_ dsing _ (0.215 nm)(sin55°)

10, y) —0.0881nm
2 2
c_Nc _1240ev-nm _, 4e 10tev
A 0.0881 nm

_ p? _(pe)* _ (1.408x10%eV)’

== == = =194 eV
2m  2mc®  2(0.511x10°eV)

To achieve this kinetic energy, the electrons must be accelerated through a potential
difference of AV = +194 V.



19.

20.

21.

With Av = 2.8 x 10* m/s,

Ax~i— hoo 1.05x107*J-s
Ap mAv  (9.11x10"* kg)(2.8x10* m/s)
(@) Ap - e _ h _ 1 he _ 11240eV-nm — 2000 eV/c
AX 27 AX c2zAx ¢ 27(0.1nm)
2 2 2
(b) K = (Ap)” _(cAp)” _~ (2000eV)” _ Ry

2m  2mc?  2(0.511x10°eV)

h  6.58x10°eV-s

AE ~ —= —
At 2.0x10"s

=33 MeV

Measurements of the =" rest energy are likely to fall in the range 1385 MeV + 33 MeV,

or from 1352 MeV to 1418 MeV.

=4.1x10°m=5.8nm



-16
29, At~ _6:98x107eV:es o ggug

AE 120x10°%eV




25.

26.

27.

As we did for electrons in Example 4.9, let’s find the kinetic energy of an alpha particle
with a momentum of 19.7 MeV/c:

_p* _(pc)® _ (19.7 MeV)?

= = = =0.052 MeV
2m  2mc®  2(3727 MeV)

This is negligible compared with the typical kinetic energies of alpha particles emitted in
radioactive decays. Therefore, the uncertainty principle does not limit the existence of
these alpha particles inside the nucleus.

With Ax = 14 fm, we have

ap =L Lhe LI97TMEVAM )0 vevic
AX CAX ¢ 14 fm

With this uncertainty as an estimate for p,,

K _p_f_ c’p:  (14.1MeV)’

= =0.11MeV
2m 2mc”  2(938 MeV)

This is a very small contribution to the energy of protons or neutrons in a nucleus, which
are typically 10-20 MeV.

korak/2 ik ko+AK/2
Y(X)=IA(k)coskxdk =A J‘ coskxdk = A, sin kx

ko—Ak/2 ko—Ak /2




|J>

[sm x(K, + Ak /2) —sin x(k, — Ak / 2)]

><|J>

X Ak X Ak X Ak
sink,Xx cos—+cosk X smT— sink,x cosT—cosk X smT

= 2—Aosin(% xjcos Ky X

X



29. y(x) = Acos(2zx/ A,)+ Acos(2zx/ A,) = Alcos(2zx/ A,) + cos(2zx [ 4,)]

Using the identity cosx+cosy =2cos$ (X + y)cos$(x—Y), we get directly

y(x)= ZACOS(E—XﬁL”—XJcosE”_X_”_Xj
O A A



31.

32.

33.

34.

(a) Vihase = @K

d w d dvphase

Vgroup = W = &(kvphase) = Vphase +k dk
dvphase _ dvphase d_ﬂv _ dvphase i(z_ﬂ'] _ dvphase (_2_72'] dvphase ( ij
dk di dk di dk\ k di k? di k
dv ase
Vgroup = Vphase - ﬂ“ﬁ

(b) The index of refraction n for light in glass decreases as A increases (shorter
wavelengths are refracted more than longer wavelengths); that is dn/d A1 <0. Because
n=clhv dn/dA and dv, /dA have opposite signs and so dv___/dA>0. Thus

phase ? phase phase

V >V

group phase *

Vhase:\/E:\/ﬁZQ o o= |2k
P A 2k 2
d 3 1/2
group 72' 2 phase

K = E —mc? =4/ p°c® + m’c* —mc?
dk 1 B} pc? pc’ _ 2 Mv/Ni-v ?/c?

___(p2c2+m2c4) 1/2(2pc2) —
dp 2 Jpici+mct  E me? /v1-v2 /¢

(a) With a node at each end (say, at x = 0 and x = L) and no other nodes, we must have
one half-wave between the two nodes. Thus L=A4/2 or A4 =2L. Ifthereisan

additional node at the midpoint (x = L/2), then there is a full wave between the two ends,
and L=4, or 4, =2L/2. The next shorter wavelength has (in addition to the nodes at

either end ) nodes at x = L/3 and x = 2L/3, so there are three half-waves between the ends:
L =34,/2 or A, =2L/3. Continuing in this way, we see that in the " case there are n

half-waves in the length L, so L=n(4,/2) or A4, =2L/n.
(b) With p, =h/4, =nh/2L, we see that cp, is of order keV, so nonrelativistic equations
can safely be used:



« _PL_clpr_whie? L, (1240eV-nm)’

L=l = ~=n’(1.50eV)
2m  2mc¢®  8mc°L 8(511,000 eV)(0.50 nm)

Thus K, =1.50eV, K, =6.00eV, K, =13.5eV.



36.

(@) The mass of a nitrogen molecule is 14 u. The average molecular kinetic energy is
2KT , so the de Broglie wavelength is

,123— hc 1240 eV -nm _0.0279 nm
p

C2metK |J2(14 u)(931.5x10° eV/u)(1.5)(8.617 x 10~ eV/K)(293 K)

(b) The number of nitrogen molecules per unit volume is

pN,  (1.292 kg/m®)(6.02 x 10?* molecules/mole)
M (0.028 kg/mole)

n= = 2.78 x10% molecules/m?®

and the average spacing between molecules is n™* =3.30x10° m=3.3nm. The de

Broglie wavelength is 2 orders of magnitude smaller than the molecular spacing, so that
quantum effects are unimportant in gases at room temperature.

(c) Let’s estimate that quantum effects would be significant if the de Broglie wavelength
were about 1/10 of the molecular separation (0.33 nm):

pon_ihc 11240eV-nM _ o006 cvje
A ¢cA ¢ 033nm
2 2.2 2
K-P_ _PC _ (3760 V) —271x10"eV

2m  2mc?  2(28 u)(931.5x10° eV/u)

The molecules have this tiny amount of average kinetic energy at a temperature



_ 2K 2(271x107* eV) 21K
3k  3(8.617x10°eV/IK)

Nitrogen is no longer a gas at this temperature, so our calculation using the formula for
the mean molecular energy of gases is not correct. However, it does suggest that if
quantum effects are to become important in gases, they will occur only at low
temperatures. (Recall the discussion in Chapter 1 about how the equipartition of energy
fails for the rotational and vibrational motions of some gases at even moderate
temperatures, so other effects of quantum behavior may be observable at these
temperatures.)



43. From Eq. 4.15 with p,,, =0, we have (Ap,)’ = (p;),, and similarly in the y direction we
have (Ap,)? =(p;),, - The kinetic energy is K = p*/2m = (p; + p7)/2m, and using the
minimum estimates for the uncertainties we have



K

(AP +(Ap,)?  (nl2AX)? +(hl2Ay)?  RCE[ 1 L1
2m 2m 8mc? | (Ax)>  (Ay)?

(197 eV-nm)? { 1 1

= + =7.3meV
8(511,000eV)| (1.25nm)> (2.76 eV)Z}





