
PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #4

[1] Blasius’ theorem says that the force per unit length of a body of constant cross-sectional
profile Σ is given by

F̄ = Fx − iFy = i
2 ρ

∮

C

dz

(

dW

dz

)2

,

where C = ∂Σ is a closed curve which traces the boundary of Σ, and W (z) is the complex
potential.

Consider a 2D flow with stream function ψ(x, y) = A(x − c)y, where A and c are real
constants. A circular cylinder of radius a is introduced into this flow, with its center at the
origin. Find W (z) for the resulting flow. Use Blasius’ theorem to calculate the force per
unit length exerted on the cylinder.

We first find the conjugate harmonic function φ(x, y) satisfying

∂φ

∂x
=
∂ψ

∂y
= A(x− c) ,

∂φ

∂y
= −∂ψ

∂x
= −Ay .

We conclude
φ(x, y) = 1

2Ax
2 −Acx− 1

2Ay
2 ,

and thus
w(z) = φ(x, y) + iψ(x, y) = 1

2Az
2 −Acz .

Now we introduce a cylinder of radius a. The boundary of the circle must be a streamline,
but as |z| → ∞ we have v = ∇φ where φ(x, y) is given above. To make this so, we invert
w(z) in the circle |z| = a and write

W (z) = w(z) +w(a2/z̄)

= 1
2Az

2 −Acz +
Aa2

2z2
− Aca2

z
.

Using Cauchy’s theorem, we then find

F̄ = i
2 ρ

∮

C

dz

(

dW

dz

)2

= i
2 ρ

∮

|z|=a

dz

(

Az −Ac+
Aca2

z2
− Aa2

2z3

)2

= i
2ρ · 2πi · 2A

2ca2 = −2πρA2ca2 .

Thus, Fx = −2πρA2ca2 and Fy = 0.

[2] Show that the Joukowski transformation Z = z + a2/z can be written in the form

Z − 2a

Z + 2a
=

(

z − a

z + a

)2

,
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so that
arg(Z − 2a)− arg(Z + 2a) = 2

{

arg(z − a)− arg(z + a)
}

. (1)

Consider the circle in the (x, y) plane which passes through z = −a and a with its center
at z0 = ia ctn β. Show that the above transformation takes this circle into a circular arc
between Z = −2a and Z = +2a, with subtended angle 2β (see figure). Obtain an expression
for the complex potential in the Z plane when the flow is uniform at speed V and parallel
to the real axis. Show that the velocity will be finite at both the leading and tailing edges
if Γ −−4πV a ctn β.

Figure 1: Geometry of the circle and its image in problem 2.

We have
Z − 2a

Z + 2a
=
z + a2z−1 − 2a

z + a2z−1 + 2a
=

(z − a)2/z

(z + a)2/z
=

(z − a)2

(z + a)2
.

Taking the argument and using arg(z1/z2) = arg(z1) − arg(z2) the desired result follows
immediately.

Next let z0 = ia ctn β. The radius of the circle in the z-plane is b, where

b2 = a2 + (a ctn β)2 = a2 csc2β ,

so b = a/ sin β. The locus of points on this circle may be written as z(θ) = z0− ib eiθ, where
θ ∈ [0, 2π). Thus,

z ± a =
(

e∓iβ − eiθ
)

· ia csc β ,

and we have
Z + 2a

Z − 2a
=

(

e−iβ − eiθ

eiβ − eiθ

)2

.
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Now

e−iβ − eiθ

eiβ − eiθ
= −e−iβ · e

i(β+θ) − 1

eiβ − eiθ

= −e−iβ · e
i(β+θ)/2 − e−i(β+θ)/2

ei(β−θ)/2 − e−i(β−θ)/2
· e

i(β+θ)/2

ei(β+θ)/2

= −e−iβ · sin
[

1
2(β + θ)

]

sin
[

1
2(β − θ)

] .

Thus,
arg(Z + 2a)− arg(Z − 2a) = 2π − 2β ,

which says that the circle in the z-plane maps to an arc in the Z-plane as shown in fig. 1.

Now consider the complex potential

W (z) = V (z − z0) +
V b2

z − z0
+

Γ

2πi
log(z − z0) ,

corresponding to uniform flow at infinity with a streamline along |z| = b. Then the complex
potential in the Z-plane is W(Z) =W (F (Z)) where

F (Z) = z = 1
2

(

Z ±
√

Z2 − 4a2
)

.

Thus the complex velocity

V(Z) = W ′(Z) =W ′(z)F ′(Z)

Consider the case Z = 2a, corresponding to z = a. Since

F ′(Z) =
1

2
± Z

2
√
Z2 − 4a2

= ± z√
Z2 − 4a2

,

we have that F (Z) diverges with an inverse square root singularity as Z approaches ±2a.
We now show that W ′(z) vanishes when Z = ±2a, cancelling the singularity, provided
Γ = −4πV a ctn β. In this case,

W ′(z = a) = V

{

1− b2/a2

(1− i ctn β)2
+
Γ/aV

2πi

1

1− i ctn β

}

= V

{

1− 1

(sin β − i cos β)2
+

2i cos β

sin β − i cos β

}

= V
{

1 + e−2iβ − 2 cos βe−iβ
}

= 0 ,

which vanishes! To find out the value of the velocity at the leading and trailing edges, set
z = a+ δz. An intelligent parameterization here is to take δz = −iǫa csc β eiβ and see what
happens for complex ǫ. We then have

z − z0 = z − ia ctn β = a− ia ctn β − iǫa csc β eiβ

= − ia

sin β
(1 + ǫ) eiβ .
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Then

W ′(z) = V

{

1 +
e−2iβ

(1 + ǫ)2
− 2 cos β e−iβ

1 + ǫ

}

= V

{

1− e−2iβ

1 + ǫ

}

· ǫ

1 + ǫ
= 2iV sin β e−iβ ǫ+O(ǫ2) .

Next, we have F ′(Z) = z/
√
Z2 − 4a2. We write Z2 − 4a2 = (Z + 2a)(Z − 2a). For Z ≈ 2a

we may write Z + 2a = 4a+O(ǫ), and

Z − 2a = z +
a2

z
− 2a =

(z − a)2

z
= a

(

−iǫ csc β eiβ
)2

.

Thus,

F ′(Z) =
z√

Z + 2a
· 1√

Z − 2a
=

a

2
√
a
· 1

−iǫ√a csc β eiβ
=

i e−iβ

2 ǫ csc β
.

Thus we see that W ′(z) vanishes as ǫ1 and F ′(Z) diverges as ǫ−1. Multiplying and taking
the limit ǫ→ 0, we obtain the complex velocity at the edge Z = 2a to be

V = −V sin2β e−2iβ .

[3] Show that an array of N identical point vortices of circulation Γ , placed equally about
a circle of radius a, will rotate at a constant angular frequency Ω. Find the value of Ω.

Let ω = e2πi/N . The locations of the vortices are taken to be zn = aωn where n ∈ {1, N};
note that zn+N = zn . The complex potential for a vortex located at the origin is W (z) =
(Γ/2πi) log z, and the corresponding complex velocity field is v̄(z) = Γ/2πiz. The complex
velocity of the jth vortex is a sum of contributions for all the others and is given by

v̄j =
Γ ω̄j

2πia

N−1
∑

n=1

1

1− ωn
.

Suppose N is odd. Then we pair the terms in the above sum: n with N − n. Note that

1

1− ωn
+

1

1− ωN−n
=

1

1− ωn
+

ωn

ωn − 1
= 1 ,

since ωN = 1. There are (N − 1)/2 such pairs, so we conclude that

v̄j =
N − 1

4πia
Γ ω̄j .

When N is even, we again pair n with N − n. The value n = N/2 is its own mate, and
there are (N − 2)/2 bona fide pairs. Thus,

N−1
∑

n=1

1

1− ωn
=
N − 2

2
+

1

1− ωN/2
=
N − 1

2
,
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since ωN/2 = −1. Thus once again we have v̄j = (N − 1)Γωj/4πia. Note that uniform
rotation in the (x, y) plane about the origin with angular frequency Ω means

v(r) = Ω ẑ × r = Ω(xŷ − yx̂) ,

and thus the complex velocity is v̄ = Ω(−y − ix) = −iΩz̄. For the jth vortex, zj = aω̄j .

Thus, we conclude Ω = (N − 1)Γ/4πa2.

[4] Consider a large circular disk of radius R executing a prescribed angular motion θ(t).
The disk is immersed in a fluid under conditions of constant pressure. Let the plane of the
disk lie at z = 0. Assume that the fluid velocity takes the form

vφ(r, φ, z, t) = r Ω(z, t) , (2)

with vr = vz = 0.

(a) Write down the Navier-Stokes equations for the fluid. Assume you can neglect the
(v ·∇)v term. (Under what conditions is this true?) Show that you obtain the diffusion
equation. What are the boundary conditions on the fluid motion?

The Navier-Stokes equations are

∂v

∂t
+ (v ·∇)v = −∇p+ ν∇2v . (3)

If we neglect the nonlinear term, we have the diffusion equation,

∂Ω

∂t
= ν

∂2Ω

∂z2
. (4)

In deriving this, it is useful to write

v = r Ω(z, t) φ̂ = (xŷ − yx̂)Ω(z, t) . (5)

The nonlinear term is

(v ·∇)v = − r̂

r
v2φ = −Ω2 r . (6)

This may be neglected if
∣

∣Ω
∣

∣ ≪ ν

R2
, (7)

which is equivalent to Re ≪ 1, where the Reynolds number is Re = Rvφ/ν.

(b) Our goal is next to find a complete solution to Ω(z, t) in terms of the function θ(t). To
this end, we perform the following analysis. Define the spatial Laplace transform,

Ω̌L(κ, t) ≡
∞
∫

0

dz e−κz Ω(z, t) . (8)
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You may assume in this problem that the fluid motion is symmetric about z = 0, i.e.

Ω(z, t) = Ω(−z, t), so we only have to consider the region z ≥ 0. The inverse Laplace
transform is

Ω(z, t) =

c+i∞
∫

c−i∞

dκ

2πi
e+κz Ω̌L(κ, t) (9)

where the contour lies to the left of any branch cut or singularity on the line Im (κ) = 0.
Later on we will see that we can take c = 0, so the contour lies along the axis Re (κ) = 0.
Show directly that

(

∂t − νκ2
)

Ω̌L(κ, t) = Fκ(t) , (10)

where the function Fκ(t) on the RHS depends on Ω(0, t) and Ω′(0, t) (prime denotes differ-
entiation with respect to z). Find Fκ(t).

We have that

0 =

∞
∫

0

dz e−κz

{

∂Ω

∂t
− ν

∂2Ω

∂z2

}

=
(

∂t − ν κ2
)

Ω̌L(κ, t) + ν
[

Ω′(0, t) + κΩ(0, t)
]

. (11)

Thus,
(

∂t − ν κ2
)

Ω̌L(κ, t) = −ν
[

Ω′(0, t) + κΩ(0, t)
]

. (12)

(c) Integrate the above first order equation from some arbitrary initial time t = t0 to

final time t and obtain Ω(z, t) in terms of the functions Ω(z, t0), Ω(0, t), and Ω′(0, t).

Show that the term involving Ω(z, t0) is a transient which decays to zero in the limit

t0 → −∞. Dropping the transient, performing the inverse Laplace transform, and rotating
the κ contour so that κ = ik, where k runs along the real axis, show that

Ω(z, t) = −ν
∞
∫

−∞

dk

2π
eikz

t
∫

−∞

dt′ e−νk2(t−t′)
[

Ω′(0, t′) + ikΩ(0, t′)
]

. (13)

Integrating, we obtain

Ω̌L(κ, t) = eνκ
2(t−t

0
) Ω̌L(κ, t0)− ν

t
∫

t0

dt′ eνκ
2(t−t′)

[

Ω′(0, t′) + ikΩ(0, t′)
]

. (14)

The first term is a transient which is negligible in the limit t0 → −∞. Remember that κ is
purely imaginary along its integration contour, so we can set κ ≡ ik with k real. Applying
the inverse Laplace transform, we recover the desired result.

(d) Find the total torque on the disk N(t). You will need to integrate r×f over the surface
of the disk, using the viscous stress tensor of the fluid. Show that

Nfluid(t) = πη R4Ω′(0, t) , (15)
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where η = ρ ν is the shear viscosity.

The viscous force per unit surface area is fi = σ̃ij nj, where nj is the surface normal and

σ̃ij = η

(

∂vi
∂xj

+
∂vj
∂xi

− 2
3 δij ∇ · v

)

+ ζ δij ∇ · v (16)

is the viscous stress tensor. For the flow v = r Ω(z, t) φ̂, the divergence vanishes. The
differential viscous torque dN = dN ẑ on the disk is then

dN =
(

xfy − yfx
)

dA

= η

(

x
∂vy
∂z

− y
∂vx
∂z

)

dA = η r
∂Ω

∂z
dA . (17)

Integrating, we find the total viscous torque:

N = 2

R
∫

0

dr 2πr r η
∂vφ
∂z

= πηR4Ω′(0, t) . (18)

Note the factor of two, which arises from integration over both sides of the disk.

(e) By going to Fourier space in frequency, the k integral can be done. Show that

Ω̂(z, ω) = − i eik+z

k+ − k−

{

Ω̂′(0, ω) + ik+Ω̂(0, ω)
}

, (19)

where k± = ± eiπ/4
√

ω/ν. Thus, setting z → 0+, we obtain

Ω̂′(0, ω) = −ik−Ω̂(0, ω) . (20)

Taking the Fourier transform, we have

Ω̂(z, ω) = −ν
∞
∫

−∞

dt eiωt
∞
∫

−∞

dk

2π
eikz

t
∫

−∞

dt′ e−νk2(t−t′)
[

Ω′(0, t′) + ikΩ(0, t′)
]

(21)

= −ν
∞
∫

−∞

dk

2π
eikz

∞
∫

0

ds e−νk2s eiωs
∞
∫

−∞

dt eiω(t−s)
[

Ω′(0, t− s) + ikΩ(0, t − s)
]

= −
∞
∫

−∞

dk

2π

eikz

k2 − iω
ν

[

Ω̂′(0, ω) + ikΩ̂(0, ω)
]

=
−i eik+z

k+ − k−

[

Ω̂′(0, ω) + ik+ Ω̂(0, ω)
]

,

where we assume z > 0 in the last line. There is a subtlety here which is worth mentioning.
In the above derivation, we have assumed ω is real and positive. For general ω, the roots
are k = ±

√

iω/ν and we define k+ to be the root with the positive imaginary part.
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(f) Suppose the disk is suspended from a torsional fiber. Let the disk’s moment of inertia
be I and the restoring torque due to the fiber be Nfiber = −Kθ. Show that the equation
for the oscillation frequency of the disk is

ω2 + eiπ/4 ω1/2
ν ω3/2 − ω2

0 = 0 , (22)

where ω0 = (K/I)1/2, and

ων =
π2ρ2R8 ν

I2
. (23)

Analyze this equation in the limits ω0 ≪ ων and ω0 ≫ ων , and find the frequency of damped
oscillations. Hint: The former case is easy – simply neglect the ω2 term. For the latter
case, perturb about the ων = 0 solutions ω = ±ω0. Find the real and imaginary parts of
the oscillation frequency ω in each case.

We have Ω(0, t) = θ̇(t), hence Ω̂(0, ω) = −i ω θ̂(ω). Then

Ω̂′(0, ω) = i eiπ/4
√

ω

ν
Ω̂(0, ω)

= eiπ/4
ω3/2

ν1/2
θ̂(ω) . (24)

The Fourier transform of the torque is then

N̂(ω) = πρR4 · eiπ/4 ν1/2 ω3/2 θ̂(ω) . (25)

Newton’s second law for the disk is then

−Iω2 θ̂(ω) = −K θ̂(ω) + N̂(ω) , (26)

from which we obtain the desired result of eqn. ??. To be perfectly correct, we should write
this as

ω2 + eiπ/4 ω1/2
ν ω3/2 sgn(Reω)− ω2

0 = 0 , (27)

Suppose ω0 = 0. Then we have two solutions, ω = 0 and ω = −iων . For small ω0, the latter
will continue to be highly overdamped. The former solution becomes finite, and neglecting
the O(ω2) term (since ω is small), we find

ω = e−iπ/6 ω
4/3
0 ω−1/3

ν . (28)

The damping rate is then γ = −Imω = 1
2 ω

4/3
0 ω

−1/3
ν .

In the opposite limit, where ων ≪ ω0, write ω = ω0 + δω and solve to first order in δω,
obtaining

δω = −1
2 e

iπ/4 √ω0 ων . (29)

The viscous damping leads to a frequency shift and damping rate −∆ω = γ =
√

ω0 ων/8.
Note that ∆ω < 0, as is the case with a simple damped harmonic oscillator.
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Note: There is an easier way to solve this problem, if we use some intuition. The diffusion
equation Ωt = νΩzz and the boundary conditions are linear, which suggests we write our
solution as

Ω(z, t) = A(ω) e−Q|z| e−iωt . (30)

This is a solution to the diffusion equation if νQ2 = −iω. Of the two roots for Q(ω), we
need the one with the positive real part, so Q = e−iπ/4

√

ω/ν. Setting z = 0 and using

Ω̇ = θ, we find A(ω) = −iω θ̂(ω). The Fourier component of the viscous torque on the disk
is then

N̂fluid(ω) = πρνR4 · (−Q)(−iω) θ̂(ω) (31)

= eiπ/4 πρR4ν1/2ω3/2 θ̂(ω) , (32)

which when plugged into the equation of motion for the disk yields the above equation for
the oscillation frequency.
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