PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #4

[1] Blasius’ theorem says that the force per unit length of a body of constant cross-sectional
profile X' is given by
_ , . dw \?
]::]:w—ny:%p}{dz<E> N
C

where C = 0X is a closed curve which traces the boundary of X, and W (z) is the complex
potential.

Consider a 2D flow with stream function ¢ (z,y) = A(x — ¢)y, where A and ¢ are real
constants. A circular cylinder of radius « is introduced into this flow, with its center at the
origin. Find W (z) for the resulting flow. Use Blasius’ theorem to calculate the force per
unit length exerted on the cylinder.

We first find the conjugate harmonic function ¢(z,y) satisfying

a(b—a—w—A(a:—c) , g—jz—g—fz
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We conclude
o(z,y) = $A2* — Acx — $AY* |
and thus
w(z) = oz, y) +i(z,y) = 3A42% — Acz
Now we introduce a cylinder of radius a. The boundary of the circle must be a streamline,

but as |z| — oo we have v = V¢ where ¢(x,y) is given above. To make this so, we invert
w(z) in the circle |z| = a and write
W(z) = w(z) +w(a?/z)
Aa®  Aca?®
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Using Cauchy’s theorem, we then find

i Aca®  Aa?\?
:§p%d2<AZ—AC+ ,2;2 —§>
|z|=a

= %p 21 - 2A%¢ca® = —2mpAtea®

Thus, F, = —2npA%ca® and F,=0.

[2] Show that the Joukowski transformation Z = z + a?/z can be written in the form

Z—2a_ 2z —a\
Z+4+2c \z+a ’




so that
arg(Z — 2a) — arg(Z + 2a) = Q{arg(z —a) —arg(z+ a)} . (1)

Consider the circle in the (z,y) plane which passes through z = —a and a with its center
at 2y = tactn 3. Show that the above transformation takes this circle into a circular arc
between Z = —2a and Z = +2a, with subtended angle 2/ (see figure). Obtain an expression
for the complex potential in the Z plane when the flow is uniform at speed V and parallel
to the real axis. Show that the velocity will be finite at both the leading and tailing edges
if ' — —4nVactn j3.

z—plane : Z—planc

Figure 1: Geometry of the circle and its image in problem 2.

We have
Z—2a z+d’2'=2a (z2-a)*/z (2-a)?

Z+2a z+4+ad2z 1420 (24+a)?/z  (2+a)?

Taking the argument and using arg(z;/z,) = arg(z;) — arg(z,) the desired result follows
immediately.

Next let zg = tactn 5. The radius of the circle in the z-plane is b, where
v =a® + (actn B)? = a’csc?B

so b = a/sin . The locus of points on this circle may be written as z(0) = 2z, —ibe', where
0 € [0,27). Thus, ' '
z+a= (ejF’B - e’e) “iacscfB

and we have

Z—|—2a_ e~ _ i0\?
Z—2a \ e — et



Now

18 _ ¢if oeiBto) _q
B _ 0 —e B _ 0
e’ —e e’ —e
_Z.B ei(5+9)/2 - e_i(5+9)/2 ei(6+6)/2
T T G0/2 _ P02 Gi(pr0)/2
_ _-if sin[1(8 + )]
(55— 0)

Thus,
arg(Z + 2a) — arg(Z — 2a) =27 — 28

which says that the circle in the z-plane maps to an arc in the Z-plane as shown in fig. 1.

Now consider the complex potential

V2 r
+ -— IOg(’Z - z(]) )

Wi(z)=V(z—z) + >t
0

corresponding to uniform flow at infinity with a streamline along |z| = b. Then the complex
potential in the Z-plane is W(Z) = W(F(Z)) where

F(Z)=2=}(2+ V7~ 12?)
Thus the complex velocity
V(Z)=W(2) =W'(z) F'(Z)
Consider the case Z = 2a, corresponding to z = a. Since
F(Z) =1+ Z S 7
2 272 — 442 V722 — 442

we have that F'(Z) diverges with an inverse square root singularity as Z approaches +2a.
We now show that W’(z) vanishes when Z = +2a, cancelling the singularity, provided
I' = —4nVactn 5. In this case,

W/(z:a):V{l—( bz/a2 +F/CLV 1 }

1 —ictnf)? 2ri 1 —ictnf

_ 1 2i cos 3
N V{l_ (sin 8 — i cos (3)? + sinﬁ—icosﬁ}

= V{l + 28 QCosBe_iB} =0 ,

which vanishes! To find out the value of the velocity at the leading and trailing edges, set
2z = a+0z. An intelligent parameterization here is to take 6z = —iea csc f e’ and see what
happens for complex €. We then have

z— 2 =z —iactnf =a —iactn B — ieacscB e’
1a .
= - 14€) e
Sinﬁ( +e)




Then

e~ 2P 2cos Be }

W/(Z):V{1+(1+e)2_ T+e

e~ % € ; 9
=V<il— T Gl = 2iVsinfe e+ O(?)
Next, we have F'(Z) = z/v/Z? — 4a2. We write Z? — 4a® = (Z + 2a)(Z — 2a). For Z =~ 2a
we may write Z + 2a = 4a + O(e), and

a? (z —a)?

Z—-2a=z+——2a= :a(—iecscﬁew)2
z

z

Thus, .
z 1 _a 1 B ie
VZ+2a VZ—2a 2Va —ieyJacscBef  2ecscp
Thus we see that W’(z) vanishes as ¢! and F’(Z) diverges as ¢ '. Multiplying and taking
the limit e — 0, we obtain the complex velocity at the edge Z = 2a to be

F(Z) =

V=-V Sin2B e 2B

[3] Show that an array of N identical point vortices of circulation I, placed equally about
a circle of radius a, will rotate at a constant angular frequency (2. Find the value of (2.

Let w = €2™/N . The locations of the vortices are taken to be z, = aw”™ where n € {1, N};
note that z,, n = z,. The complex potential for a vortex located at the origin is W(z) =
(I'/27i) log z, and the corresponding complex velocity field is v(z) = I'/2miz. The complex
velocity of the j* vortex is a sum of contributions for all the others and is given by

N 1

Vi = 2mia Z

Suppose N is odd. Then we pair the terms in the above sum: n with N — n. Note that

S DR B
1—wt 1—wN-—7 1—wn on—1 ’

since w™ = 1. There are (N — 1)/2 such pairs, so we conclude that

N -1 ;
v; = ra’

J 4dia

When N is even, we again pair n with N — n. The value n = N/2 is its own mate, and
there are (N — 2)/2 bona fide pairs. Thus,

Nz‘:l 1 N-2 1 N-1
1—wr 2 1—wh2 2 ’
n=1




since w¥/2 = —1. Thus once again we have v; = (N — 1)I'w’ /4ia. Note that uniform

rotation in the (x,y) plane about the origin with angular frequency 2 means
v(r)=Qzxr=Q(@zy—yx) |,

and thus the complex velocity is © = Q (—y — ix) = —iQz. For the 5™ vortex, z; = aw’ .
Thus, we conclude Q = (N — 1)I"/47a?.

[4] Consider a large circular disk of radius R executing a prescribed angular motion 6(t).
The disk is immersed in a fluid under conditions of constant pressure. Let the plane of the
disk lie at z = 0. Assume that the fluid velocity takes the form

with v, = v, = 0.

(a) Write down the Navier-Stokes equations for the fluid. Assume you can neglect the
(v-V)v term. (Under what conditions is this true?) Show that you obtain the diffusion
equation. What are the boundary conditions on the fluid motion?

The Navier-Stokes equations are

%Jr(v.v)v:_varyv%. (3)

If we neglect the nonlinear term, we have the diffusion equation,

01?2 0’02
= 4
at " 9:2 )
In deriving this, it is useful to write
v =1 Q1) = (23— y&) A= t) . (5)
The nonlinear term is R
r
Vv = ——2 = -2 6
(0 V)yo=—"02=-0%r (6)
This may be neglected if
v
2] < 25 (7)

which is equivalent to Re < 1, where the Reynolds number is Re = Rv ¢ Jv.

(b) Our goal is next to find a complete solution to £2(z,t) in terms of the function 6(¢). To
this end, we perform the following analysis. Define the spatial Laplace transform,

O (k,t) = /dz e " 2(z,1) . (8)
0



You may assume in this problem that the fluid motion is symmetric about z = 0, i.e.
2(z,t) = 2(—z,t), so we only have to consider the region z > 0. The inverse Laplace
transform is

c+iood
Qz,1) = / T () )
C—100
where the contour lies to the left of any branch cut or singularity on the line Im (k) = 0.
Later on we will see that we can take ¢ = 0, so the contour lies along the axis Re (k) =0
Show directly that
(at — l/liz) QL(/{,t) =F.(t), (10)

where the function F) (¢) on the RHS depends on £2(0,¢) and 2'(0,¢) (prime denotes differ-
entiation with respect to z). Find F, (t).

= ze V822
0

= (0, — v &) 2 (k,t) + v[2'(0,t) + £ 22(0,1)] . (11)

We have that

Thus,
(0, —vK?) 2L (k,t) = v [2/(0,1) + £ 2(0,1)] . (12)

(c) Integrate the above first order equation from some arbitrary initial time ¢t = ¢, to
final time ¢ and obtain (2(z,t) in terms of the functions 2(z,t,), 2(0,t), and 2/(0,¢).
Show that the term involving 2(z,t,) is a transient which decays to zero in the limit
t, — —oo. Dropping the transient, performing the inverse Laplace transform, and rotating
the x contour so that k = ik, where k runs along the real axis, show that

(e}

Qe 1) = —l//—e /dt’ RO [0,1) + k(0,11 (13)
Integrating, we obtain
O (5, ) = 10) O (1 40) — v /dt’ O (0.0 vk )] . ()

to

The first term is a transient which is negligible in the limit ¢, — —oco. Remember that & is
purely imaginary along its integration contour, so we can set k = ik with k real. Applying
the inverse Laplace transform, we recover the desired result.

(d) Find the total torque on the disk N(t). You will need to integrate r X f over the surface
of the disk, using the viscous stress tensor of the fluid. Show that

Nﬂuid(t) =7 R4 Q/(Ov t) ) (15)



where n = pv is the shear viscosity.

The viscous force per unit surface area is f; = G5 M where n; is the surface normal and

ov;  Ov;
_"<ax]+axi“5 v. v>+C6ijV"v (16)

is the viscous stress tensor. For the flow v = r§2(z,t) &, the divergence vanishes. The
differential viscous torque dIN = dN z on the disk is then

vy 8% of2
= - _ A=nr—dA. 1
(maz 8z>d - d (17)
Integrating, we find the total viscous torque:

R

6U¢ 4
N=2 dr27rrr77§:7ﬂ7R 2(0,t) . (18)
0

Note the factor of two, which arises from integration over both sides of the disk.
(e) By going to Fourier space in frequency, the k integral can be done. Show that
N i eik+z

O(z,w) = S {Q’(O,w) n z’k:+f2(0,w)} , (19)

where kL =+ eim/4 Vw/v. Thus, setting 2 — 07, we obtain

Q2'(0,w) = —ik_02(0,w) . (20)

Taking the Fourier transform, we have

(z,0) = —v /dte“"t/ /dt’ —vk2(t=t) [Q’(o ') + ik (0, t)} (21)

[e o]

=—v /;lf; ikz [ g e~ Vh"s iws /dte’w(t s) [Q’(O t—s)+ik2(0,t — S)]
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where we assume z > 0 in the last line. There is a subtlety here which is worth mentioning.

In the above derivation, we have assumed w is real and positive. For general w, the roots

are k = +/iw/v and we define k_ to be the root with the positive imaginary part.



(£) Suppose the disk is suspended from a torsional fiber. Let the disk’s moment of inertia
be I and the restoring torque due to the fiber be Ny =~ = —Kf. Show that the equation
for the oscillation frequency of the disk is

w2+ei7r/4wll,/2w3/2—w(2] =0, (22)
where w, = (K/I)'/?, and
w2’ R v

Analyze this equation in the limits w, < w, and w; > w,, and find the frequency of damped
oscillations. Hint: The former case is easy — simply neglect the w? term. For the latter
case, perturb about the w, = 0 solutions w = £w,. Find the real and imaginary parts of
the oscillation frequency w in each case.

We have £2(0,t) = 6(t), hence £2(0,w) = —iw6(w). Then

2'(0,w) =ie™/* \@ 2(0,w)

The Fourier transform of the torque is then
N(w) = mpR* - ™1 12 (P32 g(w) . (25)
Newton’s second law for the disk is then
—Iw?0(w) = —K f(w) + N(w) , (26)

from which we obtain the desired result of eqn. ?7?. To be perfectly correct, we should write
this as '
w? + ™42 W3 sgn(Rew) —wd =0, (27)

Suppose w; = 0. Then we have two solutions, w = 0 and w = —iw,. For small w,,, the latter
will continue to be highly overdamped. The former solution becomes finite, and neglecting
the O(w?) term (since w is small), we find

w = e /6 wg/g w3 (28)
The damping rate is then v = —Imw = %wg/g w;1/3.

In the opposite limit, where w, < w, write w = w; + éw and solve to first order in dw,
obtaining

Sw=—1 e g wy (29)

The viscous damping leads to a frequency shift and damping rate —Aw = v = /wow, /8.
Note that Aw < 0, as is the case with a simple damped harmonic oscillator.



Note: There is an easier way to solve this problem, if we use some intuition. The diffusion
equation (2, = v{2., and the boundary conditions are linear, which suggests we write our
solution as

Q(z,1) = A(w) e~ @Izl g7t (30)

This is a solution to the diffusion equation if vQ? = —iw. Of the two roots for Q(w), we

need the one with the positive real part, so Q = e~/ 4/w/v. Setting z = 0 and using

2 =0, we find A(w) = —iwf(w). The Fourier component of the viscous torque on the disk
is then

Nyuia(@) = mpvR* - (~Q)(~iw) O(w) (31)

=™ npRYWY2WP 2 h(w) | (32)

which when plugged into the equation of motion for the disk yields the above equation for
the oscillation frequency.



