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For θ = 0, both probabilities are zero due to the sin θ terms.   
(b) For θ = 90°, the 2,1,0 probability is zero due to the cos θ term.  With dr = 0.02a0, dθ 
= 0.11° = 0.00192 rad, and dφ = 0.25° = 0.00436 rad, the 2,1,±1 probability is 
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(c) Because the probability density associated with any particular state in hydrogen is 
always independent of φ , the 2,1,0 probability is again zero and the 2,1,±1 probability is 
again 3.2 × 10−11.  (d) The only change in the 2,1,±1 probability is to replace sin 90° with 
sin 45° in three locations, so the new probability is 11 3 111

2(3.2 10 )( 2) 1.1 10− −× = × .  For 
the 2,1,0 probability, the angular factors are the same because cos 45° = sin 45°.  The 
only change comes about because of the change from 3/8π to 3/4π in the Θ(θ) term, so 
the 2,1,0 probability is 2.2 × 10−11. 
 

12. For n = 1, l = 0 we have 0
2 2 /2 2 3

1,0 0( ) ( ) 4 /r aP r r R r r e a−= = .  To find the maximum, we set 
dP/dr to zero: 
 

0 0 02 / 2 / 2 /2
3 3
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4 2 82 1 0r a r a r adP r rre r e e
dr a a a a
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= − = − =    

    
 

 
There are three solutions to this equation: r = 0, r = ∞, r = a0.  The first two solutions 
correspond to minima of P(r); only the solution at r = a0 gives a maximum. 
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 Setting dP/dr to zero, we have 
  

0 0

2 3 2
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3 2 3 3 2
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1 16 8 1 68 2 4 0
8 8

r a r ar r r r r rre re
a a a a a a a a
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    
 

 
The five solutions are: 0 00, , 2 , (3 5)r r r a r a= = ∞ = = ± .  The first three solutions give 
minima and the last two give maxima. 
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14. For n = 2, l = 1, we have 0

2
2 /2 2

2,1 3 2
0 0

1( ) ( )
24

r arP r r R r r e
a a

−= = .  The total probability 

between r = a0 and r = 2a0 is 
  

0 0
0

0 0

2 2 /4
0 0 5

0

1( : 2 ) ( )
24

a a r a

a a
P a a P r dr r e dr

a
−= =∫ ∫  

 
We can use Equation 7.4 to evaluate this integral.  The result is 
 

0
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15. 
22 2 2

1,0 0 03
0

4( ) ( ) (1.00 ) (0.01 ) 0.0054P r dr r R r dr a e a
a

−= = =  

16. The kinetic energy is zero where E = U. With the potential energy from Eq. 6.24, we 
have 

4 2

2 2 2 2
0 0

2
2 20

02

1
32 4

8 2

n
me eE

n r

r n a n
me

π e πe

πe

= − = −

= =





 

 
So the turning points are 2a0 for n = 1, 8a0 for n = 2, and 18a0 for n = 3. The probability 
densities in Figure 7.10 do change from oscillatory to decreasing exponential at those 
radial coordinates. 

 
17. The angular probability density is 2 215

8( , ) sin cosP πθ φ θ θ= .  To find the locations of the 
maxima and minima, we set the derivative equal to zero: 

  
3 3 2 215 15(2sin cos 2sin cos ) (sin )(cos )(cos sin ) 0

8 4
dP
d

θ θ θ θ θ θ θ θ
θ π π
= − = − =  

 
The three angular terms in parentheses give three sets of solutions: θ = 0,π; θ = π/2; and θ 
= π/4,3π/4.  By checking the second derivative, we find that the first two sets give 
minima (the second derivative is positive) and the third gives maxima (negative second 
derivative).  The angular probability density thus starts at zero along the positive z 
direction, rises to a maximum at θ = 45°, falls again to zero in the xy plane (θ = 90°), 
rises again to a maximum at θ = 135°, and finally falls again to zero on the negative z 
axis.   
 

18. The angular probability density is 2 25
16( , ) (3cos 1)P πθ φ θ= − .  To find the locations of the 

maxima and minima, we set the derivative equal to zero: 
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2 25 15(3cos 1)( 6sin cos ) (sin )(cos )(3cos 1)

8 4
dP
d

θ θ θ θ θ θ
θ π π
= − − = − −  

 
The three angular terms in parentheses give three sets of solutions: θ = 0,π; θ = π/2; and 

1cos ( 1/ 3) 0.955,2.186θ −= ± = .  The first two give maxima and the third gives minima.  
The angular probability density is a maximum on the positive z axis, falls to zero at θ = 
55°, rises again to a maximum in the xy plane (θ = 90°), falls to zero at θ = 125°, and 
rises to a maximum on the negative z axis.  
  

19. (a) 2 25
16( , ) (3cos 1)P πθ φ θ= −   

(b)  2 215
8( , ) sin cosP πθ φ θ θ=  

(c) 415
32( , ) sinP πθ φ θ=  

 

 
          (a)              (b)            (c) 

 
 

20. (a) degeneracy = 2n2 = 2(5)2 = 50 
 
 (b)  For each value of l, the degeneracy is 2(2l+1). 
 
   l = 0: 2(0+1) =   2 
   l = 1: 2(2+1) =   6 
   l = 2: 2(4+1) = 10 
   l = 3: 2(6+1) = 14 
   l = 4: 2(8+1) = 18 
   total:     50 
 

21.  
1 1 1

2

0 0 0

( 1)2(2 1) 4 2 1 4 2 2
2

n n n

l l l

n nl l n n
− − −

= = =

−
+ = + = + =∑ ∑ ∑  
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22. (a)  l exceeds the maximum permitted value (n – 1). 
 
 (b) ml exceeds the maximum permitted value (l) 
 
 (c) ms can be only +1/2 or -1/2 
 
 (d) negative values of l are not permitted 
 

23. The selection rule is ∆l = ±1, so the 4p state can make transitions to any lower s state (∆l 
= −1) or d state (∆l = +1).  The possible transitions are then: 

 
   4p → 3s, 4p → 2s, 4p → 1s, and 4p → 3d 
 
24. (a) The transitions that change l by one unit are 

 
 
 (b) Starting instead with 5d, the permitted transitions are 

n = 5 
n = 4 
n = 3 

n = 2 

n = 1 

s p
 

d f g 
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25. (a) 7s, 7p, 7d, 7f, 7g, 7h, 7i    (b) 6p, 6f, 5p, 5f, 4p, 4f, 3p, 2p 
 
26. (a)   

 
 
 (b) Transitions shown with dashed lines violate the 1lm∆ = ±  selection rule. 
 
 (c) The energy of the initial state is 

ii 3d lE E m E= + ∆ and the energy of the final state 
is

ff 2 p lE E m E= + ∆  (where ∆E is the spacing between adjacent states).  The transition 
energies can be found from the energy difference: 

 
i fi f 3 2 3 2( ) ( ) ( )d p l l d p lE E E E m m E E E m E− = − + − ∆ = − + ∆ ∆  

 
There are only three permitted values of lm∆  (0, ±1), so there are only three possible 
values of the energy difference: 3 2 3 2 3 2, ,d p d p d pE E E E E E E E− − + ∆ − + ∆ . 

∆E 3d 

2p 

il
m  

fl
m

+2 
+1 
0 
−1 
−2 

+1 
0 
−1 

n = 5 
n = 4 
n = 3 

n = 2 

n = 1 

s p
 

d f g 
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27. (a) In the absence of a magnetic field, the 3d to 2p energy difference is 
 

    2 2

1 1( 13.6057 eV) 1.88968 eV
3 2

E  = − − = 
 

 

 
and the wavelength is 
 

  1239.842 eV nm 656.112 nm
1.88968 eV

hc
E

λ ⋅
= = =  

 
The magnetic field gives a change in wavelength of 
 

2 2
5(656.112 nm) (5.79 10 eV/T)(3.50 T) 0.0703 nm

1239.842 eV nm
E

hc
λλ −∆ = ∆ = × =

⋅
 

 
The wavelengths of the three normal Zeeman components are then 656.112 nm, 656.112 
nm + 0.070 nm = 656.182 nm, and 656.112 nm − 0.070 nm = 656.042 nm. 
 

28. The energy of the 2p to 1s Lyman transition is 
 

2 2

1 1( 13.60570 eV) 10.20428 eV
2 1

E  = − − = 
 

 

 
and its wavelength (in the absence of fine structure) is 
 

1239.842 eV nm 121.5022 eV
10.20428 eV

hc
E

λ ⋅
= = =  

 
With the fine structure energy splitting of 4.5 × 10-5 eV, the wavelength splitting is 
 

2 2
5(121.5 nm) (4.5 10 eV) 0.00054 nm

1240 eV nm
E

hc
λλ −∆ = ∆ = × =

⋅
 

 
The fine structure splits one level up by 0.5∆E and the other down by the same amount, 
so the wavelengths are 
 

1 1
2 2121.5024 nm and 121.5019 nmλ λ λ λ+ ∆ = − ∆ =  

 
29. The 3d fine structure splitting is roughly 
  

5
2 4 61

3
6.0 10 eVE mc α −∆ = = ×  
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Evaluating the integrals with Equation 7.3, we find 
 

2
3 4 2 5 3

0 0 0 0 0 0

2 1 3! 1 4! 11 or
(1/ ) (1/ ) 4 (1/ ) 2

A A
a a a a a a

 
− + = = 

 
 

 

31. For n = 2, l = 0, we have 0

2
2 /2 2

2,0 3
0 0

1( ) ( ) 2
8

r arP r r R r r e
a a

− 
= = − 

 
.  The probability to 

find the electron beyond r = 5a0 is 
  

 0

0 0

3 4
/2 2 3 4

0 3 25 5 5
0 0 0

1 4 1(5 : ) ( ) 4 (4 4 )
8 8

r a x

a a

r rP a P r dr r e dr x x x e dx
a a a

∞ ∞ ∞− − 
∞ = = − + = − + 

 
∫ ∫ ∫  

 
with 0/x r a= .  The integrals can be evaluated using Equation 7.4.  The result of the 
integration is 
 

( )0
1(5 : ) 4 0.2493 4 1.5902 10.5718 0.651
8

P a ∞ = × − × + =  

 

For n = 2, l = 1, we have 0

2
2 /2 2

2,1 3 2
0 0

1( ) ( )
24

r arP r r R r r e
a a

−= = .  The probability is 

 
0

0

/4 4
0 5 5 5

0

1 1(5 : ) 0.440
24 24

r a x

a
P a r e dr x e dx

a
∞ ∞− −∞ = = =∫ ∫  

 
 Thus the n = 2, l = 0 electron is more likely to be found beyond r = a0 than the n = 2, l = 

1 electron. 
 
32. (a)  

 

2 2

0 0

1 1.44 eV nm 27.2 eV
8 4 2 2(0.0529 nm)

- 13.6 eV ( 27.2 eV) 13.6 eV

e eU
r r

K E U

πe πe
⋅

= - = - = - = -

= = ---   =
  

 
(b) K = 0 where E = U = −13.6 eV: 
 

 0
1.44 eV nm 1.44 eV nm13.6 eV so 0.106 nm 2

2 2( 13.6 eV)
U r a

r
− ⋅ − ⋅

= − = = = =
−

  

 
(c) 
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0

0

0

0

2 /
2 /2 2 4

0 3 3 22
0 0 0 0 0 2

4 4 2 2(2 : ) 6.5 0.238
2 / 2 / (2 / )

r a
r a

a
a

e rP a r e dr r e
a a a a a

∞
−∞ − − 

∞ = = + + = = 
 

∫   

 

33.  0
2

2 /3 3
av 1,0 03 3 40 0 0

0 0 0

4 4 3! 3( ) ( )
(2 / ) 2

r ar rP r dr r R r dr r e dr a
a a a

∞ ∞ ∞ −= = = = =∫ ∫ ∫  

 

34. 2s level: 0

2
2

/3 3
av 2,0 30 0 0

0 0

1( ) ( ) 2
8

r arr rP r dr r R r dr r e dr
a a

∞ ∞ ∞ − 
= = = − 

 
∫ ∫ ∫  

 

 0

4 5
/3

03 2 3 4 5 2 60
0 0 0 0 0 0 0 0 0

1 1 3! 4 4! 1 5!4 4 4 6
8 8 (1/ ) (1/ ) (1/ )

r ar rr e dr a
a a a a a a a a a

∞ −   
= − + = − + =   

   
∫  

 

2p level:      0
2

/3 5
av 2,1 05 5 60 0 0

0 0 0

1 1 5!( ) ( ) 5
24 24 (1/ )

r ar rP r dr r R r dr r e dr a
a a a

∞ ∞ ∞ −= = = = =∫ ∫ ∫  

 

35.  0

2 2
2 2 /2

av 1,0 30 0 0
0 0 0

4( ) ( ) ( )
4 4

r ae eU U r P r dr r R r dr re dr
r aπe πe

∞ ∞ ∞ − 
= = − = − 

 
∫ ∫ ∫  

 

  
2 2

3 2
0 0 0 0 0

4 1
4 (2/ ) 4

e e
a a aπe πe

= − = −  

 
36. Assuming a beam of silver atoms (m = 108 u) and estimating the magnetic moment of the 

atom to be about one Bohr magneton, we have 
  

24 23(9.27 10 J/T)(10 T/m) 9.3 10 Nz z
dBF
dz

m − −= = × = ×  

 
The acceleration in the region of the field is 
 

23
2

27

9.3 10 N 518 m/s
(108 u)(1.66 10 kg/u)

z
z

Fa
m

−

−

×
= = =

×
 

 
For an oven temperature of 1000 K, the kinetic energy of the atoms is 
 

23 203 3
2 2 (1.38 10 J/K)(1000 K) 2.1 10 JK kT − −= = × = ×  

 
and the speed of these atoms is 
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20

27

2 2(2.1 10 J) 480 kg/s
(108 u)(1.66 10 kg/u)

Kv
m

−

−

×
= = =

×
 

 
The time for an atom to travel 1 meter through the magnetic field region is 
 

31 m 2.1 10 s
480 m/s

t −= = ×  

 
Let the atoms enter the field with z = 0 and vz = 0.  Then after passing through the 1-
meter field region, 
 

2 2 3 21 1
2 2

2 3

(518 m/s )(2.1 10 s) 1.1 mm

(518 m/s )(2.1 10 s) 1.1 m/s

z

z z

z a t

v a t

−

−

= = × =

= = × =
 

 
After leaving the region of the field there is no longer an acceleration, but the z 
component of the velocity causes an additional displacement in the z direction.  The 
horizontal velocity is unchanged, so the atom takes 2.1 × 10−3 s to pass through the field-
free region, and the additional displacement is 
 

3(1.1 m/s)(2.1 10 s) 2.2 mmzz v t −= = × =  
 
The total displacement is then 1.1 mm + 2.2 mm = 3.3 mm.  We would thus expect to see 
images on the screen separated by a few mm. 
 

37.   For 1s:      0
2

2 /1 1
av 1,0 3 3 20 0 0

0 0 0 0

4 4 1 1( ) ( ) ( )
(2/ )

r ar r P r dr r R r dr re dr
a a a a

∞ ∞ ∞ −− −= = = = =∫ ∫ ∫  

 

 For 2s:  0

2
2 /1

av 2,0 30 0
0 0

1( ) ( ) 2
8

r arr r R r dr r e dr
a a

∞ ∞ −−  
= = − 

 
∫ ∫  

  

0

2 3
/

3 2 3 2 3 2 40
0 0 0 0 0 0 0 0 0 0

1 1 1 4 2 1 3! 14 4 4
8 8 (1/ ) (1/ ) (1/ ) 4

r ar rr e dr
a a a a a a a a a a

∞ −   
= − + = − + =   

   
∫  

 

For 2p:       0

2
2 /1

av 2,1 3 2 5 40 0
0 0 0 0 0

1 1 3! 1( ) ( )
24 24 (1/ ) 4

r arr r R r dr r e dr
a a a a a

∞ ∞ −− = = = =∫ ∫  

 
38. (a) In Cartesian coordinates, the solution can be found using Eq. 7.9, which is separable 

for this potential energy. The solutions can be written 
( , , ) ( ) ( ) ( )

x y z x y zn n n n n nx y z X x Y y Z zy = , and for each of the 3 functions there is an energy of 
1
2( )in ω+  , where i = x, y, or z.  The total energy is then 3

2( )
x y zn n n x y zE n n n ω= + + +  . 
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(b)  
Ground state:  3

2 ( ) (000)x y zE n n nω= =  
1st excited state: 5

2 ( ) (100), (010), (001)x y zE n n nω= =    
2nd excited state: 7

2 ( ) (200), (020), (002), (110), (101), (011)x y zE n n nω= =  
(c) The ground state has n = 0 and therefore only l = 0, so it is non-degenerate. The first 
excited state has n = 1 and therefore l = 1, which has degeneracy 3 (ml = +1, 0, −1). The 
second excited state has n = 2 and therefore includes l = 0 (degeneracy = 1) and l = 2 
(degeneracy = 5), for a total degeneracy of 6. 
 

39. (a) The radial dependence of the 3 functions is 0/r ae− for n = 1, l = 0; 0/2r are− for n = 2, l = 
1; and 0/32 r ar e− for n = 3, l = 2. A guess for the next function in the series is 0/43 r ar e− for n 
= 4, l = 3. 
(b) The necessary derivatives are: 
 

 

0 0

0 0 0 0

/4 /42 3
0

2
/4 /4 /4 /42 2 3 2

0 0 02

3 / 4

6 3 / 4 3 / 4 /16

r a r a

r a r a r a r a

dR r e r e a
dr
d R re r e a r e a r e a
dr

− −

− − − −

= −

= − − +
  

 
Substituting into Eq. 7.12 and canceling the common exponential factor gives: 
 

 
2 2 3 3 2 2

2 3 3
2 2

0 0 0 0

3 2 126 3
2 2 16 4 4 2

r r r er r r Er
m a a r a mrπe
    −

− − + + − + + =    
    

    

 
The terms linear in r cancel, leaving us with 
 

 
2 2 2 3 2 2

3
2

0 0 02 32 4
r r e r Er

ma ma πe
− − =

    

 
When the value of a0 is inserted, the 2 terms in r2 cancel, leaving us with 
 

 
22 2 2 4

2 2 2 2 2
0 0 0

1 1 1
2 16 16 2 4 16 32

me meE
m a m πe π e

 
= − = − = − 

 

 

 

  

 
which is the expected energy for the n = 4 state. 
 

40. (a)  

 

0
0

0

2 /
2 /2 2

3 3 20
0 0 0 0 0 0

2 / 2 2
0 0

4 4 2 2(0 : )
2 / 2 / 4 /

1 (2 / 2 / 1)

Rr aR r a

R a

e rP R r e r
a a a a a

e R a R a

−
−

−

   
= = − + +   

   

= − + +

∫   




