23.

24.

25.

@ B =iheo,=ik¢  so  x) =y Jhaolk
() E=3ho,=1k¢ 50 X =.3hao,lk
E,=5ha, =tk s0 X, =.[Sha,lk
X, = J:'V/(X) Fxdx= Azji e x dx =0

because the integrand is an odd function of x (the integral from —oo to 0 exactly cancels
the integral from 0 to +0).

2A°
8a®

A 2 24y — A2 (7 a—2a¢ 24y 9 A2 [P a—2ax% 24y ® —u? 2
(X)aV—J._mlx//(x)|xdx_AJ'_me xdx_ZAJ'Oe X“dx = J'Oe u“du

with the substitution u = x~/2a. The integral is a standard form found in tables and is
equal to //4. Substituting A = (w,m/zA)"* and a =~/km/2h = @,m/2h, we find

X2 :2 =
O (ﬂ'h Y NARL 4  2@m

coomjm 1 (2}1 JS’Z\/Z h

AX = \/(Xz)av _(Xav)2 = \/hlzma’o

(a) Because the oscillating particle moves with equal probability in the positive and
negative x directions, p,, =0.

b) U, =2k(), =k =Lum
2 2 2mm 2

on 1
Za)gm 4

ha,

Kav =E _Uav =%ha)0 _%ha’o =%ha)o

(pz)av = 2mKav = Zm(%ha)oj = ha;)m



26.

217.

28.

© AP =y(p)a —(Py)* = haym/2
E,=1.24¢eV =1ha, so ha, =2.48eV

To n =2 state: AE=E,-E,=3haw,—5hw, =2hw, =2(2.48eV) =4.96 eV
To n = 4 state: AE =E,-E,=3hw, - +hw, =4ha, =4(2.48eV) =9.92 eV

P(x) dx =]y (X) [ dx = A%?*'dx soatx=0 P(0)dx = AZdx
At the classical turning points x=+x,, K=0s0 E=U or iham,=1kx
P(£x,)dx = AZe 20Im/2ntes gy - AZe-dy = e *P(0)dx = 0.368P(0)dx

(@) If E =0, then p = 0 and we would know the momentum exactly. Thus Ap = 0, which
means Ax = oo, But that would be inconsistent with a particle that is bound to a finite
region of space.

(b)
3 2
E:%ha)oz%h\/gz%hc/ K 05097 eV nm), [S210 VINMT_ 45 196y
m mc 938x10° eV

This is less than the binding energy, so this motion is not sufficient to dissociate the
molecule.

(c) At the turning point of the motion, E =1kxZ, so

x, = |2E - 2(0'19 &) _0.010nm
k 3.5x10° eV/nm

This motion is not negligible at the atomic level.




32.

x<0: y,=Ae""+Be™  with k,= 2212E

x>0: w,(x)=Ce"*+De™  with k = /—Zm(iz_u‘))

If the particles are incident from them negative x direction, then D ”(which is the
coefficient of the term that represents a wave in the region of positive x traveling toward
the origin) must be set to 0. We then apply the continuity conditions on y and dy//dx at

x=0:

v, (0)=w,(0): A+B'=C'

dl//o dl//]_j [} A !
=| =L : k. (A'-B")=kC
( dx jx—o ( dx /. of )=k



Solving these two equations, we obtain

2N
1+k /k,

!

PRI 1. SV ol 1/
1+k,/k, 1+k,/k,

The squares of the amplitude ratios give the relative probabilities for the particles to be
reflected at x = 0 or transmitted into the x > 0 region:

12 _ 2
Reflection probability: B |2 _1=k/k
(AT \Lrk/k,
IC'P_ 4

Transmission probability:

|AP (+k k)



42.

43.

(a) The x and y motions are independent, and each contributes an energy of fa,(n+3),

but the integer n is not necessarily the same for the two independent motions. Thus the
total energy is

E =ha,(n, +3)+hay(n, +3) =ha,(n, +n, +1)

(b)
tho, 4 (03),(L2) (1), 30)
3hao, 3 (0,2), (L,1), (2.0)
2ha, 2 (0,1), (1,0)
ha, 1 (00
Energy Degeneracy ~ (nx, ny)

(c) The level with energy N7, has N different possible sets of quantum numbers n,,n, .
Both n, and n, range from 0 to N-1 but with their sum fixed to N. The number of
possible values of n, is then N (the values are 0, 1, 2, ..., N-2, N-1), and for each value of
n, the value of n is fixed. The total degeneracy of each level is thusN =n, +n, +1.

(a) With Ax =,/(x*),, —(X,,)* , clearly x5, = 0 for this wave function. Then

2 b?

@2/b)° 2

(o =X Iy (0P di=207 [ x’e ™ dx =2

So Ax=b/\/2 =0.71b.



(b) The maximum probability density occurs at x = 0, where P(x) =|w(X)F=b™". We

now find the location where P(x) drops to half that value, that is, where e?*"* =0.5, or
_2|x|/b=In(0.5):

|x|=—(b/2)In(05)  or  x=+0.347b

Our estimate for Ax is then the distance between the two points where the probability is
half its maximum value, so Ax = 0.69b, which agrees very well with the result of the
more rigorous calculation from part (a).





