 V_2 - p_1 V_1)$ and $Q_{12} = \Delta E_{12} + W_{12}$.

0.2 Maxwell Relations

For a general function $\Phi(u_1, u_2, \dots, u_n)$, if the function itself class C^2 or smoother (meaning all second derivatives exist and are continuous), then

$$\frac{\partial^2 \Phi}{\partial u_i \, \partial u_j} = \frac{\partial}{\partial u_i} \left(\frac{\partial \Phi}{\partial u_j} \right) = \frac{\partial}{\partial u_j} \left(\frac{\partial \Phi}{\partial u_i} \right)$$

Let us write

$$d\Phi = R_1 \, du_1 + R_2 \, du_2 + \ldots + R_n \, du_n$$

with $R_j \equiv \partial \Phi / \partial u_j$, where the derivative is computed holding all u_i for $u \neq j$ constant. Then the equality of the mixed second partial derivatives is equivalent to the conditions

The Helmholtz free energy F = E - TS, Gibbs free energy E - TS + pV, and enthalpy H = E + pV are Legendre transforms of the energy function. Their respective differentials are given by

$$dE = T dS - p dV + \mu dN$$

$$dF = -S dT - p dV + \mu dN$$

$$dG = -S dT + V dp + \mu dN$$

$$dH = T dS + V dp + \mu dN$$

These entail the following functional dependences:

$$E=E(S,V,N) \quad,\quad F=F(T,V,N) \quad,\quad G=G(T,p,N) \quad,\quad H=H(S,p,N)$$

Assuming *N* is always fixed, from E(S, V, N) we have

$$\begin{split} \frac{\partial^2 E}{\partial S \,\partial V} &= \frac{\partial}{\partial S} \left(\frac{\partial E}{\partial V} \right)_{S,N} = \left(\frac{\partial (-p)}{\partial S} \right)_{V,N} \\ &= \frac{\partial}{\partial V} \left(\frac{\partial E}{\partial S} \right)_{V,N} = \left(\frac{\partial T}{\partial V} \right)_{S,N} \Rightarrow \qquad \boxed{\left(\frac{\partial p}{\partial S} \right)_{V,N} = - \left(\frac{\partial T}{\partial V} \right)_{S,N}} \quad . \end{split}$$

From F(T, V, N) we have

$$\begin{split} \frac{\partial^2 F}{\partial T \,\partial V} &= \frac{\partial}{\partial T} \left(\frac{\partial F}{\partial V} \right)_{T,N} = \left(\frac{\partial (-p)}{\partial T} \right)_{V,N} \\ &= \frac{\partial}{\partial V} \left(\frac{\partial F}{\partial T} \right)_{V,N} = \left(\frac{\partial (-S)}{\partial V} \right)_{T,N} \quad \Rightarrow \quad \boxed{\left(\frac{\partial p}{\partial T} \right)_{V,N} = \left(\frac{\partial S}{\partial V} \right)_{T,N}} \quad . \end{split}$$

From G(T, p, N) we have

$$\frac{\partial^2 G}{\partial T \partial p} = \frac{\partial}{\partial T} \left(\frac{\partial G}{\partial p} \right)_{T,N} = \left(\frac{\partial V}{\partial T} \right)_{p,N}$$
$$= \frac{\partial}{\partial p} \left(\frac{\partial G}{\partial T} \right)_{p,N} = \left(\frac{\partial (-S)}{\partial p} \right)_{T,N} \quad \Rightarrow \quad \boxed{\left(\frac{\partial V}{\partial T} \right)_{p,N} = -\left(\frac{\partial S}{\partial p} \right)_{T,N}}$$

and from H(S, p, N) we have

$$\frac{\partial^2 H}{\partial S \,\partial p} = \frac{\partial}{\partial S} \left(\frac{\partial H}{\partial p} \right)_{S,N} = \left(\frac{\partial V}{\partial S} \right)_{p,N}$$
$$= \frac{\partial}{\partial p} \left(\frac{\partial H}{\partial S} \right)_{p,N} = \left(\frac{\partial T}{\partial p} \right)_{S,N} \quad \Rightarrow \quad \boxed{\left(\frac{\partial V}{\partial S} \right)_{p,N} = \left(\frac{\partial T}{\partial p} \right)_{S,N}}$$

.

•

.

0.3 Nonideal equations of state

0.3.1 van der Waals equation of state

The energy of an ideal gas is given by $E = \frac{1}{2} f n R T$ and is independent of volume at fixed T and $n = N/N_A$ (or N). This is not the case for the van der Waals equation of state,

$$\left(p + \frac{a}{v^2}\right)(v - b) = RT \quad ,$$

where $v = N_A V/N$ is the molar volume. We then find (always assuming constant N),

$$\left(\frac{\partial E}{\partial V}\right)_T = \left(\frac{\partial \varepsilon}{\partial v}\right)_T = T \left(\frac{\partial p}{\partial T}\right)_V - p = \frac{a}{v^2} \quad ,$$

where $E(T, V, N) \equiv n \varepsilon(T, v)$. We can integrate this to obtain

$$\varepsilon(T, v) = \omega(T) - \frac{a}{v} \quad ,$$

where $\omega(T)$ is arbitrary. The molar specific heat at constant volume is then

$$c_V = \left(\frac{\partial \varepsilon}{\partial T}\right)_v = \omega'(T)$$
 .

What about c_p ? This requires a bit of work. We start with $d\varepsilon = T ds - p dv$, where ε , s, and v are all intensive quantities corresponding to energy, entropy, and volume per mole. Then

$$c_p = T\left(\frac{\partial s}{\partial T}\right)_p = \left(\frac{\partial \varepsilon}{\partial T}\right)_p + p\left(\frac{\partial v}{\partial T}\right)_p = c_V + \left(p + \frac{a}{v^2}\right)\left(\frac{\partial v}{\partial T}\right)_p$$

We may rewrite the equation of state as

$$p = \frac{RT}{v-b} - \frac{a}{v^2} \quad .$$

Taking the differential of both sides,

$$dp = \left(\frac{\partial p}{\partial T}\right)_{v} dT + \left(\frac{\partial p}{\partial v}\right)_{T} dv$$
$$= \frac{R}{v-b} dT + \left[-\frac{RT}{(v-b)^{2}} + \frac{2a}{v^{3}}\right] dv \quad .$$

Setting dp = 0, we may read off

$$\left(\frac{\partial v}{\partial T}\right)_{p} = -\left(\frac{\partial p}{\partial T}\right)_{v} \middle/ \left(\frac{\partial p}{\partial v}\right)_{T} \quad .$$

Putting this all together, we obtain

$$\left(\frac{\partial v}{\partial T}\right)_p = \frac{Rv^3(v-b)}{RTv^3 - 2a(v-b)^2}$$

One immediate result is the following expression for the isobaric thermal expansion coefficient,

$$\alpha_p = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \frac{R v^2 (v - b)}{R T v^3 - 2a(v - b)^2}$$

Another result is the difference $c_p - c_V$ from eqn. 0.3.1,

$$c_p - c_V = \left(p + \frac{a}{v^2}\right) \left(\frac{\partial v}{\partial T}\right)_p = \frac{R^2 T v^3}{RT v^3 - 2a(v-b)^2}$$

To fix $\omega(T)$ and thus $c_V = \omega'(T)$, we consider the $v \to \infty$ limit, where the density of the gas vanishes. In this limit, the gas must be ideal, hence eqn. 0.3.1 says that $\omega(T) = \frac{1}{2}fRT$. Therefore $c_V(T, v) = \frac{1}{2}fR$, just as in the case of an ideal gas. However, rather than $c_p = c_V + R$, which holds for ideal gases, $c_p(T, v)$ is given by eqn. 0.3.1. Thus,

$$c_V^{\text{VDW}} = \frac{1}{2} f R$$
$$c_p^{\text{VDW}} = \frac{1}{2} f R + \frac{R^2 T v^3}{R T v^3 - 2a(v-b)^2}$$

Note that $c_p(a \rightarrow 0) = c_V + R$, which is the ideal gas result.

It turns out that the van der Waals system is unstable throughout a region of parameters, where it undergoes *phase separation* between high density (liquid) and low density (gas) phases. The above results are valid only in the stable regions of the phase diagram.

0.3.2 General equation of state

Suppose we can't isolate any of the state variables in the equation of state as we did when writing p = p(T, v) above. Rather, let the equation of state take the form Z(T, p, v) = 0. Setting consecutively dv = 0, dT = 0, and dp = 0, we then obtain

$$dZ = \left(\frac{\partial Z}{\partial T}\right)_{p,v} dT + \left(\frac{\partial Z}{\partial p}\right)_{T,v} dp + \left(\frac{\partial Z}{\partial v}\right)_{T,p} dv = 0$$

We then have

$$\left(\frac{\partial T}{\partial p} \right)_{v} = - \left(\frac{\partial Z}{\partial p} \right)_{T,v} / \left(\frac{\partial Z}{\partial T} \right)_{p,v}$$

$$\left(\frac{\partial p}{\partial v} \right)_{T} = - \left(\frac{\partial Z}{\partial v} \right)_{T,p} / \left(\frac{\partial Z}{\partial p} \right)_{T,v}$$

$$\left(\frac{\partial v}{\partial T} \right)_{p} = - \left(\frac{\partial Z}{\partial T} \right)_{p,v} / \left(\frac{\partial Z}{\partial v} \right)_{T,p}$$