8. (a) The regions with x < a and x > a do not contribute to the normalization. The
normalization integral is

a A 3 5 +al2
I|',//(X)|2 dx = L b?(a® —x?)*dx = bZL (a* —2a’x? + x*) dx = b? (a“x —2a? X?+X—J

—-al2

Evaluating the integral and setting it equal to 1, we find

5 5
P G I b=/ 155
3 5 16a

(b) P(x) dx =y (x) ] dx =b*(a*—x*)*dx, and with x = +a/2 and dx = 0.010a we obtain

2 2
P(x)dx = 1225 [%— azj (0.010a) = 0.0053
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(c) P(a/2:a)= L/2|1//(x)| dx _jalzb (a - X dx =

2 3 5
B3] o
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9. With w(x) =Cxe™, we have dy/dx = Ce™ —bCxe ™ and

2
IV _ ahce™ +biCxe™
dx

We now substitutey(x) and d*y/dx*into the Schrodinger equation:



2
—;l—(—ZbCe‘bX +b’Cxe™) +U (X)Cxe™ = ECxe™
m

—bx

Canceling the common factor of Ce ™and solving for E,

2 2182
e M _1b

+U(X)
mx 2m

The energy E will be a constant only if the two terms that depend on x cancel each other:

2 2
h—b+U(x):O or U(x):—h—b
mx mx

The cancellation of the two terms depending on x leaves only the remaining term for the
energy:




11.

12.

(a) The normalization integral is

2
(2b)’

f” Iy (X)Pdx = j“" A’x%e 2 dx = 2 A% jo”’ x2e 2% dx = 2 A2
so A=+2b*.

(b) The wave function can be written as (x) = Ae™ for x < 0 and (x) = Ae™™ for x > 0.

=1

2N
2b

0 200 [0 a2.2bx 00 obx gy
[ wordx=|[" A dx+'|'0 A%e gy =
and A=+/b.

For the x > 0 wave function, we have

2
Y __ppe™  and 9 Y — Ab%e™
dx dx

Substituting into the Schrddinger equation then gives

2 21n2
_n Ab%e™ +UAe™ = EAe™ or b
2m 2m

+U =E

This is consistent with a constant value of U, which we can take to be 0, giving

E = —/°b®/2m . Repeating the calculation for the x < 0 wave function gives an identical
result.



So the potential energy is a constant (zero) for x < 0 and for x > 0. What happens
at x = 0? Note that the wave function is continuous at x = 0 (both give w= A at x = 0) but
that the derivative dy/dx is not continuous. This suggests an infinite discontinuity in U(x)
at x = 0, and because the wave functions approach 0 as x — oo there must be a negative
potential energy that produces the bound states. So the potential energy is

U(x)=0 Xx<0,x>0
U(X)=—0 x=0

This type of function is known as a delta function.

2 2 2
h®  (hc) _ (1240eV-nm) _ 4636V

13. a = =
@ Yo8mL®  8(mc?)L?  8(511,000 eV)(0.285 nm)?

4-51: AE=E,—E, =16E,—FE, =15E, =15(4.63eV) =69.5eV

() 4—3: AE=E,—E,=16E,-9E =7E =7(4.63eV)=32.4eV
4-2: AE=E,—E,=16E, —4E, =12E, =12(4.63eV) =55.6 eV
3->2: AE=E,—E,=9E —4E, =5E, =5(4.63¢V) =23.2¢eV
3->1: AE=E,—E =9E —E =8E, =8(4.63eV)=37.0eV
2-1: AE=E,—FE,=4E, —E, =3E, =3(4.63eV)=13.9eV

14. With E, =1.54eV and E, = n*E, we have
AE, =E,-E, =9E, — E, =8E, =8(L.54 eV) =12.3eV

AE, =E, —E, =16E, — E, =15E, =15(1.54 eV) = 23.1eV



16.

17.

18.

(@) P(0: L/3) = j Ly, (X) F dx = j —s Z”L"dx_—j sin?u du

_g(g_sinZUJM
7\ 4 4

0

=0.1955

|_/32 i

(b) P(L/3:2L/3) = j "Ly, () |2 dx _j s

_E(E_SMZU]
z\ 4 4

X 2713 .
n2 C dx_—j sinu du

2713

=0.6090

713

oyt 2w b 2 n?2 29
() P(2L/3:L)= jm| w, ()P dx = jmt X = —j sin?u du
:3(5— el Zuj —0.1955
T 4 4 2713
2 37X 2 ., 37(0.188 nm)

a) P(x)dx X)|* dx = —=sin? dx = sin?
@) POy (O di = psin” = = dk = 0.189 nm
(b) P(dx = Zsin? S gx = — 2 iz 37O.0810M) § 61 m = 0.0106

L L 0.189 nm 0.189 nm
(c) P(x)dx= gsin2 37X dx = 2 sin’ 37(0.079 nm) 0.001nm =5.42x107°

L L 0.189 nm 0.189 nm

(d) A classical particle has a uniform probability to be found anywhere within the region,

so P(x)dx=(0.001nm)/(0.189 nm) =5.29x107°.

With E = E(n{ +n;) the levels above 50E, are as follows:

n, n, E n, n, E

6 4 52E, 6 5 61E,
4 6 52E, 5 6 61E,
7 2 53E, 7 4 65E,
2 7 53k, 4 7 65E,
7 3 58k, 8 1 65E,
3 7 58E, 1 8 65E,

0.001nm =2.63x10"°



The level at E = 65E,, is 4-fold degenerate.

19.  With E =E,(n +n;/4) the levels are as follows:

n, n, E n, n, E

1 1 1.25E, 2 3 6.25E,
1 2 2.00E, 1 5 7.25E,
2 1 2.25E, 2 4 8.00E,
1 3 3.25E, 3 1 9.25E,
2 2 5.00E, 1 6 10.00E,
1 4 5.00E, 3 2 10.00E,

The levels at E = 5.00E, and E = 10.00E,, are both 2-fold degenerate.



35.

(@)

(b)

h?  100(hc)>  100(1240 eV -nm)?

o _=2160eV
sml>  8mc’l2  8(511,000eV)(0.132 nm)

E =n’E, =107

Ap =p? =+2mE = %szc2 - %\/2(511, 000 eV) (2160 eV) = 4.70x 10 eV/c

h 1 hc 1 1240eV-nm 42%10° nm

TAp 27 cAp 27 4.70x10% eV
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37. (x )av_jolw(x)l xdx_tjoxs dx_—( )IO u“sinu du WIthU—T

L\ nz

The integral is a standard form that can be found in integral tables.

(¢).. = 2 | (u® 1 sin oy _ Ucos2u T (nz)® nz —Lz(l— 1 j
Y (z)’l6 |4 8 4 (nz)*| 6 4 3 2n°z°

38. With x,, = L/2from Example 5.5, we have




1 1 LY 1 1
AX = (X%, —(x. ) =, [L®| == = =L |=-——
( )av ( av) \/ 3 2n2ﬂ_2 2 12 2n27z_2

39. (a) The particle has no preferred direction of motion, so it is equally likely to be moving
in the positive and negative x directions. We therefore expect that p,, =0.
(b) Because the potential energy is zero inside the well, the kinetic energy is equal to the
total energy:
2 2,2 2,~2
K=E, or P _hmn pzzhn2
2m 4L

For a given level n, p? is constant so (p*),, has that same value.

©  Ap=(P)m—(pu) =«/2E —0='2“—E






