PHYSICS 140B : STATISTICAL PHYSICS HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a two-dimensional gas of fermions which obey the dispersion relation

$$\varepsilon(\mathbf{k}) = \varepsilon_0 \left((k_x^2 + k_y^2) \, a^2 + \frac{1}{2} (k_x^4 + k_y^4) \, a^4 \right) \,.$$

Sketch, on the same plot, the Fermi surfaces for $\varepsilon_{\rm F} = 0.1 \varepsilon_0$, $\varepsilon_{\rm F} = \varepsilon_0$, and $\varepsilon_{\rm F} = 10 \varepsilon_0$.

(2) Using the Sommerfeld expansion, compute the heat capacity for a two-dimensional electron gas, to lowest nontrivial order in the temperature T.

(3) ³He atoms consist of an odd number of fermions (two electrons, two protons, and one neutron), and hence is itself a fermion. Consider a kilomole of ³He atoms at standard temperature and pressure (T = 293, K, p = 1 atm).

(a) What is the Fermi temperature of the gas? Assume $z \ll 1$ and justify this in part (b).

(b) Calculate $\mu/k_{\rm B}T$ and $z = \exp(\mu/k_{\rm B}T)$.

(c) Find the average occupancy $n(\varepsilon)$ of a single particle state with energy $\frac{3}{2}k_{\rm B}T$.

(4) For ideal Fermi gases in d = 1, 2, and 3 dimensions, compute at T = 0 the average energy per particle E/N in terms of the Fermi energy $\varepsilon_{\rm F}$.

(5) Obtain numerical estimates for the Fermi energy (in eV) and the Fermi temperature (in Kelvins) for the following systems:

(a) conduction electrons in silver, lead, and aluminum

(b) nucleons in a heavy nucleus, such as 200 Hg