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0.1 Ideal Gases

0.1.1 Basic stuff

• First law of thermodynamics:

∆E = Q−W ⇒ dE = d̄Q− d̄W (differential form) .

• Equation of state:

pV = nRT

with n = N/NA the number of moles, which is assumed conserved unless explicitly stated otherwise.

• Energy:

E = 1
2
fnRT =

nRT

γ − 1
=

pV

γ − 1

with γ = 1 + 2
f

and f is the number of molecular degrees of freedom (translations plus rotations). We
then have





fmono

fdia
fpoly



 =





3
5
6



 ,





γmono

γdia
γpoly



 =





5/3
7/5
4/3



 .

• Heat capacity:

CV =

(

∂E

∂T

)

V,N

= 1
2
fnR =

nR

γ − 1
, Cp = CV +R = (1

2
f + 1)nR =

nR

1− γ−1
,

with Cp/CV = γ. Per mole, cV = 1
2
fR = R/(γ − 1) and cp = (1 + 1

2
f)R = R/(1− γ−1).

• Adiabatic equation of state:

d̄Q = CV dT + p dV = 0 ⇒ d log T + (γ − 1)d log V = 0 .

Thus,

TV γ−1 = const. , pV γ = const. , T γp1−γ = const. .

0.1.2 Reversible ideal gas engine cycle components

⋄ Isotherms: dT = 0 and p(V ) = nRT/V . Thus

W12 =

V2
∫

V1

p dV = nRT log(V2/V1) ,

with T1 = T2 = T . Then ∆E12 = 0 and Q12 = ∆E12 +W12 = W12.
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⋄ Isobars: dp = 0,

W12 =

V2
∫

V1

p dV = p(V2 − V1) = nR(T2 − T1) ,

since p1 = p2 = p. We also have ∆E12 =
1
2
fnR(T2 − T1) and therefore

Q12 = ∆E12 +W12 = (1
2
f + 1)nR(T2 − T1) .

⋄ Isochores: dV = 0. Here there is no work because p dV = 0 along the path. Therefore W12 = 0. We
then have

∆E12 = Q12 =
1
2
fnR(T2 − T1) .

⋄ Adiabats: d̄Q = T dS = 0. We can use pV γ = p1V
γ
1 = p2V

γ
2 to write

W12 =

V2
∫

V1

p dV = p1V
γ
1

V2
∫

V1

dV V −γ =
p1V1 − p2V2

γ − 1
= 1

2
f(p1V1 − p2V2) =

1
2
fnR(T1 − T2) .

But there is an easier way! Since Q12 = 0 we have W12 = −∆E12 =
1
2
fnR(T1 − T2).

⋄ General p(V ): In this case we have to bite the bullet and compute

W12 =

V2
∫

V1

p(V ) dV .

The energy change is ∆E12 =
1
2
fnR(T2 − T1) =

1
2
f(p2V2 − p1V1) and Q12 = ∆E12 +W12.

0.2 Maxwell Relations

For a general function Φ(u1, u2, . . . , un), if the function itself class C2 or smoother (meaning all second
derivatives exist and are continuous), then

∂2Φ

∂ui ∂uj
=

∂

∂ui

(

∂Φ

∂uj

)

=
∂

∂uj

(

∂Φ

∂ui

)

.

Let us write
dΦ = R1 du1 +R2 du2 + . . .+Rn dun ,

with Rj ≡ ∂Φ/∂uj , where the derivative is computed holding all ui for u 6= j constant. Then the equality
of the mixed second partial derivatives is equivalent to the conditions

(

∂Ri

∂uj

)

u
k( 6=j)

=

(

∂Rj

∂ui

)

u
k( 6=i)

.
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The Helmholtz free energy F = E − TS, Gibbs free energy E − TS + pV , and enthalpy H = E + pV are
Legendre transforms of the energy function. Their respective differentials are given by

dE = T dS − p dV + µdN

dF = −S dT − p dV + µdN

dG = −S dT + V dp+ µdN

dH = T dS + V dp + µdN .

These entail the following functional dependences:

E = E(S, V,N) , F = F (T, V,N) , G = G(T, p,N) , H = H(S, p,N) .

Assuming N is always fixed, from E(S, V,N) we have

∂2E

∂S ∂V
=

∂

∂S

(

∂E

∂V

)

S,N

=

(

∂(−p)

∂S

)

V,N

=
∂

∂V

(

∂E

∂S

)

V,N

=

(

∂T

∂V

)

S,N

⇒

(

∂p

∂S

)

V,N

= −

(

∂T

∂V

)

S,N

.

From F (T, V,N) we have

∂2F

∂T ∂V
=

∂

∂T

(

∂F

∂V

)

T,N

=

(

∂(−p)

∂T

)

V,N

=
∂

∂V

(

∂F

∂T

)

V,N

=

(

∂(−S)

∂V

)

T,N

⇒

(

∂p

∂T

)

V,N

=

(

∂S

∂V

)

T,N

.

From G(T, p,N) we have

∂2G

∂T ∂p
=

∂

∂T

(

∂G

∂p

)

T,N

=

(

∂V

∂T

)

p,N

=
∂

∂p

(

∂G

∂T

)

p,N

=

(

∂(−S)

∂p

)

T,N

⇒

(

∂V

∂T

)

p,N

= −

(

∂S

∂p

)

T,N

.

and from H(S, p,N) we have

∂2H

∂S ∂p
=

∂

∂S

(

∂H

∂p

)

S,N

=

(

∂V

∂S

)

p,N

=
∂

∂p

(

∂H

∂S

)

p,N

=

(

∂T

∂p

)

S,N

⇒

(

∂V

∂S

)

p,N

=

(

∂T

∂p

)

S,N

.



4

0.3 Nonideal equations of state

0.3.1 van der Waals equation of state

The energy of an ideal gas is given by E = 1
2
fnRT and is independent of volume at fixed T and n =

N/NA (or N ). This is not the case for the van der Waals equation of state,

(

p+
a

v2

)

(

v − b) = RT ,

where v = NAV/N is the molar volume. We then find (always assuming constant N ),

(

∂E

∂V

)

T

=

(

∂ε

∂v

)

T

= T

(

∂p

∂T

)

V

− p =
a

v2
,

where E(T, V,N) ≡ n ε(T, v). We can integrate this to obtain

ε(T, v) = ω(T )−
a

v
,

where ω(T ) is arbitrary. The molar specific heat at constant volume is then

cV =

(

∂ε

∂T

)

v

= ω′(T ) .

What about cp? This requires a bit of work. We start with dε = T ds − p dv, where ε, s, and v are all
intensive quantities corresponding to energy, entropy, and volume per mole. Then

cp = T

(

∂s

∂T

)

p

=

(

∂ε

∂T

)

p

+ p

(

∂v

∂T

)

p

= cV +

(

p+
a

v2

)(

∂v

∂T

)

p

.

We may rewrite the equation of state as

p =
RT

v − b
−

a

v2
.

Taking the differential of both sides,

dp =

(

∂p

∂T

)

v

dT +

(

∂p

∂v

)

T

dv

=
R

v − b
dT +

[

−
RT

(v − b)2
+

2a

v3

]

dv .

Setting dp = 0, we may read off

(

∂v

∂T

)

p

= −

(

∂p

∂T

)

v

/

(

∂p

∂v

)

T

.
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Putting this all together, we obtain
(

∂v

∂T

)

p

=
Rv3(v − b)

RTv3 − 2a(v − b)2
.

One immediate result is the following expression for the isobaric thermal expansion coefficient,

αp =
1

v

(

∂v

∂T

)

p

=
Rv2(v − b)

RTv3 − 2a(v − b)2
.

Another result is the difference cp − cV from eqn. 0.3.1,

cp − cV =

(

p+
a

v2

)(

∂v

∂T

)

p

=
R2Tv3

RTv3 − 2a(v − b)2
.

To fix ω(T ) and thus cV = ω′(T ), we consider the v → ∞ limit, where the density of the gas vanishes. In
this limit, the gas must be ideal, hence eqn. 0.3.1 says that ω(T ) = 1

2
fRT . Therefore cV (T, v) =

1
2
fR, just

as in the case of an ideal gas. However, rather than cp = cV + R, which holds for ideal gases, cp(T, v) is
given by eqn. 0.3.1. Thus,

cVDW
V = 1

2
fR

cVDW
p = 1

2
fR+

R2Tv3

RTv3 − 2a(v − b)2
.

Note that cp(a → 0) = cV +R, which is the ideal gas result.

It turns out that the van der Waals system is unstable throughout a region of parameters, where it
undergoes phase separation between high density (liquid) and low density (gas) phases. The above results
are valid only in the stable regions of the phase diagram.

0.3.2 General equation of state

Suppose we can’t isolate any of the state variables in the equation of state as we did when writing
p = p(T, v) above. Rather, let the equation of state take the form Z(T, p, v) = 0. Setting consecutively
dv = 0, dT = 0, and dp = 0, we then obtain

dZ =

(

∂Z

∂T

)

p,v

dT +

(

∂Z

∂p

)

T,v

dp+

(

∂Z

∂v

)

T,p

dv = 0 .

We then have
(

∂T

∂p

)

v

= −

(

∂Z

∂p

)

T,v

/(

∂Z

∂T

)

p,v
(

∂p

∂v

)

T

= −

(

∂Z

∂v

)

T,p

/(

∂Z

∂p

)

T,v
(

∂v

∂T

)

p

= −

(

∂Z

∂T

)

p,v

/(

∂Z

∂v

)

T,p

.
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