$P(x) dx = \frac{15}{16a^5} \left(\frac{a^2}{4} - a^2\right)^2 (0.010a) = 0.0053$ 

(c)  $P(a/2:a) = \int_{a/2}^{a} |\psi(x)|^2 dx = \int_{a/2}^{a} b^2 (a^2 - x^2)^2 dx = \frac{15}{16a^5} \left( a^4 x - 2a^2 \frac{x^3}{3} + \frac{x^5}{5} \right)^{a}$ 

Evaluating the integral and setting it equal to 1, we find

With  $\psi(x) = Cxe^{-bx}$ , we have  $d\psi/dx = Ce^{-bx} - bCxe^{-bx}$  and

(a) The regions with x < a and x > a do not contribute to the normalization. The

 $\int |\psi(x)|^2 dx = \int_{-a}^{+a} b^2 (a^2 - x^2)^2 dx = b^2 \int_{-a}^{+a} (a^4 - 2a^2 x^2 + x^4) dx = b^2 \left( a^4 x - 2a^2 \frac{x^3}{3} + \frac{x^5}{5} \right)^{+a/2}$ 

 $b^2 \left( 2a^5 - \frac{4a^5}{3} + \frac{2a^5}{5} \right) = 1$  or  $b = \sqrt{\frac{15}{16a^5}}$ 

(b)  $P(x) dx = |\psi(x)|^2 dx = b^2 (a^2 - x^2)^2 dx$ , and with x = +a/2 and dx = 0.010a we obtain

 $= \frac{15}{16a^5} \left| a^4 \left( a - \frac{a}{2} \right) - \frac{2a^2}{3} \left( a^3 - \frac{a^3}{8} \right) + \frac{1}{5} \left( a^5 - \frac{a^5}{32} \right) \right| = 0.104$ 

normalization integral is

 $\frac{d^2\psi}{dx^2} = -2bCe^{-bx} + b^2Cxe^{-bx}$ 

We now substitute  $\psi(x)$  and  $d^2\psi/dx^2$  into the Schrödinger equation:

$$-\frac{\hbar^2}{2m}(-2bCe^{-bx} + b^2Cxe^{-bx}) + U(x)Cxe^{-bx} = ECxe^{-bx}$$

Canceling the common factor of  $Ce^{-bx}$  and solving for E,

$$E = \frac{\hbar^2 b}{mx} - \frac{\hbar^2 b^2}{2m} + U(x)$$

The energy E will be a constant only if the two terms that depend on x cancel each other:

$$\frac{\hbar^2 b}{mx} + U(x) = 0 \qquad \text{or} \qquad U(x) = -\frac{\hbar^2 b}{mx}$$

The cancellation of the two terms depending on x leaves only the remaining term for the energy:

$$E = -\frac{\hbar^2 b^2}{2m}$$

11. (a) The normalization integral is

$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_{-\infty}^{+\infty} A^2 x^2 e^{-2bx} dx = 2A^2 \int_0^{+\infty} x^2 e^{-2bx} dx = 2A^2 \frac{2}{(2b)^3} = 1$$
so  $A = \sqrt{2b^3}$ 

(b) The wave function can be written as  $\psi(x) = Ae^{bx}$  for x < 0 and  $\psi(x) = Ae^{-bx}$  for x > 0.

$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_{-\infty}^{0} A^2 e^{2bx} dx + \int_{0}^{+\infty} A^2 e^{-2bx} dx = \frac{2A^2}{2b}$$

and  $A = \sqrt{b}$ .

12. For the x > 0 wave function, we have

$$\frac{d\psi}{dx} = -Abe^{-bx} \qquad \text{and} \qquad \frac{d^2\psi}{dx^2} = Ab^2e^{-bx}$$

Substituting into the Schrödinger equation then gives

$$-\frac{\hbar^2}{2m}Ab^2e^{-bx} + UAe^{-bx} = EAe^{-bx}$$
 or  $-\frac{\hbar^2b^2}{2m} + U = E$ 

This is consistent with a constant value of U, which we can take to be 0, giving  $E = -\hbar^2 b^2/2m$ . Repeating the calculation for the x < 0 wave function gives an identical result.

So the potential energy is a constant (zero) for x < 0 and for x > 0. What happens at x = 0? Note that the wave function is continuous at x = 0 (both give  $\psi = A$  at x = 0) but that the derivative  $d\psi/dx$  is not continuous. This suggests an infinite discontinuity in U(x) at x = 0, and because the wave functions approach 0 as  $x \to \infty$  there must be a negative potential energy that produces the bound states. So the potential energy is

$$U(x) = 0 x < 0, x > 0$$
  
$$U(x) = -\infty x = 0$$

This type of function is known as a delta function.

13. (a) 
$$E_1 = \frac{h^2}{8mL^2} = \frac{(hc)^2}{8(mc^2)L^2} = \frac{(1240 \text{ eV} \cdot \text{nm})^2}{8(511,000 \text{ eV})(0.285 \text{ nm})^2} = 4.63 \text{ eV}$$

$$4 \rightarrow 1$$
:  $\Delta E = E_4 - E_1 = 16E_1 - E_1 = 15E_1 = 15(4.63 \text{ eV}) = 69.5 \text{ eV}$ 

(b) 
$$\Delta E = E_4 - E_3 = 16E_1 - 9E_1 = 7E_1 = 7(4.63 \text{ eV}) = 32.4 \text{ eV}$$

$$4 \rightarrow 2$$
:  $\Delta E = E_4 - E_2 = 16E_1 - 4E_1 = 12E_1 = 12(4.63 \text{ eV}) = 55.6 \text{ eV}$   
 $3 \rightarrow 2$ :  $\Delta E = E_2 - E_2 = 9E_1 - 4E_1 = 5E_1 = 5(4.63 \text{ eV}) = 23.2 \text{ eV}$ 

$$3 \rightarrow 1$$
:  $\Delta E = E_3 - E_1 = 9E_1 - E_1 = 8E_1 = 8(4.63 \text{ eV}) = 37.0 \text{ eV}$ 

$$2 \rightarrow 1$$
:  $\Delta E = E_2 - E_1 = 4E_1 - E_1 = 3E_1 = 3(4.63 \text{ eV}) = 13.9 \text{ eV}$ 

14. With 
$$E_1 = 1.54 \text{ eV}$$
 and  $E_n = n^2 E_1$  we have

$$\Delta E_3 = E_3 - E_1 = 9E_1 - E_1 = 8E_1 = 8(1.54 \text{ eV}) = 12.3 \text{ eV}$$

 $\Delta E_4 = E_4 - E_1 = 16E_1 - E_1 = 15E_1 = 15(1.54 \text{ eV}) = 23.1 \text{ eV}$ 

16. (a) 
$$P(0:L/3) = \int_0^{L/3} |\psi_1(x)|^2 dx = \int_0^{L/3} \frac{2}{L} \sin^2 \frac{\pi x}{L} dx = \frac{2}{\pi} \int_0^{\pi/3} \sin^2 u \ du$$

$$= \frac{2}{\pi} \left( \frac{u}{4} - \frac{\sin 2u}{4} \right) \Big|_{0}^{\pi/3} = 0.1955$$

(b) 
$$P(L/3:2L/3) = \int_{L/3}^{2L/3} |\psi_1(x)|^2 dx = \int_{L/3}^{2L/3} \frac{2}{I} \sin^2 \frac{\pi x}{I} dx = \frac{2}{\pi} \int_{\pi/3}^{2\pi/3} \sin^2 u \, du$$

$$= \frac{2}{\pi} \left( \frac{u}{4} - \frac{\sin 2u}{4} \right)^{2\pi/3} = 0.6090$$

(c) 
$$P(2L/3:L) = \int_{2L/3}^{L} |\psi_1(x)|^2 dx = \int_{2L/3}^{L} \frac{2}{L} \sin^2 \frac{\pi x}{L} dx = \frac{2}{\pi} \int_{2\pi/3}^{\pi} \sin^2 u \, du$$

$$= \frac{2}{\pi} \left( \frac{u}{4} - \frac{\sin 2u}{4} \right) \Big|_{3\pi/3}^{\pi} = 0.1955$$

17. (a) 
$$P(x)dx = |\psi_3(x)|^2 dx = \frac{2}{L}\sin^2\frac{3\pi x}{L} dx = \frac{2}{0.189 \text{ nm}}\sin^2\frac{3\pi (0.188 \text{ nm})}{0.189 \text{ nm}}0.001 \text{ nm} = 2.63 \times 10^{-5}$$

(b) 
$$P(x)dx = \frac{2}{L}\sin^2\frac{3\pi x}{L}dx = \frac{2}{0.189 \text{ nm}}\sin^2\frac{3\pi (0.031 \text{ nm})}{0.189 \text{ nm}}0.001 \text{ nm} = 0.0106$$

(c) 
$$P(x)dx = \frac{2}{L}\sin^2\frac{3\pi x}{L}dx = \frac{2}{0.189 \text{ nm}}\sin^2\frac{3\pi (0.079 \text{ nm})}{0.189 \text{ nm}}0.001 \text{ nm} = 5.42 \times 10^{-3}$$

(d) A classical particle has a uniform probability to be found anywhere within the region, so  $P(x) dx = (0.001 \text{ nm})/(0.189 \text{ nm}) = 5.29 \times 10^{-3}$ .

18. With  $E = E_0(n_x^2 + n_y^2)$  the levels above  $50E_0$  are as follows:

| $n_x$ | $n_y$ | E         | $n_{_X}$ | $n_{y}$ | E         |
|-------|-------|-----------|----------|---------|-----------|
| 6     | 4     | $52E_{0}$ | 6        | 5       | $61E_{0}$ |
| 4     | 6     | $52E_{0}$ | 5        | 6       | $61E_{0}$ |
| 7     | 2     | $53E_{0}$ | 7        | 4       | $65E_{0}$ |
| 2     | 7     | $53E_{0}$ | 4        | 7       | $65E_{0}$ |
| 7     | 3     | $58E_{0}$ | 8        | 1       | $65E_{0}$ |
| 3     | 7     | $58E_{0}$ | 1        | 8       | $65E_{0}$ |

The level at  $E = 65E_0$  is 4-fold degenerate.

19. With  $E = E_0(n_x^2 + n_y^2/4)$  the levels are as follows:

| $n_{_X}$ | $n_{\rm y}$ | E           | $n_x$ | $n_{\mathrm{y}}$ | E           |
|----------|-------------|-------------|-------|------------------|-------------|
| 1        | 1           | $1.25E_{0}$ | 2     | 3                | $6.25E_0$   |
| 1        | 2           | $2.00E_{0}$ | 1     | 5                | $7.25E_{0}$ |
| 2        | 1           | $2.25E_{0}$ | 2     | 4                | $8.00E_{0}$ |
| 1        | 3           | $3.25E_0$   | 3     | 1                | $9.25E_{0}$ |
| 2        | 2           | $5.00E_0$   | 1     | 6                | $10.00E_0$  |
| 1        | 4           | $5.00E_0$   | 3     | 2                | $10.00E_0$  |

The levels at  $E = 5.00E_0$  and  $E = 10.00E_0$  are both 2-fold degenerate.

35. (a)  $E = n^2 E_1 = 10^2 \frac{h^2}{8mL^2} = \frac{100(hc)^2}{8mc^2 L^2} = \frac{100(1240 \text{ eV} \cdot \text{nm})^2}{8(511,000 \text{ eV})(0.132 \text{ nm})^2} = 2160 \text{ eV}$ 

(c)  $\Delta x \sim \frac{\hbar}{\Delta p} = \frac{1}{2\pi} \frac{hc}{c\Delta p} = \frac{1}{2\pi} \frac{1240 \text{ eV} \cdot \text{nm}}{4.70 \times 10^4 \text{ eV}} = 4.2 \times 10^{-3} \text{ nm}$ 

(b)  $\Delta p = \sqrt{p^2} = \sqrt{2mE} = \frac{1}{c}\sqrt{2mc^2E} = \frac{1}{c}\sqrt{2(511,000 \text{ eV})(2160 \text{ eV})} = 4.70 \times 10^4 \text{ eV}/c$ 

 $(x^2)_{av} = \frac{2L^2}{(n\pi)^3} \left[ \frac{u^3}{6} - \left( \frac{u^2}{4} - \frac{1}{8} \right) \sin 2u - \frac{u \cos 2u}{4} \right]^{nu} = \frac{2L^2}{(n\pi)^3} \left[ \frac{(n\pi)^3}{6} - \frac{n\pi}{4} \right] = L^2 \left( \frac{1}{3} - \frac{1}{2n^2\pi^2} \right)$ 

38. With  $x_{av} = L/2$  from Example 5.5, we have

The integral is a standard form that can be found in integral tables.

37.  $(x^2)_{av} = \int_0^L |\psi(x)|^2 x^2 dx = \frac{2}{L} \int_0^L x^2 \sin^2 \frac{n\pi x}{L} dx = \frac{2}{L} \left(\frac{L}{n\pi}\right)^3 \int_0^{n\pi} u^2 \sin u \, du$  with  $u = \frac{n\pi x}{L}$ 

$$\Delta x = \sqrt{(x^2)_{\text{av}} - (x_{\text{av}})^2} = \sqrt{L^2 \left(\frac{1}{3} - \frac{1}{2n^2 \pi^2}\right) - \left(\frac{L}{2}\right)^2} = L\sqrt{\frac{1}{12} - \frac{1}{2n^2 \pi^2}}$$

(a) The particle has no preferred direction of motion, so it is equally likely to be moving in the positive and negative x directions. We therefore expect that  $p_{av} = 0$ .

(b) Because the potential energy is zero inside the well, the kinetic energy is equal to the total energy:

ecause the potential energy is zero inside the well, the kinetic energy is equal to the energy:
$$K = E_n \quad \text{or} \quad \frac{p^2}{2m} = \frac{h^2 n^2}{8mI^2} \quad \text{so} \quad p^2 = \frac{h^2 n^2}{4I^2}$$

(c) 
$$\Delta p = \sqrt{(p^2)_{av} - (p_{av})^2} = \sqrt{\frac{h^2 n^2}{4 I^2} - 0} = \frac{hn}{2I}$$

For a given level n,  $p^2$  is constant so  $(p^2)_{av}$  has that same value.