
PHYSICS 140A : STATISTICAL PHYSICS

FINAL EXAMINATION SOLUTIONS

(1) Provide clear, accurate, and brief answers for each of the following:0

(a) What is the Gibbs-Duhem for a single-component system and how is it derived from
homogeneity of the energy function E(S, V,N)? [5 points]

(b) What are the separate conditions guaranteeing thermal, mechanical, and chemical (or
particle) equilibrium between two single-component systems, and what equalities do they
entail? [5 points]

(c) What is a virial equation of state? What are the dimensions of the kth virial coefficient
Bk, and on what intensive quantity or quantities does Bk depend? [5 points]

(d) Consider a noninteracting classical system consisting of distinguishable particles situ-
ated on each of N

s
sites. The available energy states for each particle are ε1 = 0, ε2 = 0,

ε3 = ∆, and ε4 = Ω. What is the free energy F (T,N
s
)? What is the entropy at T = 0?

[5 points]

(e) For a noninteracting Bose gas with density of states g(ε) = Aε5, find the condensation
temperature Tc(n). You may find the following helpful:

∞∫

0

dt
tr−1

exp(t)− 1
= Γ(r) ζ(r) .

[5 points]

Solution :

(a) The Gibbs-Duhem relation for single-component systems relates and three indepen-
dent intensive quantities (typically T , p, and n). It follows from the fact that E(S, V,N) is
homogeneous of degree 1 in its arguments. Euler’s theorem therefore says

E = S

(
∂E

∂S

)

V,N

+ V

(
∂E

∂V

)

S,N

+N

(
∂E

∂N

)

S,V

= TS − pV + µN .

Taking the differential,

dE = T dS + S dT − p dV − V dp + µdN +N dµ ⇒ S dT − V dp+N dµ = 0 ,

since dE = T dS − p dV + µdN .

(b) In thermal equilibrium, two systems are free to exchange energy, and T1 = T2. In
mechanical equilibrium, to systems are free to exchange volume, and p1/T1 = p2/T2. In
chemical (particle) equilibrium, two systems are free to exchange particle number, and
µ1/T1 = µ2/T2. This is because entropy must be maximized with respect to exchanges of
energy, volume, and particle number, respectively, and

dS =
1

T
dE +

p

T
dV − µ

T
dN .
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(c) A virial equation of state is an expansion in powers of the density. Typically the lowest
order form is the ideal gas law p = nk

B
T . To higher order,

p = nk
B
T
(
1 +B2(T )n +B3(T )n

2 + . . .
)

.

Since [n] = V −1, we must have [Bk(T )] = V k−1. Each virial coefficient is a function of
temperature alone.

(d) We have Z(T,N
s
) =

(
2 + e−β∆ + e−βΩ

)N
s and thus

F (T,N
s
) = −k

B
T logZ(T,N

s
) = −N

s
k
B
T log

(
2 + e−∆/k

B
T + e−Ω/k

B
T
)

.

Since the lowest energy state is doubly degenerate, S(T = 0, N
s
) = N

s
k
B
log 2.

(e) The implicit relation for Tc(n) in a noninteracting Bose gas is

n =

∞∫

0

dε
g(ε)

exp(ε/k
B
Tc)− 1

.

For g(ε) = Aεr−1, we have, after substituting t ≡ ε/k
B
T ,

n = AΓ(r) ζ(r) (k
B
Tc)

r ⇒ k
B
Tc(n) =

(
n

Γ(r) ζ(r)A

)1/r

.

For our case, r = 6.

(2) A surface consists of a collection of N
s

sites, each of which hosts an electric dipole
pj = µ0 n̂j . In an electric field E, the energy of the jth dipole is −E · pj . Each n̂j is a
unit vector in d = 3 dimensions and can be expressed in terms of Cartesian components
as n̂j = (sin θj cosφj , sin θj sinφj , cos θj) with polar angle θj ∈ [0, π] and azimuthal an-
gle φj ∈ [0, 2π). The dipoles are situated at unique locations in the crystal, and are thus
distinguishable.

(a) What is the partition function Z(T,N
s
, E)? You may assume E is parallel to ẑ. Hint:

First find the single site partition function ζ(T,E). [5 points]

(b) Find the average dipole moment 〈p〉. [5 points]

(c) Now suppose that each site is either empty, with energy zero, or contains a dipole
with energy −E · p. The chemical potential for dipoles is µ. Find the grand potential
Ω(T,N

s
, µ,E). [10 points]

(d) Next, let the surface be in equilibrium with a nonrelativistic monatomic ideal gas of
number density n. Gas atoms can be adsorbed on the surface, in which case they acquire a
dipole moment and are bound to a surface adsorption site with energy −∆ < 0. They can
also desorb and join the gas as mass m atoms with zero dipole moment p = 0 (not to be
confused with momentum!). Find the surface site occupation fraction f = Nsurface/Ns

in
terms of T , E, ∆, the gas number density n, and other constants. [5 points]
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Solution :

(a) The single site partition function is

ζ(T,E) =

∫
dn̂

4π
e−βh(n̂) =

1

4π

π∫

0

dθ sin θ

2π∫

0

dφ eµ0
E cos θ/k

B
T

=
1

2

1∫

−1

dx eµ0
Ex/k

B
T =

k
B
T

µ0E
sinh

(
µ0E

k
B
T

)
,

with h(n̂) = −µ0E ·n̂. For N
s

independent and distinguishable sites, the partition function
is Z(T,N

s
, E) = ζ(T,E)Ns .

(b) The Helmholtz free energy is

F (T,N
s
, E) = −N

s
k
B
T log ζ(T,E) = −N

s
k
B
T log

(
sinhu

u

)

where u ≡ µ0E/k
B
T . The average moment is

〈p〉 = µ0〈n̂〉 = − 1

N
s

(
∂F

∂E

)

T,N
s

= − Ê

N
s

(
∂F

∂E

)

T,N
s

= µ0

{
ctnh

(
µ0E

k
B
T

)
− k

B
T

µ0E

}
Ê .

(c) The grand canonical partition function is

Ξ(T,N
s
, E, µ) =

(
1 + eµ/kBT ζ(T,E)

)N
s

and therefore
Ω(T,N

s
, E, µ) = −N

s
k
B
T log

(
1 + eµ/kBT ζ(T,E)

)
.

(d) The surface coverage fraction is

f =
〈N̂surface〉

N
s

= − 1

N
s

(
∂Ω

∂µ

)

T,N
s
,E

where z = exp(µ/k
B
T ) is the surface fugacity, and where

Ω(T,N
s
, E,∆, µ) = −N

s
k
B
T log

(
1 + e(µ+∆)/k

B
T ζ(T,E)

)
.

to account for the binding energy of the adsorbates. Since the surface adsorbate is in ther-
mal and particle equilibrium with a monatomic ideal gas the temperatures and chemical
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potentials are the same for both systems, hence the fugacities are the same as well. The
ideal gas fugacity is z = nλ3

T , hence

f(T,E,∆, n) =
z ζ e∆/k

B
T

1 + z ζ e∆/k
B
T

=
nλ3

T ζ(T,E) e∆/k
B
T

1 + nλ3
T ζ(T,E) e∆/k

B
T

.

(3) Consider an ultrarelativistic gas of N identical and indistinguishable particles in three
space dimensions. The Hamiltonian of each particle is ĥ = c|p|.

(a) What is the single particle partition function ζ . Assume the system is confined to a box
of volume V . [5 points]

(b) What is the Helmholtz free energy F (T, V,N)? [5 points]

(c) What is the entropy S(T, V,N)? [5 points]

(d) What is the chemical potential µ(T, V,N)? [5 points]

(e) What is the heat capacity at constant volume CV,N (T, V,N)? [5 points]

Solution :

(a) Integrating over momentum and summing over electronic states,

ζ(T, V ) = V

∫
d3p

h3
e−c|p|/k

B
T =

V

π2

(
k
B
T

~c

)3
.

(b) We have F = −k
B
T lnZ(T, V,N) where Z = ζN/N ! . Thus,

F (T, V,N) = −Nk
B
T log

[
V

Nπ2

(
k
B
T

~c

)3]
−Nk

B
T ,

where we have used Stirling’s rule lnK! = K lnK −K +O(lnK) for K large.

(c) The entropy is

S(T, V,N) = −
(
∂F

∂T

)

V,N

= Nk
B
log

[
V

Nπ2

(
k
B
T

~c

)3]
+ 4Nk

B
.

(d) The chemical potential is

µ(T, V,N) =

(
∂F

∂N

)

T,V

= −k
B
T log

[
V

Nπ2

(
k
B
T

~c

)3]
.

(e) The heat capacity is

CV,N = T

(
∂S

∂T

)

V,N

= 3Nk
B

.
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(4) Consider a three-dimensional Bose gas of particles which have two internal polariza-
tion states, labeled by σ = ±1. The single particle energies are given by (with ∆ > 0)

ε(p, σ) =
p2

2m
+ σ∆ ,

(a) Find the density of states per unit volume g(ε). Recall that the DOS for nonrelativistic
particles in three dimensions is given by

g0(ε) =

√
2m3

2π2~3
ε1/2 Θ(ε) .

Hint: The answer can be expressed as a sum of the DOS for σ = ±1 polarization states.
[10 points]

(b) Into what single particle state does the gas condense? What is the value of the chemical
potential µ in the condensed phase? [5 points]

(c) Find an implicit expression for the condensation temperature Tc(n,∆), and from it ob-
tain an analytical expression for Tc(n,∆ = ∞). You may find the following useful:

∞∫

−∞

dε
g0(ε)

e(ε−µ)/k
B
T − 1

= λ−3
T Li3/2

(
eµ/kBT

)

as well as Lis(1) = ζ(s). Hint: This obviates the need for you to do any actual integrals!
[10 points]

(d) When ∆ = ∞, the condensation temperature should agree with the familiar result for
three-dimensional Bose condensation. Assuming ∆ ≫ k

B
Tc(n,∆ = ∞), find analytically

the leading order difference Tc(n,∆)− Tc(n,∆ = ∞). [100 quatloos extra credit]

Solution :

(a) Let g0(ε) be the DOS per unit volume for the case ∆ = 0. Then

g0(ε) dε =
d3k

(2π)3
=

k2dk

2π2
⇒ g0(ε) =

√
2m3

2π2~3
ε1/2 Θ(ε) .

For finite ∆, the single particle energies are shifted uniformly by ±∆ for the σ = ±1 states,
hence

g(ε) = g0(ε+∆) + g0(ε−∆) .

(b) In the condensed phase, µ is the minimum value for the single particle energy, which
occurs for k = 0 and σ = −1. Thus, the system condenses into the state |k = 0, σ = −1 〉,
and the chemical potential in the condensed phase is µ = −∆.
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(c) For Bose statistics, we have in the uncondensed phase,

n =

∞∫

−∞

dε
g(ε)

e(ε−µ)/k
B
T − 1

= Li3/2

(
e(µ+∆)/k

B
T
)
λ−3
T + Li3/2

(
e(µ−∆)/k

B
T
)
λ−3
T .

In the condensed phase, µ = −∆−O(N−1) is pinned just below the lowest single particle
energy, which occurs for k = p/~ = 0 and σ = −1. We then have

n = n0 + ζ(3/2)λ−3
T + Li3/2

(
e−2∆/k

B
T
)
λ−3
T .

To find the critical temperature, set n0 = 0 and µ = −∆:

n = ζ(3/2)λ−3
Tc

+ Li3/2

(
e−2∆/k

B
Tc

)
λ−3
Tc

.

This is a nonlinear and implicit equation for Tc(n,∆). When ∆ = ∞, we have

k
B
T∞
c (n) =

2π~2

m

(
n

ζ(3/2)

)2/3
.

(d) For finite ∆, we still have the implicit nonlinear equation to solve, but in the limit
∆ ≫ k

B
Tc, we can expand Tc(∆) = T∞

c + ∆Tc(∆). We may then set Tc(n,∆) to T∞
c (n) in

the second term of our nonlinear implicit equation, move this term to the LHS, whence

ζ(3/2)λ−3
Tc

≈ n− Li3/2

(
e−2∆/k

B
T∞

c

)
λ−3
T∞

c

.

which is a simple algebraic equation for Tc(n,∆). The second term on the RHS is tiny since
∆ ≫ k

B
T∞
c . We then find

Tc(n,∆) = T∞
c (n)

{
1− 3

2 e
−2∆/k

B
T∞

c (n) +O
(
e−4∆/k

B
T∞

c (n)
)}

.
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