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0.1 Thermodynamics

0.1.1 Thermodynamic potentials

The energy E(S, V,N) is an extensive function of its three extensive arguments. This entails the relation

E = TS − pV + µN .

Since
dE = T dS − p dV + µdN ,

we obtain the Gibbs-Duhem relation (GDR)

S dT − V dp+N dµ = 0 .

Thus, any one of the three intensive quantities (T, p, µ) may be written as a function of the other two.
Dividing the GDR by N , for example, we obtain

dµ = −s dT + v dp ,

where s = S/N and v = V/N are the entropy and volume per particle. This says µ = µ(T, p) with

s = −

(

∂µ

∂T

)

p

, v =

(

∂µ

∂p

)

T

.

The Helmholtz free energy F = E − TS, Gibbs free energy E − TS + pV , enthalpy H = E + pV , and
grand potentialΩ = E−TS−µN are Legendre transforms of the energy function. We also haveG = µN
and Ω = −pV . The various dependencies are given by

E = E(S, V,N) , F = F (T, V,N) , G = G(T, p,N) , H = H(S, p,N) , Ω = Ω(T, V, µ) ,

Their respective differentials are

dE = T dS − p dV + µdN

dF = −S dT − p dV + µdN

dG = −S dT + V dp+ µdN

dH = T dS + V dp + µdN

dΩ = −S dT − p dV −N dµ .

0.2 Statistical Ensembles

0.2.1 Classical distributions

Let ̺(ϕ) be a normalized distribution on phase space. Then

〈

f(ϕ)
〉

= Tr
[

̺(ϕ) f(ϕ)
]

=

∫

dµ ̺(ϕ) f(ϕ) ,
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where dµ =W (ϕ)
∏

i dϕi is the phase space measure. For a Hamiltonian system of N identical indistin-
guishable point particles in d space dimensions, we have

dµ =
1

N !

N
∏

i=1

ddpi d
dqi

(2π~)d
.

The 1
N ! prefactor accounts for indistinguishability. Normalization means Tr ̺ = 1.

0.2.2 Microcanonical ensemble (µCE)

The microcanonical distribution is given by

̺E(ϕ) =
δ
(

E − Ĥ(ϕ)
)

D(E)
,

where D(E) = Tr δ
(

E − Ĥ(ϕ)
)

is the density of states and Ĥ(ϕ) = Ĥ(q,p) is the Hamiltonian. The
energy E, volume V , and particle number N are held fixed. Thus, the density of states D(E,V,N) is
a function of all three variables. The statistical entropy is S(E,V,N) = k

B
lnD(E,V,N), where k

B
is

Boltzmann’s constant. Since D has dimensions of E−1, an arbitrary energy scale is necessary to convert
D to a dimensionless quantity before taking the log. In the thermodynamic limit, one has

S(E,V,N) = Nk
B
φ

(

E

N
,
V

N

)

.

The differential of E is defined to be dE = T dS − p dV + µdN , thus T =
(

∂E
∂S

)

V,N
is the temperature,

p = −
(

∂E
∂V

)

S,N
is the pressure, and µ =

(

∂E
∂N

)

S,V
is the chemical potential. Note that E, S, V , and N are

all extensive quantities, i.e. they are halved when the system itself is halved.

0.2.3 Ordinary canonical ensemble (OCE)

In the OCE, energy fluctuates, while V , N , and the temperature T are fixed. The distribution is ̺ =

Z−1 e−βĤ , where β = 1/k
B
T and Z = Tr e−βĤ is the partition function. Note that Z is the Laplace

transform of the density of states: Z =
∫

dE D(E) e−βE . The Boltzmann entropy is S = −k
B
Tr (̺ ln ̺).

This entails F = E − TS, where F = −k
B
T lnZ is the Helmholtz free energy, a Legendre transform of

the energy E. From this we derive dF = −S dT − p dV + µdN .

0.2.4 Grand canonical ensemble (GCE)

In the GCE, bothE andN fluctuate, while T , V , and chemical potential µ remain fixed. The distribution

function is then ̺ = Ξ−1 e−β(Ĥ−µN̂), where

Ξ(T, V, µ) = Tr e−β(Ĥ−µN̂) =

∞
∑

N=0

eβµN ZN (T, V,N) = e−βΩ(T,V,µ)
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is the grand partition function and Ω = −k
B
T lnΞ is the grand potential. Assuming [Ĥ, N̂ ] = 0, we

can label states |n 〉 by both energy and particle number. Then Pn = Ξ−1 e−β(En−µNn). We also have
Ω = E − TS − µN , hence dΩ = −S dT − p dV −N dµ. The quantity z = eβµ is known as the fugacity.

0.2.5 Statistical thermodynamics

From E = Tr (̺ Ĥ), we have dE = Tr (Ĥ d̺) + Tr (̺ dĤ) = d̄Q− d̄W , where d̄Q = T dS and

d̄W = −Tr (̺ dĤ) = −
∑

n

Pn

∑

i

∂En

∂Xi

dXi =
∑

i

Fi dXi ,

with Pn = Z−1e−En/kBT . Here Fi = −
〈

∂Ĥ
∂X

i

〉

= sumnPn
∂En

∂X
i

is the generalized force conjugate to the

generalized displacement Xi.

0.2.6 Thermal contact

In equilibrium, two systems which can exchange energy satisfy T1 = T2. Two systems which can
exchange volume satisfy p1/T1 = p2/T2. Two systems which can exchange particle number satisfy
µ1/T1 = µ2/T2.

0.2.7 Generalized susceptibilities

Within the OCE, let Ĥ(λ) = Ĥ0 −
∑

i λi Q̂i, where Q̂i are observables with [Q̂i, Q̂j ] = 0. Then

Qk(T, V,N ;λ) = 〈Q̂k〉 = −
∂F

∂λk
, χ

kl(T, V,N ;λ) =
1

V

∂Qk

∂λl
= −

1

V

∂2F

∂λk ∂λl
.

The quantities χkl are the generalized susceptibilities.

0.2.8 Ideal gases

For Ĥ =
∑N

i=1
p2

i

2m , one finds Z(T, V,N) = 1
N !

(

V
λd

T

)N
, where λT =

√

2π~2

mk
B
T is the thermal wavelength.

Thus F (T, V,N) = Nk
B
T ln(N/V ) − 1

2dNkB
T lnT + Na, where a is a constant. From this one finds

p = −
(

∂F
∂V

)

T,N
= nk

B
T , which is the ideal gas law, with n = N

V the number density. The distribution of

velocities in d = 3 dimensions is given by

f(v) =
〈 1

N

N
∑

i=1

δ(v − vi
)

〉

=

(

m

2πk
B
T

)3/2

e−mv2/2k
B
T ,

and this leads to a speed distribution f̄(v) = 4πv2f(v). In the GCE, we haveΩ(T, V, µ) = −V k
B
Tλ−3

T eµ/kBT .
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0.2.9 Examples

Noninteracting Ising spins

For N noninteracting spins in an external magnetic field H , the Hamiltonian is Ĥ = −µ0H
∑N

i=1 σi,
where σi = ±1. The spins, if on a lattice, are regarded as distinguishable. Then Z = ζN , where ζ =
∑

σ=±1 e
βµ

0
Hσ = 2cosh(βµ0H). The magnetization and magnetic susceptibility are then

M = −

(

∂F

∂H

)

T,N

= Nµ0 tanh

(

µ0H

k
B
T

)

, χ =
∂M

∂H
=
Nµ20
k
B
T

sech2
(

µ0H

k
B
T

)

.

Ballistic particles with internal degrees of freedom

For noninteracting particles with kinetic energy p2

2m and internal degrees of freedom,ZN = 1
N !

(

V
λd

T

)N
ξN (T ),

where ξ(T ) = Tr e−βĥ
int is the partition function for the internal degrees of freedom, which include ro-

tational, vibrational, and electronic excitations. One still has pV = Nk
B
T , but the heat capacities at

constant V and p are

CV = T

(

∂S

∂T

)

V,N

= 1
2dNkB

−NTϕ′′(T ) , Cp = T

(

∂S

∂T

)

p,N

= CV +Nk
B

,

where ϕ(T ) = −k
B
T ln ξ(T ). Suppose that the internal degree of freedom for each particle is an angle

φ ∈ [0, 2π), and that ĥint = −Bµ0 cosφ. Then

ξ(T ) =

2π
∫

0

dφ

2π
eµ0

B cos φ/k
B
T = I0

(

µ0B

k
B
T

)

,

where I0(z) is a modified Bessel function. If the internal degree of freedom is a three-dimensional unit
vector n̂ and ĥint = −µ0B · n̂, then the normalized trace over the internal degree of freedom is given by

Tr e−βĥ
int =

∫

dn̂
4π e

−βĥ
int .

0.3 Quantum Statistics

0.3.1 Second-quantized Hamiltonian

A noninteracting quantum system is described by a Hamiltonian Ĥ =
∑

α εα n̂α, where εα is the energy
eigenvalue for the single particle state ψα (possibly degenerate), and n̂α is the number operator. Many-
body eigenstates |~n〉 are labeled by the set of occupancies ~n = {nα}, with n̂α |~n〉 = nα|~n〉. Thus, Ĥ |~n〉 =
E~n |~n〉, where E~n =

∑

α nα εα. The allowed values for nα are nα ∈ {0, 1, 2, . . . ,∞} for bosons and
nα ∈ {0, 1} for fermions.
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0.3.2 Grand canonical ensemble

Because of the constraint
∑

α nα = N , the ordinary canonical ensemble is inconvenient. Rather, we use
the grand canonical ensemble, in which case

Ω(T, V, µ) = ±k
B
T

∑

α

ln
(

1∓ e−(εα−µ)/k
B
T
)

,

where the upper sign corresponds to bosons and the lower sign to fermions. The average number of
particles occupying the single particle state ψα is then

〈n̂α〉 =
∂Ω

∂εα
=

1

e(εα−µ)/k
B
T ∓ 1

.

In the Maxwell-Boltzmann limit, µ ≪ −k
B
T and 〈nα〉 = z e−εα/kBT , where z = eµ/kBT is the fugacity.

Note that this low-density limit is common to both bosons and fermions.

0.3.3 Single particle density of states

The single particle density of states per unit volume is defined to be

g(ε) =
1

V
Tr δ(ε − ĥ) =

1

V

∑

α

δ(ε − εα) ,

where ĥ is the one-body Hamiltonian. If ĥ is isotropic, then ε = ε(k), where k = |k| is the magnitude of
the wavevector, and

g(ε) =
gΩd

(2π)d
kd−1

dε/dk
,

where g is the degeneracy of each single particle energy state. Recall Ωd = 2πd/2/Γ(d/2). Thus, we may
write

Ω(T, V, µ) = ±k
B
T

∞
∫

−∞

dε g(ε) ln
(

1∓ e(µ−ε)/k
B
T
)

,

0.3.4 Quantum virial expansion

From Ω = −pV , we have

n(T, z) =

∞
∫

−∞

dε
g(ε)

z−1 eε/kBT ∓ 1
=

∞
∑

j=1

zj Cj(T )

p(T, z) = ∓k
B
T

∞
∫

−∞

dε g(ε) ln
(

1∓ z e−ε/k
B
T
)

= k
B
T

∞
∑

j=1

j−1 Cj(T ) z
j ,
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where

Cj(T ) = (±1)j−1

∞
∫

−∞

dε g(ε) e−jε/k
B
T .

One now inverts n = n(T, z) to obtain z = z(T, n), then substitutes this into p = p(T, z) to obtain a series
expansion for the equation of state,

p(T, n) = nk
B
T
(

1 +B2(T )n +B3(T )n
2 + . . .

)

.

The coefficients Bj(T ) are the virial coefficients. One finds

B2 = ∓
C2

2C2
1

, B3 =
C2
2

C4
1

−
2C3

3C3
1

.

0.3.5 Photon statistics

Photons are bosonic excitations whose number is not conserved, hence µ = 0. The number distribution
for photon statistics is then n(ε) = 1/(eβε − 1). Examples of particles obeying photon statistics include
phonons (lattice vibrations), magnons (spin waves), and of course photons themselves, for which ε(k) =
~ck with g = 2. The pressure and number density for the photon gas obey p(T ) = Ad T

d+1 and n(T ) =
Bd T

d, where d is the dimension of space and Ad and Bd are constants.

0.3.6 Blackbody radiation

The energy density per unit frequency of a three-dimensional blackbody is given by

ρε(ν, T ) =
8πh

c3
·

ν3

ehν/kBT − 1
.

The total power emitted per unit area of a blackbody is dP
dA = σT 4, where σ = π2k4

B
/60~3c2 = 5.67 ×

10−8 W/m2 K4 is Stefan’s constant.

Example: The total power radiated by the sun is P⊙ = σT 4
⊙ × 4πR2

⊙ and the fraction incident upon the
earth is πR2

e/4πa
2
e , where ae = 1AU. Assuming the earth is a perfect blackbody, the surface temperature

of the earth Te should satisfy

P⊙ = σT 4
⊙ × 4πR2

⊙ ×
R2

e

4a2e
= σT 4

e × 4πR2
e ⇒ Te =

(

R⊙

2ae

)1/2

T⊙ .

0.3.7 Ideal Bose gas

For Bose systems, we must have εα > µ for all single particle states. The number density is

n(T, µ) =

∞
∫

−∞

dε
g(ε)

eβ(ε−µ) − 1
.
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This is an increasing function of µ and an increasing function of T . For fixed T , the largest value n(T, µ)
can attain is nc(T ) ≡ n(T, ε0), where ε0 is the lowest possible single particle energy; g(ε) = 0 for ε < ε0.
If nc(T ) < ∞, this establishes a critical density above which there is Bose condensation into the energy
ε0 state. Conversely, for a given density n there is a critical temperature Tc(n) such that n0 is finite for
T < Tc . For T < Tc , n = n0 + nc(T ), with µ = ε0. For T > Tc , n(T, µ) is given by the integral
formula above, with n0 = 0. For a ballistic dispersion ε(k) = ~

2k2/2m, one finds nλdTc
= g ζ(d/2),

where g is the internal degeneragy of each state. Thus k
B
Tc =

2π~2

m

(

n
/

g ζ(d/2)
)2/d

. For T < Tc(n), one

has n0 = n − g ζ(12d)λ
−d
T = n

(

1− (T/Tc)
d/2

)

and p = g ζ(1 + 1
2d) kB

T λ−d
T . For T > Tc(n), one has

n = gLi d
2

(z)λ−d
T and p = gLi d

2
+1

(z) k
B
T λ−d

T , where

Liq(z) ≡

∞
∑

n=1

zn

nq
.

The implicit equation for Tc(n) is

n =

∞
∫

−∞

dε
g(ε)

eε/kBTc − 1
,

For a power law density of states g(ε) = C εr−1, we have ε0 = 0 and

n =

∞
∫

0

dε
C εr−1

eε/kBTc − 1
⇒ k

B
Tc(n) =

(

n

C Γ(r) ζ(r)

)1/r

.

0.3.8 Ideal Fermi gas

The Fermi distribution is n(ε) = f(ε − µ) = 1
/(

e(ε−µ)/k
B
T + 1

)

. At T = 0, this is a step function:

n(ε) = Θ(µ − ε), and n =
µ
∫

−∞

dε g(ε). The chemical potential at T = 0 is called the Fermi energy; thus

µ(T = 0, n) = εF(n). If the dispersion is ε(k), the locus of k values satisfying ε(k) = εF is called the
Fermi surface. For an isotropic and monotonic dispersion ε(k), the Fermi surface is a sphere of radius kF,
the Fermi wavevector. For isotropic three-dimensional systems, kF = (6π2n/g)1/3.

0.3.9 Sommerfeld expansion

Let φ(ε) = dΦ
dε . Then

∞
∫

−∞

dε f(ε− µ) φ(ε) = πD csc(πD)Φ(µ)

=

{

1 +
π2

6
(k

B
T )2

d2

dµ2
+

7π4

360
(k

B
T )4

d4

dµ4
+ . . .

}

Φ(µ) ,
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where D = k
B
T d

dµ . One then finds, for example, CV = γV T with γ = 1
3π

2k2
B
g(εF). Note that nonana-

lytic terms proportional to exp(−µ/k
B
T ) are invisible in the Sommerfeld expansion.
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