PHYSICS 140A : STATISTICAL PHYSICS FINAL EXAMINATION

(1) Provide clear, accurate, and brief answers for each of the following:0

(a) What is the Gibbs-Duhem for a single-component system and how is it derived from homogeneity of the energy function E(S, V, N)? [5 points]

(b) What are the separate conditions guaranteeing thermal, mechanical, and chemical (or particle) equilibrium between two single-component systems, and what equalities do they entail? [5 points]

(c) What is a virial equation of state? What are the dimensions of the k^{th} virial coefficient B_k , and on what intensive quantity or quantities does B_k depend? [5 points]

(d) Consider a noninteracting classical system consisting of distinguishable particles situated on each of N_s sites. The available energy states for each particle are $\varepsilon_1 = 0$, $\varepsilon_2 = 0$, $\varepsilon_3 = \Delta$, and $\varepsilon_4 = \Omega$. What is the free energy $F(T, N_s)$? What is the entropy at T = 0? [5 points]

(e) For a noninteracting Bose gas with density of states $g(\varepsilon) = A \varepsilon^5$, find the condensation temperature $T_c(n)$. [5 points] You may find the following helpful:

$$\int_{0}^{\infty} dt \, \frac{t^{r-1}}{\exp(t) - 1} = \Gamma(r) \, \zeta(r) \quad .$$

(2) A surface consists of a collection of N_s sites, each of which hosts an electric dipole $p_j = \mu_0 \hat{n}_j$. In an electric field E, the energy of the j^{th} dipole is $-E \cdot p_j$. Each \hat{n}_j is a unit vector in d = 3 dimensions and can be expressed in terms of Cartesian components as $\hat{n}_j = (\sin \theta_j \cos \phi_j, \sin \theta_j \sin \phi_j, \cos \theta_j)$ with polar angle $\theta_j \in [0, \pi]$ and azimuthal angle $\phi_j \in [0, 2\pi)$. The dipoles are situated at unique locations in the crystal, and are thus distinguishable.

(a) What is the partition function $Z(T, N_s, E)$? You may assume E is parallel to \hat{z} . Hint: First find the single site partition function $\zeta(T, E)$. [5 points]

(b) Find the average dipole moment $\langle p \rangle$. [5 points]

(c) Now suppose that each site is either empty, with energy zero, or contains a dipole with energy $-E \cdot p$. The chemical potential for dipoles is μ . Find the grand potential $\Omega(T, N_s, \mu, E)$. [10 points]

(d) Next, let the surface be in equilibrium with a nonrelativistic monatomic ideal gas of number density n. Gas atoms can be adsorbed on the surface, in which case they acquire a dipole moment and are bound to a surface adsorption site with energy $-\Delta < 0$. They can also desorb and join the gas as mass m atoms with p = 0. Find the surface site occupation

fraction $f = N_{\text{surface}}/N_{\text{s}}$ in terms of T, E, Δ , the gas number density n, and other constants. [5 points]

(3) Consider an ultrarelativistic gas of N identical and indistinguishable particles in three space dimensions. The Hamiltonian of each particle is $\hat{h} = c|\mathbf{p}|$.

(a) What is the single particle partition function ζ . Assume the system is confined to a box of volume *V*. [5 points]

(b) What is the Helmholtz free energy F(T, V, N)? [5 points]

- (c) What is the entropy S(T, V, N)? [5 points]
- (d) What is the chemical potential $\mu(T, V, N)$? [5 points]
- (e) What is the heat capacity at constant volume $C_{V,N}(T,V,N)$? [5 points]

(4) Consider a three-dimensional Bose gas of particles which have two internal polarization states, labeled by $\sigma = \pm 1$. The single particle energies are given by (with $\Delta > 0$)

$$arepsilon(oldsymbol{p},\sigma)=rac{oldsymbol{p}^2}{2m}+\sigma\Delta~~,$$

(a) Find the density of states per unit volume $g(\varepsilon)$. Recall that the DOS for nonrelativistic particles in three dimensions is given by

$$g_0(arepsilon) = rac{\sqrt{2m^3}}{2\pi^2\hbar^3}\,arepsilon^{1/2}\,\Theta(arepsilon)$$
 .

Hint: The answer can be expressed as a sum of the DOS for $\sigma = \pm 1$ *polarization states.* [10 points]

(b) Into what single particle state does the gas condense? What is the value of the chemical potential μ in the condensed phase? [5 points]

(c) Find an implicit expression for the condensation temperature $T_c(n, \Delta)$, and from it obtain an analytical expression for $T_c(n, \Delta = \infty)$. You may find the following useful:

$$\int_{-\infty}^{\infty} d\varepsilon \, \frac{g_0(\varepsilon)}{e^{(\varepsilon-\mu)/k_{\rm B}T} - 1} = \lambda_T^{-3} \operatorname{Li}_{3/2} \left(e^{\mu/k_{\rm B}T} \right)$$

as well as $Li_s(1) = \zeta(s)$. Hint: This obviates the need for you to do any actual integrals! [10 points]

(d) When $\Delta = \infty$, the condensation temperature should agree with the familiar result for three-dimensional Bose condensation. Assuming $\Delta \gg k_{\rm B}T_{\rm c}(n, \Delta = \infty)$, find analytically the leading order difference $T_{\rm c}(n, \Delta) - T_{\rm c}(n, \Delta = \infty)$. [100 quatloos extra credit]