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Chapter 4 
 
 

1. (a) At 7 MeV, 2K mc , so we use nonrelativistic kinetic energy. 
 

  

21 12 2 2(938.3 MeV)(5 MeV) 114.6 MeV/

1240 MeV fm 11fm
114.6 MeV

p mK mc K c
c c

hc
pc

λ

= = = =

⋅
= = =

 

 
 (b)  In this case 2K mc2 , so the extreme relativistic approximation E = pc is valid. 
 

  3

1240 MeV fm 0.028 fm
45 10 MeV

hc hc
pc E

λ ⋅
= = = =

×
 

 
 (c)  The speed is small compared with c, so nonrelativistic formulas apply.  With 

6 8/ (1.35 10 m/s)/(3.00 10 m/s) 0.00450.v c = × × =  
 

  2

1240 eV nm 0.54 nm
( )( / ) (511,000 eV)(0.00450)

h h hc
p mv mc v c

λ ⋅
= = = = =  

 
2. (a)    53 3

2 2 (8.6174 10 eV/K)(293 K) 0.0379 eVK kT −= = × =  
 
 (b)   The neutrons are nonrelativistic, so 
 

 

2 6 3

3

1 12 2 2(939.6 10 eV)(0.0379 eV) 8.44 10 eV/

1240 eV nm 0.147 nm
8.44 10 eV

p mK mc K c
c c

hc
pc

λ

= = = × = ×

⋅
= = =

×

 

 

3. (a)  1 1 1240 MeV fm 149.6 MeV/
8.29 fm

h hcp c
c cλ λ

⋅
= = = =  

 From 2 2 2 2 2/ 1 / (1/ ) ( / ) / 1 /p mv v c c mc v c v c= − = −  we solve for v: 
      

    
2 2 2

0.157
1 ( / ) 1 [(938.3 MeV)/(149.6 MeV)]

c cv c
mc pc

= = =
+ +

 

 
 (b)    2 2 2 2

0 ( ) ( )K E E pc mc mc= − = + −       

        2 2(149.6 MeV) (938.3 MeV) 938.3 MeV 11.9 MeV= + − =  
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 This gain in kinetic energy requires a loss in potential energy of ∆U = −11.9 MeV and 
thus a potential difference of / 11.9 MeV/ 11.9 MVV U q e∆ = ∆ = − = − . 

 
4. With 5( )( 3.26 10 V) 0.326 MeVU q V e∆ = ∆ = + − × = − , we have 

0.326 MeVK U∆ = −∆ = + .  Then 

  

21 12 2 2(938.3 MeV)(0.326 MeV) 24.7 MeV/

1240 MeV fm 50.1 fm
24.7 MeV

p mK mc K c
c c

hc
pc

λ

= = = =

⋅
= = =

 

 
5. (a)  For λ = 15 nm, 

   
2 2 2 2

2

1 1 1240 eV nm 83 eV/
15 nm
(83 eV) 0.0067 eV

2 2 2(511,000 eV)

h hcp c
c c

p p cK
m mc

λ λ
⋅

= = = =

= = = =
 

  
 To increase the kinetic energy by ∆K = 0.0067 eV, its potential energy must decrease by 

, whereU K U q V∆ = −∆ ∆ = ∆ : 
  

0.0067 eV 0.0067 VU KV
q q e
∆ −∆ −

∆ = = = = +
−

 

   
 (b)  For λ = 0.096 nm, 
  

  

4

2 2 2 4 2

2

1 1 1240 eV nm 1.3 10 eV/
0.096 nm

(1.3 10 eV) 163 eV
2 2 2(511,000 eV)

/ 163 V

h hcp c
c c

p p cK
m mc

V K q

λ λ
⋅

= = = = ×

×
= = = =

∆ = −∆ = +

 

 
 (c)  For λ = 1.2 fm, 
  

  1 1 1240 MeV fm 1000 MeV/
1.2 fm

hcp c
c cλ

⋅
= = =  

  
 Here 2pc mc2 , so we can use the extreme relativistic approximation: 
  

  
9

9

1000 MeV 1.0 10 eV

/ 1.0 10 V

K E pc

V K q

≅ ≅ = = ×

∆ = −∆ = + ×
 



Chapter 4 Page 3 
 

 
 Although it is possible to accelerate electrons to such high energies, it is not done by a 

single acceleration through such a large potential difference. 
 
6. (a)  The wavelength should be roughly the size of (or smaller than) the object we want to 

study, so λ ≤ 0.10 mm. 
 (b)  Corresponding to λ ≤ 0.10 mm, 
  

  
2 2 2 2

4
2

4

1 1 1240 eV nm 12.4 eV/
100 nm

(12.4 eV) 1.5 10 eV
2 2 2(511,000 eV)

/ / 1.5 10 V

h hcp c
c c

p p cK
m mc

V U q K q

λ λ

−

−

⋅
= = = =

= = = = ×

∆ = ∆ = −∆ = + ×

 

 
 This is a lower limit on the accelerating voltage.  If ∆V is smaller than this value, the 

wavelength is too large and details of the particles could not be seen because of 
diffraction effects.  As ∆V is increased above this value, finer details would be observed. 

 

7. (a)          1 1 1240 MeV fm 88.6 MeV/
14 fm

hcp c
c cλ

⋅
= = =  

  
 For electrons 2pc mc2 , so the extreme relativistic approximation is valid. 
  

  
2

88.6 MeV

88.6 MeV 0.5 MeV 88 MeV

E pc

K E mc

≅ =

= − = − =
 

 
 (b)  For neutrons, 2pc mc so 
  

  
2 2 2 2

2

(88.6 MeV) 4.2 MeV
2 2 2(939.6 MeV)
p p cK
m mc

= = = =  

 

 (c)    
2 2 2 2

2

(88.6 MeV) 1.1 MeV
2 2 2(3727.4 MeV)
p p cK
m mc

= = = =  

 

8. (a)        2 6 41 12 2 2(3727 10 eV)(0.020eV) 1.22 10 eV/p mK mc K c
c c

= = = × = ×  

 

  4

1240 eV nm 0.10nm
1.22 10 eV

hc
pc

λ ⋅
= = =

×
 

  
 (b)   The fringes are separated by about 9 mm. 




