PHYSICS 140A : STATISTICAL PHYSICS
FINAL EXAMINATION SOLUTIONS

(1) Provide clear, accurate, and brief answers for each of the following:0

(a) What is the Gibbs-Duhem for a single-component system and how is it derived from
homogeneity of the energy function E(S,V, N)? [56 points]

(b) What are the separate conditions guaranteeing thermal, mechanical, and chemical (or
particle) equilibrium between two single-component systems, and what equalities do they
entail? [5 points]

(c) What is a virial equation of state? What are the dimensions of the k! virial coefficient
B,, and on what intensive quantity or quantities does I3, depend? [5 points]

(d) Consider a noninteracting classical system consisting of distinguishable particles situ-
ated on each of N sites. The available energy states for each particle are ¢; = 0, &, = 0,
g5 = A, and ¢, = Q. What is the free energy F(T, N,)? What is the entropy at 7" = 0?

[5 points]

(e) For a noninteracting Bose gas with density of states g(¢) = A&, find the condensation
temperature 7,(n). You may find the following helpful:

[e.e]

tr—l
/dt —— =T(r)¢(r)
0

exp(t) — 1
[5 points]

Solution :

(a) The Gibbs-Duhem relation for single-component systems relates and three indepen-
dent intensive quantities (typically 7', p, and n). It follows from the fact that E(S,V, N) is
homogeneous of degree 1 in its arguments. Euler’s theorem therefore says
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Taking the differential,
dE=TdS+ Sdl' —pdV —Vdp+ ndN + N du = SdI'-Vdp+Ndu=0 |,
sincedE =TdS — pdV + pdN.

(b) In thermal equilibrium, two systems are free to exchange energy, and 7; = 7,. In
mechanical equilibrium, to systems are free to exchange volume, and p, /T} = py/T5. In
chemical (particle) equilibrium, two systems are free to exchange particle number, and
w1 /Ty = py/Ty. This is because entropy must be maximized with respect to exchanges of
energy, volume, and particle number, respectively, and
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(c) A virial equation of state is an expansion in powers of the density. Typically the lowest
order form is the ideal gas law p = nk,T'. To higher order,

p=nkyT(1+ By(T)n+ Bs(T)n*+...)

Since [n] = V!, we must have [B,(T)] = V*~!. Each virial coefficient is a function of
temperature alone.

(d) We have Z(T, N;) = (2 +e P2 + e‘BQ)NS and thus
F(T, N,) = —kyTlog Z(T,N,) = — Nk, Tlog (2 + e~ /sl 4 ¢=/ksT)
Since the lowest energy state is doubly degenerate, S(T" = 0, N;) = N,k log 2.

(e) The implicit relation for 7),(n) in a noninteracting Bose gas is

9(¢)
= [d
n= fa exp(e/kyT,) — 1
0
For g(g) = A", we have, after substituting t = ¢/k, T,

n 1/r
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For our case, r = 6.

(2) A surface consists of a collection of N, sites, each of which hosts an electric dipole
p; = Hon;. In an electric field E, the energy of the j™ dipole is —F - p;- Eachn;isa
unit vector in d = 3 dimensions and can be expressed in terms of Cartesian components
as n; = (sin6; cos ¢;,sinb; sin ¢, cos ;) with polar angle ¢, € [0,7] and azimuthal an-
gle ¢; € [0,2m). The dipoles are situated at unique locations in the crystal, and are thus
distinguishable.

(a) What is the partition function Z (7', N, E')? You may assume FE is parallel to 2. Hint:
First find the single site partition function ((T, E). [5 points]

(b) Find the average dipole moment (p). [5 points]

(c) Now suppose that each site is either empty, with energy zero, or contains a dipole
with energy —F - p. The chemical potential for dipoles is p. Find the grand potential
(T, Ng,pt, E). [10 points]

(d) Next, let the surface be in equilibrium with a nonrelativistic monatomic ideal gas of
number density n. Gas atoms can be adsorbed on the surface, in which case they acquire a
dipole moment and are bound to a surface adsorption site with energy —A < 0. They can
also desorb and join the gas as mass m atoms with zero dipole moment p = 0 (not to be
confused with momentum!). Find the surface site occupation fraction f = Ngyrface/ Vg in
terms of T', E, A, the gas number density n, and other constants. [6 points]



Solution :

(a) The single site partition function is

Uy 2m
((T,E) = / d_n e~ Bh(R) — 1 /d9 Sine/d(b cto B cosO/kpT
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with h(n) = —pyE-n. For N independent and distinguishable sites, the partition function
is Z(T,N,, E) = ¢(T, E)N-.

(b) The Helmholtz free energy is

inh
F(T’ NS7E) = _Nsk?BTlog ((T7 E) = _NSkBTlOg<Slnu U>

where u = pyE/k,T. The average moment is

(p) = (m__i or __E oF
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(c) The grand canonical partition function is

N,

s

E(T,Ng, B, p) = (1 +eme T (T, E>)

and therefore
AT, Ny, B, jt) = =Nk Tlog (1 + /5T (T, E) )

(d) The surface coverage fraction is

f - <Nsurfaco> o _L <@>
N. N, \ Ou TN, E

S

where z = exp(u/k;T') is the surface fugacity, and where
T, Ny, E, A, ) = =N, chTlog(l + BT (1, E))

to account for the binding energy of the adsorbates. Since the surface adsorbate is in ther-
mal and particle equilibrium with a monatomic ideal gas the temperatures and chemical



potentials are the same for both systems, hence the fugacities are the same as well. The
ideal gas fugacity is z = nA3,, hence

2 ¢ eA/ksT B n)\;} C(T,E) eA/ksT
1+ 2¢eA kT 14 n)3 (T, E) ep/ksT

f(T,E,A;n) =

(3) Consider an ultrarelativistic gas of N identical and indistinguishable particles in three
space dimensions. The Hamiltonian of each particle is h = ¢|p|.

(a) What is the single particle partition function ¢. Assume the system is confined to a box
of volume V. [6 points]

(b) What is the Helmholtz free energy F(T,V, N)? [5 points]

(c) What is the entropy S(7',V, N)? [5 points]

(d) What is the chemical potential p(7,V, N)? [5 points]

(e) What is the heat capacity at constant volume CY, \(T,V, N)? [6 points]
Solution :

(a) Integrating over momentum and summing over electronic states,

Ep gtV (ETY
<<T’V>—V/ﬁe ’ —ﬁ<fw>

(b) We have F = —k,T'In Z(T,V, N) where Z = (" /N!. Thus,
Vo (kT
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where we have used Stirling’s rule In K! = KIn K — K + O(In K) for K large.
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F(T,V,N) = —-Nk,Tlog

— Nk, T

(c) The entropy is

ﬂﬂum=—<—> = Nk, log + ANk,
V,.N

(d) The chemical potential is

Vo (k,TY
N72\ he

//J(T> V7 N) = <6—N> = _kBTIOg
TV

(e) The heat capacity is



(4) Consider a three-dimensional Bose gas of particles which have two internal polariza-
tion states, labeled by o = +1. The single particle energies are given by (with A > 0)

p2
E(p,U):%—l—O'A s

(a) Find the density of states per unit volume g(¢). Recall that the DOS for nonrelativistic
particles in three dimensions is given by

V2m3
90(5) = 2123 61/2 6(6)

Hint: The answer can be expressed as a sum of the DOS for o = £1 polarization states.
[10 points]

(b) Into what single particle state does the gas condense? What is the value of the chemical
potential 1 in the condensed phase? [5 points]

(c) Find an implicit expression for the condensation temperature 7,.(n, A), and from it ob-
tain an analytical expression for 7, (n, A = co0). You may find the following useful:

o0
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—00

as well as Li (1) = ((s). Hint: This obviates the need for you to do any actual integrals!
[10 points]

(d) When A = oo, the condensation temperature should agree with the familiar result for
three-dimensional Bose condensation. Assuming A > k,T.(n, A = o0), find analytically
the leading order difference T, (n, A) — T.(n, A = 00). [100 quatloos extra credit]

Solution :
(a) Let gy(¢) be the DOS per unit volume for the case A = 0. Then

e LR Rk VD
Jole) 6 = (2m)3  2n? 908 = oroys

e20(e) .

For finite A, the single particle energies are shifted uniformly by +A for the 0 = +1 states,
hence
9(e) = gole + A) + goe = A)..

(b) In the condensed phase, 1 is the minimum value for the single particle energy, which
occurs for k = 0 and ¢ = —1. Thus, the system condenses into the state |k = 0,0 = —1),
and the chemical potential in the condensed phase is ;1 = —A.



(c) For Bose statistics, we have in the uncondensed phase,

9(€) . 3 - _
n :/dE m = L|3/2 (€(u+A)/kBT) )\T3 + L|3/2 (6('u A)/kBT) )\T3 .

—00

In the condensed phase, i = —A — O(N 1) is pinned just below the lowest single particle
energy, which occurs for k = p/h = 0 and o = —1. We then have

n =g+ (3/2) A\p® + Ligp (e 22/ FT) AJ3
To find the critical temperature, set ny, = 0 and p = —A:

n=((3/2) \p” + Lig (e728/keTe) A72

c

This is a nonlinear and implicit equation for 7,(n, A). When A = oo, we have

k(o) = (c(z’?/z))m'

(d) For finite A, we still have the implicit nonlinear equation to solve, but in the limit
A > kT, we can expand T,(A) = T>° + AT, (A). We may then set T.(n, A) to T2°(n) in
the second term of our nonlinear implicit equation, move this term to the LHS, whence

C(3/2) A7 m m = Ligp (e 24T ) A2

C

which is a simple algebraic equation for 7;.(n, A). The second term on the RHS is tiny since
A > kT2, We then find

T.(n,A) = T(n) {1 32 kg T W)y @(e—m/kBTwn))} ,



