
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Turkey typically cooks at a temperature of 350◦ F. Calculate the total electromagnetic
energy inside an over of volume V = 1.0m3 at this temperature. Compare it to the thermal
energy of the air in the oven at the same temperature.

The total electromagnetic energy is

E = 3pV =
π2

15

V (k
B
T )4

(~c)3
= 3.78 × 10−5 J .

For air, which is a diatomic ideal gas, we have E = 5
2pV . What do we take for p? If we

assume that oven door is closed at an initial temperature of 63◦ F which is 300K, then with
a final temperature of 350◦ F = 450K, we have an increase in the absolute temperature by
50%, hence a corresponding pressure increase of 50%. So we set p = 3

2 atm and we have

E = 5
2 · 3

2(1.013 × 105 Pa)(1.0m3) = 3.80 × 105 J ,

which is about ten orders of magnitude larger.

(2) Let L denote the number of single particle energy levels and N the total number of
particles for a given system. Find the number of possible N -particle states Ω(L,N) for
each of the following situations:

(a) Distinguishable particles with L = 3 and N = 3.

ΩD(3, 3) = 33 = 27.

(b) Bosons with L = 3 and N = 3.

ΩBE(3, 3) =
(5
3

)

= 10.

(c) Fermions with L = 10 and N = 3.

ΩFD(10, 3) =
(10
3

)

= 120.

(d) Find a general formula for ΩD(L,N), ΩBE(L,N), and ΩFD(L,N).

The general results are

ΩD(L,N) = LN , ΩBE(L,N) =

(

N + L− 1

N

)

, ΩFD(L,N) =

(

L

N

)

.

(3) A species of noninteracting quantum particles in d = 2 dimensions has dispersion
ε(k) = ε0|kℓ|3/2, where ε0 is an energy scale and ℓ a length.
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(a) Assuming the particles are S = 0 bosons obeying photon statistics, compute the heat

capacity CV .

The density of states is

g(ε) =
1

2π

k

dε/dk
=

k1/2

3πε0 ℓ
3/2

=
ε1/3

3πℓ2ε
4/3
0

.

The total energy is

E = A

∞
∫

0

dε g(ε)
ε

eε/kBT − 1
=

A

3πℓ2
Γ
(

7
3

)

ζ
(

7
3

) (k
B
T )7/3

ε
4/3
0

,

where A is the system area. Thus,

CA(T ) =

(

∂E

∂T

)

A

=
Ak

B

3πℓ2
Γ
(

10
3

)

ζ
(

7
3

)

(

k
B
T

ε0

)4/3

.

(b) Assuming the particles are S = 0 bosons, is there an Bose condensation transition? If
yes, compute the condensation temperature Tc(n) as a function of the particle density. If
no, compute the low-temperature behavior of the chemical potential µ(n, T ).

The following integral may be useful:

∞
∫

0

us−1 du

eu − 1
= Γ(s)

∞
∑

n=1

n−s ≡ Γ(s) ζ(s) ,

where Γ(s) is the gamma function and ζ(s) is the Riemann zeta-function.

The condition for Bose-Einstein condensation is

n =

∞
∫

0

dε g(ε)
1

eε/kBTc − 1
=

1

3πℓ2
Γ
(

4
3

)

ζ
(

4
3

)

(

k
B
Tc

ε0

)4/3

.

Thus,

Tc =
ε0
k
B

(

3πℓ2n

Γ
(

4
3

)

ζ
(

4
3

)

)3/4

.

(4) Hydrogen (H2) freezes at 14 K and boils at 20 K under atmospheric pressure. The den-
sity of liquid hydrogen is 70 kg/m3. Hydrogen molecules are bosons. No evidence has
been found for Bose-Einstein condensation of hydrogen. Why not?
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If we treat the H2 molecules as bosons, and we ignore the rotational freedom, which is
appropriate at temperatures below Θrot = 85.4K, we have

Tc =
2π~2

mk
B

(

n

ζ
(

3
2

)

)2/3

= 6.1K .

Thus, the critical temperature for ideal gas Bose-Einstein condensation is significantly be-
low the freezing temperature for H2. The freezing transition into a regular solid preempts
any BEC phenomena.

(5) (Difficult) Consider a three-dimensional Bose gas of particles which have two internal
polarization states, labeled by σ = ±1. The single particle energies are given by

ε(k, σ) =
~
2
k
2

2m
+ σ∆ ,

where ∆ > 0.

(a) Find the density of states per unit volume g(ε).

Let g0(ε) be the DOS per unit volume for the case ∆ = 0. Then

g0(ε) dε =
d3k

(2π)3
=

k2 dk

2π2
⇒ g0(ε) =

2√
π

(

m

2π~2

)3/2

ε1/2 Θ(ε) .

For finite ∆, the single particle energies are shifted uniformly by ±∆ for the σ = ±1 states,
hence

g(ε) = g0(ε+∆) + g0(ε−∆) .

(b) Find an implicit expression for the condensation temperature Tc(n,∆). When ∆ → ∞,
your expression should reduce to the familiar one derived in class.

For Bose statistics, we have in the uncondensed phase,

n =

∞
∫

−∞

dε
g(ε)

e(ε−µ)/k
B
T − 1

= Li3/2

(

e(µ+∆)/k
B
T
)

λ−3
T + Li3/2

(

e(µ−∆)/k
B
T
)

λ−3
T .

In the condensed phase, µ = −∆−O(N−1) is pinned just below the lowest single particle
energy, which occurs for k = 0 and σ = −1. We then have

n = n0 + ζ(3/2)λ−3
T + Li3/2

(

e−2∆/k
B
T
)

λ−3
T .

To find the critical temperature, set n0 = 0 and µ = −∆:

nλ3
Tc

= ζ(3/2) + Li3/2

(

e−2∆/k
B
Tc

)

.
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This is a nonlinear and implicit equation for Tc(n,∆). When ∆ = ∞, we have

k
B
Tc(n,∞) =

2π~2

m

(

n

ζ(3/2)

)2/3

.

(c) When ∆ = ∞, the condensation temperature should agree with the familiar result for
three-dimensional Bose condensation. Assuming ∆ ≫ k

B
Tc(n,∆ = ∞), find analytically

the leading order difference δTc(n,∆) ≡ Tc(n,∆)− Tc(n,∆ = ∞).

For finite ∆, we still have the implicit nonlinear equation to solve, but in the limit ∆ ≫
k
B
Tc, we can expand Tc(n,∆) = Tc(n,∞)+δTc(n,∆). We may then set Tc(n,∆) to Tc(n,∞)

in the second term of our nonlinear implicit equation, move this term to the LHS, whence

(

Tc(n,∆)

Tc(n,∞)

)3/2

= 1− 1

ζ(3/2)
Li3/2

(

e−2∆/k
B
Tc(n,∞)

)

,

which is a simple algebraic equation for Tc(n,∆). The second term on the RHS is tiny since
∆ ≫ k

B
Tc(n,∞). We then find

Tc(n,∆) = Tc(n,∞)

{

1− 2
3 ζ(3/2) e

−2∆/k
B
Tc(n,∞) +O

(

e−4∆/k
B
Tc(n,∞)

)

}

,

and thus the shift in the condensation temperature is

δTc(n,∆) = − 2

3 ζ(3/2)
e−2∆/k

B
Tc(n,∞) Tc(n,∞) .

Note that
2∆

k
B
Tc(n,∞)

=
m∆

π~2

(

ζ(3/2)

n

)2/3

.
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