12.

Forn=1,1=0we have P(r)=r? |R110(r)|2 =4r’e ™% [a}. To find the maximum, we set
dP/dr to zero:

d_P — i3|:2re2r/a0 _ r.2 LEJ le/a0:| — 8_|;e—2r/a0 (1_L] =0
dr a, a, a, a,

There are three solutions to this equation: r =0, r = «, r = a,. The first two solutions
correspond to minima of P(r); only the solution at r = a, gives a maximum.



15.  P(r)dr =r? |R10(r)| dr = (1.00a,)* e’Z(O 0la,) = 0.0054



17.

The angular probability density is P(8,4) = &sin? @cos’ @. To find the locations of the
maxima and minima, we set the derivative equal to zero:

P _ E(Zsin 6 cos® @—2sin* @cosh) = E(sin 0)(cos 6)(cos* @ —sin®H) =0
do 8rx 4

The three angular terms in parentheses give three sets of solutions: =0, 7, = 7/2; and 8
= a4,374. By checking the second derivative, we find that the first two sets give
minima (the second derivative is positive) and the third gives maxima (negative second
derivative). The angular probability density thus starts at zero along the positive z
direction, rises to a maximum at &= 45°, falls again to zero in the xy plane (6= 90°),

rises again to a maximum at = 135°, and finally falls again to zero on the negative z
axis.



19.

() P(8,4)=(3cos* -1)°
(b) P(8,¢)=Lsin’ @ cos’ &
(c) P(8,¢4)=-2sin" 0

=

(@)

(b)

(©)




24. (a) The transitions that change | by one unit are

N=5 s p d f

n=4 —
n=3 //

n=2

n=1

(b) Starting instead with 5d, the permitted transitions are
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26.

(@)
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(b) Transitions shown with dashed lines violate the Am, = £1 selection rule.

(c) The energy of the initial state is E; = E;, +m, AE and the energy of the final state
isE; = E,, +m, AE (where AE is the spacing between adjacent states). The transition
energies can be found from the energy difference:

E, ~ E; = (Esy — E,) + (M, ~M, )AE = (Ey — E,,) + Am,AE

There are only three permitted values of Am, (0, £1), so there are only three possible
values of the energy difference: E,, —E, ,E,, —E, +AE,E;, —E,, +AE.

2p!



217.

(@) In the absence of a magnetic field, the 3d to 2p energy difference is

1

E =(-13.6057 eV) (3% - Z—ZJ =1.88968 eV

and the wavelength is

,_he _1239.842eV-nm
E  1.88968eV

=656.112 nm

The magnetic field gives a change in wavelength of

_A e _(656.112 nm)’

=—AE = (5.79x107° eV/T)(3.50 T) = 0.0703 nm
hc 1239.842 eV -nm

AL

The wavelengths of the three normal Zeeman components are then 656.112 nm, 656.112
nm + 0.070 nm = 656.182 nm, and 656.112 nm — 0.070 nm = 656.042 nm.



28.

The energy of the 2p to 1s Lyman transition is

E = (-13.60570 eV)(——lij 10.20428 eV

and its wavelength (in the absence of fine structure) is

P E _ 1239.842 eV -nm 1215022 eV

E 10.20428 eV

With the fine structure energy splitting of 4.5 x 10 eV, the wavelength splitting is

2
A= ap = 2LENM)” ) o) 65 evy = 0.00054 nm
hc 1240 eV -nm

The fine structure splits one level up by 0.5AE and the other down by the same amount,
so the wavelengths are

A+1AA=121.5024 nm and A—1AA=121.5019 nm



32. (a)

2 2
o & _ &€ 1 ladevom _ ..
8re,r  Ame, 2r  2(0.0529 nm)

K=E-U=-13.6eV—(-27.2eV)=13.6eV
(b) K=0whereE=U=-13.6eV:

-1.44eV-nm - _—1.44eV-nm

U=-13.6eV= r=
2r 2(-13.6eV)

=0.106 nm = 23,

(©)
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35, u,, =j0"°U(r)P(r)dr =j0°°(—

2 2 _ e2 4 *® —2r/a,
]r IRyo(1)| dr_—Fgoa—g.[o re 2"dr

e 4 1 @
dre, a5 (21a,)°  dneya,




38. () In Cartesian coordinates, the solution can be found using Eq. 7.9, which is separable
for this potential energy. The solutions can be written
Vonn, x,y,2) =X, (x)Yny (y)Z,, (2), and for each of the 3 functions there is an energy of

(0, +3)hew, where i =x,y, or z. The total energy is then E, | =(n,+n, +n, +3ho.



39.

(b)

Ground state: E=3heo (nnn,)=(000)
1% excited state: E=%hw (nn,n,)=(100),(010),(001)
2" excited state: E=Zho (nnn,)=(200),(020),(002),(110),(101),(011)

(c) The ground state has n = 0 and therefore only | = 0, so it is non-degenerate. The first
excited state has n = 1 and therefore | = 1, which has degeneracy 3 (m; = +1, 0, —-1). The
second excited state has n = 2 and therefore includes | = 0 (degeneracy = 1) and | = 2
(degeneracy = 5), for a total degeneracy of 6.

(a) The radial dependence of the 3 functionsis e "* forn=1,1=0; re " forn=2,1=
1; and r%e "**forn =3, 1 = 2. A guess for the next function in the series is r® "** for n
=4,1=3.

(b) The necessary derivatives are:

Z—R =3r’%e "% %" [ 43,

r

dZR —r/da, 2 ,—rlday 2 ,-rl4ay 3,-rl4ay 2
o =6re —-3rce /4a,—3r% l4a,+r’e /164,

Substituting into Eq. 7.12 and canceling the common exponential factor gives:

2 2 3 3 a2 2
L PO 2+g are— ||| =2 +12h2 r*=Er®
2m 2a, l6a; r 4a, dre, 2mr

The terms linear in r cancel, leaving us with

hzrz hzrs eZr.2
-~ —— =Er’
2ma, 32ma; 4re,

When the value of ag is inserted, the 2 terms in r? cancel, leaving us with

o1 1hZ[me2 ]2_ 1 me

T2mi6aZ 16 2m\ dzeh? ) 16 327%R

which is the expected energy for the n = 4 state.





