_mv__1(mc?)(v/c) _1(938.3MeV)(0.835)
JIviicE cy1viict ¢ \J1-(0.835)

30. =1424 MeV/c




2
KoM o2 9883MeV 939 3 Mev = 767 MeV

J1-v? /¢ J1-(0.835)?
E = K +mc? = 767 MeV +938.3 MeV =1705 MeV

31. E=K+mc®=0.923 MeV +0.511 MeV =1.434 MeV

Solving Equation 2.36 for v, we obtain

2 2 2
vec i M) g o[ OS1IMeV Y g g3sc
E 1.434 MeV




33.

34.

For what range of velocities is K —<mv? <0.01K ? At the upper limit of this range,
where K —imv? =0.01K , we have

2

2
0.99K = 0.99[L mch —imy

J1-v2/c? B

2
With x=v?/c?, 0.99 ! —-1|=1x which gives 1 :(1+ 0.5 xj
1-X 1 0.99

1= (1-x)(1+1.0101x +0.2551x") or 0.2551x* +0.7550x - 0.0101=0

Solving using the quadratic formula, we find x = 0.0133 or -2.97. Only the positive
solution is physically meaningful, so

v =+/0.0133¢c=0.115¢c

That is, for speeds smaller than 0.115c, the classical kinetic energy is accurate to within 1%.
For a different approach to that same type of calculation, see Problem 36.

As in Problem 33, let us now find the lower limit on the momentum such that



(pc)? +(mc®)? — pc <0.01y/(pc)? + (mc?)?
From the lower limit, we obtain 0.99./(pc)® +(mc®)* = pc, which can be written as

2 _ m’c’ —7.02mc?
(pc)” = —1/(0 997 1 or pc =7.02mc

With mvc/+/1-v?/c? =7.02mc?, we obtain

2 2
‘é_z _ 49_25(1_‘2_2] or  v/c=0.990

Whenever v/c >0.990, the expression E = pc will be accurate to within 1%.



38.

K, -K. =(E, —mc*)—(E,-mc*) =E, - E
mc? mc? 0.511MeV 0.511 MeV

T iviie 091 (L-(085)

=0.262 MeV



41.

42.

Because the electrons and the protons have charges of the same magnitude e, after
acceleration through a potential difference of magnitude AV = 12.0 million volts (a
positive difference for the electron, a negative difference for the proton), each loses
potential energy of AU =—-eAV =-12.0 MeV and thus each acquires a kinetic energy of
K = +12.0 MeV. For the electron, E = K + mc? = 12.0 MeV + 0.511 MeV = 12.5 MeV.
The momentum is then

p= 1\/52 —(mc?)? =3\/(12.5 MeV)? — (0.511 MeV)? =12.5 MeV/c
C C

The classical formula K = p®/2m gives

p =~/2mK =4/2(0.511 MeV/c?)(12.0 MeV) =3.50 MeV/c

which is far from the correct result (a discrepancy we would expect for such highly
relativistic electrons). For the protons, E = K + mc? = 12.0 MeV + 938.3 MeV= 950.3 MeV,
and the momentum is

p= %\/ E?—(mc?)? = %J(950.3 MeV)? —(938.3 MeV)? =150.5 MeV/c

The classical formula gives

p =~/2mK =4/2(938.3 MeV/c?)(12.0 MeV) =150.1 MeV/c

The difference between the classical and relativistic formulas appears only in the fourth
significant figure.

The mass of a uranium atom is about (235 u)(1.66 x 107 kg/u) = 3.90 x 107% kg, s0
1.50 kg contains 1.50 kg/3.90 x 10 kg = 3.84 x 10?* atoms. The total energy released
IS

AE = (210 MeV/atom)(3.84x10* atoms) = 8.06x10%° MeV

and the change in mass is

_AE  (8.06x10% MeV)(1.602x10" J/MeV)

Am 2 8 2
c (2.998x10° MeV)

=1.44x10° kg

About one gram of matter vanishes for each kilogram that fissions!



44,

45.

(@)

2
E=E +E =0 ymet= 00 MOV, 535 3 Mev =1206.7 Mev
V1-v2/c? 1—(0.921)?
(b)
m v 1 mc?(vic) 1(139.6 MeV)(0.921)
P=p,+P,=F——==—F == =330.0 MeV/c
P1-viIe? c1-viIee © (1-(0.921)

(©)

mc? = \JE2 —(pc)? =4/(1296.7 MeV)? —(330.0 MeV)? =1254 MeV

Before the collision, the total relativistic energy of each electron is

m,c? 0.511 MeV

E — -
J1-vi/c?  \[1-(0.99999)

e

=114.3 MeV

The total energy in the collision is therefore 2x114.3 MeV = 228.6 MeV. The total
momentum is zero before the collision, because the two particles moves with equal and
opposite velocities and have equal masses. After the collision, the total momentum is
still zero, so we know that the two muons must move with equal speeds and thus have
equal energies. The total energy of each muon is then 114.3 MeV and its Kinetic energy
is

K,=E, - mﬂc2 =114.3 MeV -105.7 MeV =8.6 MeV



47.

For particle 1, moving in the positive x direction,

E, = K, +mc? = 282 MeV +140 MeV = 422 MeV
op, = /EZ —(mc?)? = /(422 MeV)? — (140 MeV)? = +398 MeV

For particle 2, moving in the negative x direction,

E, =K, +mc? = 25 MeV +140 MeV =165 MeV
cp, = —/EZ —(Mmc?)? = /(165 MeV)? — (140 MeV)? = —87 MeV

The net final momentum is p, = p, + p, =398 MeV/c -87 MeV/c =311 MeV/c, and the
net final energy is E, = E, + E, =422 MeV +165 MeV =587 MeV . Because of the

conservation laws, these must be equal to the momentum and the energy of the initial
particle, so that its rest energy is then

mc? = EZ - (cp,)? = /(587 MeV)? — (311 MeV)? = 498 MeV

Solving Equation 2.36 for v, we obtain

2 2 2
vec i M) _¢ o[ 298MeV) 45090
E 587 MeV




59.

(a) Before the first acceleration, E=E = mc?®. After the acceleration, the energy is

. mc®  0511MeV
V1-vi /2 \[1-(0.99)?

E, =3.6 MeV

The change in energy is AE = E, —E, =3.6 MeV —-0.5 MeV =3.1MeV, so the first stage
adds 3.1 MeV to the energy of the electron.

mc? 0.511 MeV

© v (1-(0.999)

b)) E

The change in energy is AE = E, —E, =11.4 MeV -3.6 MeV =7.8 MeV, so the second

stage adds about 2.5 times as much energy as the first stage, even though the second stage
increases the velocity by only 0.9%.



62. The initial energy is

mc? 135 MeV

E = =
V1-vZ/c?  \[1-(0.98)?

/4

=678 MeV




and the momentum is

D :% —(mc?)? \/(678 MeV)? — (135 MeV)? = 664 MeV/c

Because the two gamma ray photons have equal energies, each has an energy of
+(678 MeV), so E, = 339 MeV. Each gamma ray photon has a momentum of

p, =E, /c=339 MeV/c, which has a component p, cosé@ along the direction of the
initial 7meson. Conservation of momentum then gives p_=2p, cosé, so the angle is

a4 P, , 664 MeV/c
f=c0S" —2 =005 —M— =
2p, 2(339 MeVI/c)

o



64.

(a) We use subscripts — and + to represent respectively the electron (e7) and positron (€").
Then before the collision the momenta are

mv.  1mc’(v./c) 1(0.511MeV)(0.834)

p_= == == =0.772 MeV/c
JI-V2ic? Cy1-vi/c? C©  \1-(0.834)
mv, _1mel(v,/c) _1(0.511MeV)(-0428) | i

+ =
- cimviie ¢ \i-(0.428)
The total momentum before the collision is
p=p_+p, =0.772 MeV/c - 0.242 MeV/c =0.530 MeV/c.

By conservation of momentum, this must also be the momentum of the new particle after
the collision. The total energies before the collision are

2
- mc _ 0.511 MeV _ 0.926 MeV
J1-vi/c?  J1-(0.834)
2
g oM _ 0511MeV oo,

JI-viic?  \[1-(0.428)
The total energy before the collision is

E=E +E, =0.926 MeV +0.565 MeV =1.492 MeV .

By conservation of energy, this must be the same as the total energy of the new particle
after the collision.

(b) We can find the mass of the new particle from its momentum and total energy using
Eq. 2.39:

c2\JE2 —(pc)? =¢2\/(1.492 MeV)? — (0.530 MeV)? =1.394 MeV/c?

(c) The initial and final kinetic energies are



K, =(E_—mc®) +(E, —mc?) =1.492 MeV - 2(0.511 MeV) = 0.470 MeV
K;=E- Mc? =1.492 MeV —1.394 MeV =0.097 MeV

The change in kinetic energy is

AK =K; - K; =0.470 MeV —-0.097 MeV =0.372 MeV
The change in mass is

Am=M -2m=1.394 MeV/c* - 2(0.511 MeV/c*) = 0.372 MeV/c?

The additional mass of the new particle comes from the loss in kinetic energy in the
collision.

(d) The momentum and energy of the original particles and the new particle would have
different values in the new frame, but the values for M, Am, and AK would be the same.
Mass is an invariant in special relativity (all observers measure the same value) and since
the mass value comes from the change in kinetic energy, all observers must also find the
same AK.





