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A very very short introduction

And if you don’t know, now you know
— The Notorious B.I.G.

the expectation and covariance of an observable quantity in a chaotic flow,

you do not need this book. If you don’t understand, don’t despair. None of
us were born understanding quantum field theory, either, a subject of comparable
difficulty.

IF YOU UNDERSTAND, really understand the cycle averaging formulas (23.23) for

ChaosBook is an advanced textbook on the theory of
classical, stochastic and quantum chaotic / turbulent systems

on level of a 2nd year graduate statistical mechanics or quantum field theory
course. Approach it the way that suits you best.

All this book says is that time evolution adds up probability densities of initial
states. Whenever a problem is linear, you solve it by finding its eigenvectors and
eigenvalues, i.e., zeros of a determinant. This determinant is Greek to you, so it
is called the ‘zeta’ function. One way to evaluate a determinant is in terms of its
traces. That is called the ‘trace formula’.

Now you know. So, have a look at the cycle averaging formulas (23.23), back-
track to where you have a surer footing, work through its derivation.

Any novice can master ChaosBook part I Geometry of chaos and/or online
course part | - indeed, any scientist, engineer or mathematician would profit from
understanding nonlinear dynamics on this level.

The theory developed in ChaosBook part II Chaos rules is here to challenge

a seasoned theorist. She might start with chapter 21 Trace formulas and/or online
course part 2, and work her way back or forth, as needed.

Predrag Cvitanovié, Atlanta, May 2020


https://www.youtube.com/watch?v=_JZom_gVfuw
https://youtube.com/embed/UT2Q_Y_NxaM
http://chaosbook.org/course1/about.html
http://chaosbook.org/course1/index2.html
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Part 1

Geometry of chaos

narrow; we keep the exposition focused on prerequisites to the applications to

be developed in this text. We assume that the reader is familiar with dynamics
on the level of the introductory texts mentioned in remark 1.1, and concentrate here on
developing intuition about what a dynamical system can do. It will be a broad stroke
description, since describing all possible behaviors of dynamical systems is beyond
human ken. While for a novice there is no shortcut through this lengthy detour, a
sophisticated traveler might bravely skip this well-trodden territory and embark upon the
journey at chapter 18.

‘ ” J E sTART ouT With a recapitulation of the basic notions of dynamics. Our aim is

The fate has handed you a law of nature. What are you to do with it?

1. Define your dynamical system (M, f): the space M of its possible states, and the
law /7 of their evolution in time.

2. Pin it down locally—is there anything about it that is stationary? Try to determine its
equilibria / fixed points (chapter 2).

3. Cut across it, represent as a return map from a section to a section (chapter 3).

4. Explore the neighborhood by linearizing the flow; check the linear stability of its
equilibria / fixed points, their stability eigen-directions (chapters 4 and 5).

5. Does your system have a symmetry? If so, you must use it (chapters 10 to 12). Slice
& dice it (chapter 13).

6. Go global: train by partitioning the state space of 1-dimensional maps. Label the
regions by symbolic dynamics (chapter 14).

7. Now venture global distances across the system by continuing local tangent space
into stable / unstable manifolds. Their intersections partition the state space in a
dynamically invariant way (chapter 15).

8. Guided by this topological partition, compute a set of periodic orbits up to a given
topological length (chapter 7 and chapter 16).

Along the way you might want to learn about Lyapunov exponents (chapter 6), classical
mechanics (chapter 8), and billiards (chapter 9).



Chapter 1

Overture

If I have seen less far than other men it is because I have
stood behind giants.
—Eduardo Specchio

holes large enough to steam a Eurostar train through them. Here we learn

about harmonic oscillators and Keplerian ellipses - but where is the chap-
ter on chaotic oscillators, the tumbling Hyperion? We have just quantized hydro-
gen, where is the chapter on the classical 3-body problem and its implications for
quantization of helium? We have learned that an instanton is a solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory have
turbulent solutions? How are we to think about systems where things fall apart;
the center cannot hold; every trajectory is unstable?

REREADING classic theoretical physics textbooks leaves a sense that there are

This chapter offers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you are expected to
know/learn this material

indicates that the section is on a somewhat advanced, cyclist level

indicates that the section requires a hearty stomach and is probably best
J skipped on first reading

fast track points you where to skip to
” tells you where to go for more depth on a particular topic
u link to a related video
[exercise 1.2] on margin links to an exercise that might clarify a point in the text

g; ; indicates that a figure is still missing—you are urged to fetch it

2
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CHAPTER 1. OVERTURE 3

We start out by making promises—we will right wrongs, no longer shall you suffer
the slings and arrows of outrageous Science of Perplexity. We relegate a histori-
cal overview of the development of chaotic dynamics to appendix Al, and head
straight to the starting line: A pinball game is used to motivate and illustrate most
of the concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you should be able to follow
the thread of the argument without constant excursions to sources. Hence there are
no literature references in the text proper, all learned remarks and bibliographical
pointers are relegated to the “Commentary” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with sci-
ence, we acquire a firmer hold over the vicissitudes of life
and meet them with greater calm, but in reality we have
done no more than to find a way to escape from our sor-
rows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics are complex beyond
belief, systems which are locally unstable (almost) everywhere but globally recur-
rent. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were it not for the fact that this
determinant that we are to compute is fashioned out of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and that is how the problem
was solved; in the 1960’s the pieces were counted, and in the 1970’s they were
weighted and assembled in a fashion that in beauty and in depth ranks along with
thermodynamics, partition functions and path integrals amongst the crown jewels
of theoretical physics.

This book is not a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically invariant
compact sets (equilibria, periodic orbits, partially hyperbolic invariant tori) and
the global long-time evolution of densities of trajectories. Chaotic dynamics is
generated by the interplay of locally unstable motions, and the interweaving of
their global stable and unstable manifolds. These features are robust and acces-
sible in systems as noisy as slices of rat brains. Poincaré, the first to understand
deterministic chaos, already said as much (modulo rat brains). Once this topology
is understood, a powerful theory yields the observable consequences of chaotic
dynamics, such as atomic spectra, transport coeflicients, turbulent shapes.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not know

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022



CHAPTER 1. OVERTURE 4

this material, so you are on your own. We will teach you how to evaluate a deter-
minant, take a logarithm—stuff like that. Ideally, this should take 100 pages or so.
Well, we fail-so far we have not found a way to traverse this material in less than
a semester, or 200-300 page subset of this text. Nothing to be done.

Question 1.1. Professor K. Zweistein asks

Q Perhaps it is painfully obvious to the experts, but I have so far failed to find what I
need by a hyperlink-assisted walk through ChaosBook. Shouldn’t the textbook be clear
about this? At present, the barrier to entry (having to read ChaosBook entirely, cover to
cover) appears too steep for the working scientists to learn. Perhaps a simple illustrative
example? paper? would help...

A OK, Karen.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats, The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic’, have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations—an
expectation tempered by our recently acquired ability to numerically scan the state
space of non-integrable dynamical systems. The initial impression might be that
all of our analytic tools have failed us, and that the chaotic systems are amenable
only to numerical and statistical investigations. Nevertheless, a beautiful theory
of deterministic chaos, of predictive quality comparable to that of the traditional
perturbation expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-order
approximations to physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expansions
fail completely; at asymptotic times the dynamics exhibit amazingly rich structure
which is not at all apparent in the integrable approximations. However, hidden
in this apparent chaos is a rigid skeleton, a self-similar tree of cycles (periodic
orbits) of increasing lengths. The insight of the modern dynamical systems theory
is that the zeroth-order approximations to the harshly chaotic dynamics should
be very different from those for the nearly integrable systems: a good starting
approximation here is the stretching and folding of baker’s dough, rather than the
periodic motion of a harmonic oscillator.

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022
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Figure 1.1: A physicist’s bare bones game of pinball.

So, what is chaos, and what is to be done about it? To get some feeling for how
and why unstable cycles come about, we start by playing a game of pinball. The
remainder of the chapter is a quick tour through the material covered in Chaos-
Book. Do not worry if you do not understand every detail at the first reading—the
intention is to give you a feeling for the main themes of the book. Details will be
filled out later. If you want to get a particular point clarified right now, check the
margin for a link to the appropriate section (in this example, 1.4).

1.3 The future as in a mirror

All you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand
the introduction you will first have to read the rest of the
book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who has tried
pool, billiards or snooker—the game is about beating chaos—so we start our story
about what chaos is, and what to do about it, with a game of pinball. This might
seem a trifle, but the game of pinball is to chaotic dynamics what a pendulum is
to integrable systems: thinking clearly about what ‘chaos’ in a game of pinball
is will help us tackle more difficult problems, such as computing the diffusion
constant of a deterministic gas, the drag coefficient of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed
to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
figure 1.1. A physicist’s pinball is free, frictionless, point-like, spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot at the disks from random starting
positions and angles; they spend some time bouncing between the disks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew everything a deterministic

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022
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CHAPTER 1. OVERTURE 6

23132321",
2
Figure 1.2: Sensitivity to initial conditions: two pin-
balls that start out very close to each other separate ex-
ponentially with time.
2313

system would do far into the future. He wrote [25], anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant an intelligence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [...] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretell and calculate
how they will rebound and what course they will take after the impact. Very
simple laws are followed which also apply, no matter how many spheres
are taken or whether objects are taken other than spheres. From this one
sees then that everything proceeds mathematically—that is, infallibly—in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of phys-
ical system that we shall use here as a paradigm of ‘chaos.” His claim is wrong in a
deep and subtle way: a state of a physical system can never be specified to infinite
precision, and by this we do not mean that eventually the Heisenberg uncertainty
principle kicks in. In the classical, deterministic dynamics there is no way to take
all the circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

1.3.1 Whatis ‘chaos’?

I accept chaos. I am not sure that it accepts me.
—Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully deter-
mined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat flow are examples
of stochastic systems, for which the initial conditions determine the future only
partially, due to noise, or other external circumstances beyond our control: the

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022
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. . . I dx(0)
Figure 1.3: Unstable trajectories separate with time.

dx(t)

X(0) x(1)

present state reflects the past initial conditions plus the particular realization of
the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can appear to
us to be stochastic; disentangling the deterministic from the stochastic is the main
challenge in many real-life settings, from stock markets to palpitations of chicken
hearts. So, what is ‘chaos’?

In a game of pinball, any two trajectories that start out very close to each other
separate exponentially with time. During a finite (and in practice, a very small)
number of bounces, the separation 6x(¢) of these trajectories attains the magnitude
L, which is the characteristic linear extent of the whole system (see figure 1.2).
This property of sensitivity to initial conditions can be quantified as

0x(2)| ~ e!'|ox(0)|

where A, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy 6x = [0x(0)| of the initial data, the
dynamics is predictable only up to a finite Lyapunov time

1
Tiyap =~ Inlox/LI, (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajecto-
ries would only separate, never to meet again. What is also needed is mixing, the
coming together again and again of trajectories. While locally the nearby trajec-
tories separate, the interesting dynamics is confined to a globally finite region of
the state space and thus the separated trajectories are necessarily folded back and
can re-approach each other arbitrarily closely, infinitely many times. For the case
at hand there are 2" topologically distinct n bounce trajectories that originate from
a given disk. More generally, the number of distinct trajectories with n bounces
can be quantified as

N(n) ~ "

where A, the growth rate of the number of topologically distinct trajectories, is
called the “topological entropy” (h = In2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer. In deterministic dynam-
ics, there is no chaos in the everyday sense of the word; everything proceeds

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022

18.1



CHAPTER 1. OVERTURE 8

Figure 1.4: Dynamics of a chaotic dynamical sys-
tem is (a) everywhere locally unstable (positive

Lyapunov exponent) and (b) globally mixing (pos-
itive entropy). (A. Johansen)
(a) v

A

®

mathematically—that is, as Baron Leibniz would have it, infallibly. When a physi-
cist says that a certain system exhibits ‘chaos’, she or he means that the system
obeys deterministic laws of evolution, but that the outcome is highly sensitive to
small uncertainties in the initial state. The word ‘chaos’ has in this context taken
on a narrow technical meaning. If a deterministic system is unstable locally (posi-
tive Lyapunov exponent) and exhibits mixing globally (positive entropy), it is said
to be chaotic, figure 1.4.

While mathematically correct, the definition of chaos as ‘positive Lyapunov
and positive entropy’ is useless in practice. Furthermore, a measurement of these
quantities is intrinsically asymptotic and beyond reach for natural systems. More
powerful is Poincaré’s vision of chaos as the interplay of local instability (unstable
periodic orbits) and global mixing (intertwining of their stable and unstable mani-
folds). In a chaotic system any open ball of initial conditions, no matter how small,
will in a finite time overlap with any other finite region and in this sense spread
entirely over the asymptotically accessible state space. Once this is grasped, the
focus of theory shifts from attempting to predict individual trajectories (which is
impossible) to describing the space of possible outcomes and evaluating averages
over this space. How this is accomplished is what ChaosBook is about.

1.3.2 What is ‘turbulence’?

I know it when I see it.
—Justice Potter Stewart, Jacobellis v. Ohio (1964)

A definition of ‘turbulence’ is even harder to come by. Can you recognize
turbulence when you see it? The word comes from ‘tourbillon’, French for ‘vor-
tex’, and intuitively it refers to irregular behavior of spatially extended systems
described by deterministic equations of motion—say, a bucket of sloshing water
described by the Navier-Stokes equations. But in practice the word ‘turbulence’
tends to refer to messy dynamics which we understand poorly. As soon as a phe-
nomenon is understood better, it is reclaimed and renamed: ‘a route to chaos’,
‘spatiotemporal chaos’, and so on.

Even a baby nonlinear problem can bedevil the smoothest dynamicist, and
thus there is much squabbling about naming different kinds of complex dynamics
exhibited by nonlinear flows. In practice, “chaos” tends to refer to unstable 3d
flows (1d and 2d maps). If the dimension is higher, new names are made up.
For example, if most orbits of a system are unstable to perturbations in two real
eigendirections, that is “hyperchaos.” A waste of a hyperbole that could have been

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022
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CHAPTER 1. OVERTURE 9

saved up to describe a phenomenon of a greater generality than the number 2.

Flows described by partial differential equations [PDEs] are said to be infinite
dimensional, because infinitely many ordinary differential equations [ODEs] are
needed to represent the dynamics of one PDE. Even though their state space is
‘infinite-dimensional’, the long-time dynamics of viscous flows, such as Navier-
Stokes, and PDEs modeling them, such as Kuramoto-Sivashinsky, exhibits, when
dissipation is high and the system spatial extent small, apparent ‘low-dimension-
al’ dynamical behaviors. For some of these the asymptotic dynamics is known to
be confined to a finite-dimensional inertial manifold, though the rigorous upper
bounds on this dimension are not of much use in the practice.

For large spatial extent the complexity of the spatial motions also needs to be
taken into account. The systems whose spatial correlations decay sufficiently fast,
and the attractor dimension and number of positive Lyapunov exponents diverges
with system size are said to be extensively, ‘spatio-temporally chaotic’ or ‘weakly
turbulent.” Spatio-temporally chaotic systems are characterized by creation / an-
nihilation of ‘defects.” They are extensive; if you increase the spatial extent in a
given direction by a factor of two, you will need twice as many ‘computational
degrees of freedom’ to describe it to the same accuracy. Conversely, for small
system sizes the accurate description might require a large set of coupled ODEzs,
but dynamics can still be ‘low-dimensional’ in the sense that it is characterized
by one or a few positive Lyapunov exponents. There is no wide range of scales
involved, nor decays of spatial correlations, and the system is in this sense only
‘chaotic.’

For a subset of physicists and mathematicians who study idealized ‘fully de-
veloped’, ‘homogenous’ turbulence the generally accepted usage is that the ‘tur-
bulent’ fluid is characterized by a range of scales and energy or enstrophy cascades
describable by statistic assumptions. What experimentalists, engineers, geophysi-
cists, astrophysicists actually observe looks nothing like a ‘fully developed tur-
bulence.” In the physically driven wall-bounded shear flows, the turbulence is
dominated by unstable coherent structures, that is, localized recurrent vortices,
rolls, streaks and like. The statistical assumptions fail, and a dynamical systems
description from first principles is called for.

Here comes our quandary. If we ban the words ‘turbulence’ and ‘spatiotem-
poral chaos’ from our study of small extent systems, the relevance of what we
do to larger systems is obscured. The exact unstable coherent structures we deter-
mine pertain not only to the spatially small ‘chaotic’ systems, but also the spatially
large ‘spatiotemporally chaotic’ and the spatially very large ‘turbulent’ systems.
The key aspect we study here - continuous spatial symmetry of the system - is
pertinent to all these systems, independent of their size. So, for the lack of more
precise nomenclature, we take the liberty of using the terms ‘chaos’, ‘spatiotem-
poral chaos’, and ‘turbulence’ interchangeably.

We return to these painful questions in chapter 30.

In ChaosBook we shall develop a theory of chaotic dynamics for low dimens-
ional attractors visualized as a succession of nearly periodic but unstable motions.

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022
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CHAPTER 1. OVERTURE 10

In the same spirit, we shall think of turbulence in spatially extended systems in
terms of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given
spatially extended system (clouds, say) through a repertoire of unstable patterns;
as we watch a turbulent system evolve, every so often we catch a glimpse of a
familiar pattern:

— other swirls —

For any finite spatial resolution, a deterministic flow follows approximately for a
finite time an unstable pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space of such
patterns. In ChaosBook we recast this image into mathematics.

1.3.3 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical frac-
tals.

— Richard P. Taylor [20, 46]

When should we be mindful of chaos? The solar system is ‘chaotic’, yet we
have no trouble keeping track of the annual motions of planets. The rule of thumb
is this; if the Lyapunov time (1.1)—the time by which a state space region initially
comparable in size to the observational accuracy extends across the entire acces-
sible state space—is significantly shorter than the observational time, you need to
master the theory that will be developed here. That is why the main successes of
the theory are in statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory’, so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable only
to systems of a low intrinsic dimension — the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension) we are
out of luck. Hence insights that the theory offers in elucidating problems of fully
developed turbulence, quantum field theory of strong interactions and early cos-
mology have been modest at best. Even that is a caveat with qualifications. There
are applications—such as spatially extended (non-equilibrium) systems, plumber’s
turbulent pipes, etc.,—where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022


http://materialscience.uoregon.edu/taylor/taylor.html

CHAPTER 1. OVERTURE 11

Figure 1.5: Katherine Jones-Smith, ‘Untitled 5°, the
drawing used by K. Jones-Smith and R.P. Taylor to test
the fractal analysis of Pollock’s drip paintings [22].

Thus far the theory has had limited practical success when applied to the very
noisy systems so important in the life sciences and in economics. Even though
we are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmental noise has been very hard.

In 1980’s something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted from
our collective understanding. The computer pictures and numerical plots of frac-
tal science of the 1980’s have overshadowed the deep insights of the 1970’s, and
these pictures have since migrated into textbooks. By a regrettable oversight,
ChaosBook has none, so ‘Untitled 5° of figure 1.5 will have to do as the illustra-
tion of the power of fractal analysis. Fractal science posits that certain quantities
(Lyapunov exponents, generalized dimensions, ...) can be estimated on a com-
puter. While some of the numbers so obtained are indeed mathematically sensible
characterizations of fractals, they are in no sense observable and measurable on
the length-scales and time-scales dominated by chaotic dynamics.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat belts
and turn off all electronic devices. But first, a disclaimer: If you understand the
rest of this chapter on the first reading, you either do not need this book, or you are
delusional. If you do not understand it, it is not because the people who figured
all this out first are smarter than you: the most you can hope for at this stage is to
get a flavor of what lies ahead. If a statement in this chapter mystifies/intrigues,
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jectories; a bounce in which the trajectory returns to
the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

Figure 1.6: Binary labeling of the 3-disk pinball tra- .
0

fast forward to a section indicated by on the margin, read only the
parts that you feel you need. Of course, we think that you need to learn ALL of it,
or otherwise we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis pro-
ceeds in three stages; 1. diagnose, II. count, IIl. measure. First, we determine
the intrinsic dimension of the system—the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent we are,
at present, out of luck. We know only how to deal with the transitional regime
between regular motions and chaotic dynamics in a few dimensions. That is still
something; even an infinite-dimensional system such as a burning flame front can
turn out to have a very few chaotic degrees of freedom. In this regime the chaotic
dynamics is restricted to a space of low dimension, the number of relevant param-
eters is small, and we can proceed to step II; we count and classify all possible
topologically distinct trajectories of the system into a hierarchy whose successive
layers require increased precision and patience on the part of the observer. This
we shall do in sect. 1.4.2. If successful, we can proceed with step III: investigate
the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step IIl-measure—in sect. 1.5. The three sections that
follow are highly technical, they go into the guts of what the book is about. If
today is not your thinking day, skip them, jump straight to sect. 1.7.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck—it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the three
disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a sequence
of labels indicating the order in which the disks are visited; for example, the two
trajectories in figure 1.2 have itineraries _2313_, _23132321_ respectively. Such
labeling goes by the name symbolic dynamics. As the particle cannot collide two
times in succession with the same disk, any two consecutive symbols must differ.
This is an example of pruning, a rule that forbids certain subsequences of symbols.
Deriving pruning rules is in general a difficult problem, but with the game of
pinball we are lucky—for well-separated disks there are no further pruning rules.

The choice of symbols is in no sense unique. For example, as at each bounce

we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, figure 1.6. A clever
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121212313

Figure 1.7: The 3-disk pinball cycles 12323 and
121212313.

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitting
two disks in a sequence requires a much sharper aim,
with initial conditions that hit further consecutive disks
nested within each other, as in Fig. 1.9.

5

choice of an alphabet will incorporate important features of the dynamics, such as
its symmetries.

Suppose you wanted to play a good game of pinball, that is, get the pinball
to bounce as many times as you possibly can—what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks—if you managed to shoot it so it starts out in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there for-
ever. Your game would be just as good if you managed to get it to keep bouncing
between the three disks forever, or place it on any periodic orbit. The only rub
is that any such orbit is unstable, so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important—they form the skeleton onto which all
trajectories trapped for long times cling.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall sometimes refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated—an example is drawn in
figure 1.7-but it is rather hard to perceive the systematics of orbits from their con-
figuration space shapes. In mechanics a trajectory is fully and uniquely specified
by its position and momentum at a given instant, and no two distinct state space
trajectories can intersect. Their projections onto arbitrary subspaces, however,
can and do intersect, in rather unilluminating ways. In the pinball example the
problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A clearer
picture of the dynamics is obtained by constructing a set of state space Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with xo = (8o, po) . (a) Strips of initial points M;s,
M3 which reach disks 2, 3 in one bounce, respec-
tively. (b) Strips of initial points Mia;, Mz Mis
and M,3 which reach disks 1, 2, 3 in two bounces,
respectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by
the appropriate relabeling of the strips. Disk ra-
dius : center separation ratio a:R = 1:2.5. (Y.

Lan)
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between the bounces—the ball just travels at constant velocity along a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional map P that takes the
coordinates of the pinball from one disk edge to another disk edge. The trajectory
just after the moment of impact is defined by s,, the arc-length position of the
nth bounce along the billiard wall, and p, = psin ¢, the momentum component
parallel to the billiard wall at the point of impact, see figure 1.9. Such section of a
flow is called a Poincaré section. In terms of Poincaré sections, the dynamics is
reduced to the set of six maps Pyes; (Sn> Pn) > (Su+1, Pnt1), With s € {1,2,3},
from the boundary of the disk j to the boundary of the next disk k.

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories orig-
inating from one disk can hit either of the other two disks, or escape without
further ado. We label the two strips M, Mj3. Embedded within them there
are four strips Mjz1, Mi23, Mi31, Misz of initial conditions that survive for two
bounces, and so forth, see figures 1.8 and 1.9. Provided that the disks are suffi-
ciently separated, after n bounces the survivors are divided into 2" distinct strips:
the M;th strip consists of all points with itinerary i = s15253...5,, 5§ = {1,2,3}.
The unstable cycles as a skeleton of chaos are almost visible here: each such patch
contains a periodic point 575253 ... 5, with the basic block infinitely repeated. Pe-
riodic points are skeletal in the sense that as we look further and further, the strips
shrink but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a naviga-
tion chart through chaotic state space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by 12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
outas 12... either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate

What is a good physical quantity to compute for the game of pinball? Such a sys-
tem, for which almost any trajectory eventually leaves a finite region (the pinball
table) never to return, is said to be open, or a repeller. The repeller escape rate
is an eminently measurable quantity. An example of such a measurement would
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CHAPTER 1. OVERTURE 15

be an unstable molecular or nuclear state which can be well approximated by a
classical potential with the possibility of escape in certain directions. In an ex-
periment many projectiles are injected into a macroscopic ‘black box’ enclosing
a microscopic non-confining short-range potential, and their mean escape rate is
measured, as in figure 1.1. The numerical experiment might consist of injecting
the pinball between the disks in some random direction and asking how many
times the pinball bounces on the average before it escapes the region between the
disks.

For a theorist, a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how periodic
orbit theory accomplishes this for us. Each step will be so simple that you can
follow even at the cursory pace of this overview, and still the result is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total area
that remains at a given time is the sum of the areas of the strips, so that the fraction
of survivors after n bounces, or the survival probability is given by

A IMol  IMy] A Mool IMiol  IMorl  IMul
In = —&—+——, I, = + + + ,
: M T IM UMM T M T TIM

(n)
N 1
r, = — i, 1.2
M Ei IMil (1.2)

where i is a label of the ith strip, | M| is the initial area, and |[M;| is the area of
the ith strip of survivors. i = 01,10, 11,... is a label, not a binary number. Since
at each bounce one routinely loses about the same fraction of trajectories, one
expects the sum (1.2) to fall off exponentially with # and tend to the limit

Do /Th=e? > e, (1.3)

The quantity vy is called the escape rate from the repeller.

1.5 Chaos for cyclists

Etant données des équations ... et une solution particuliére
quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vrai, étre
trés longue), telle que la différence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut. D’ailleurs, ce qui nous rend ces solu-
tions périodiques si précieuses, c’est qu’elles sont, pour
ansi dire, la seule bréche par ot nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste
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We shall now show that the escape rate y can be extracted from a highly conver-
gent exact expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape rate
is roughly vy = 0.4103384077693464893384613078192.. ., you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Of course, we can prove all these results directly from
Eq. (20.15) by pedestrian mathematical manipulations,
but that only makes it harder to appreciate their physical
significance.

— Rick Salmon, “Lectures on Geophysical Fluid Dy-
namics”, Oxford Univ. Press (1998)

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size. As a trajectory evolves,
it carries along and distorts its infinitesimal neighborhood. Let

x(0) = f'(xo)

denote the trajectory of an initial point xo = x(0). Expanding f’(xo + dx¢) to
linear order, the evolution of the distance to a neighboring trajectory x(¢) + 6x()
is given by the Jacobian matrix J:

g xi(t)
ox(t) = ) Cowgonoj, ol =

j=1 J

(1.4)

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this case d = 3. Evaluation of
a cycle Jacobian matrix is a long exercise - here we just state the result. The
Jacobian matrix describes the deformation of an infinitesimal neighborhood of
x(t) along the flow; its eigenvectors and eigenvalues give the directions and the
corresponding rates of expansion or contraction, figure 1.10. The trajectories that
start out in an infinitesimal neighborhood separate along the unstable directions
(those whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvalues are less than unity in
magnitude), and change their distance only sub-exponentially (or not at all) along
the marginal directions (those whose eigenvalues equal unity in magnitude).

In our game of pinball the beam of neighboring trajectories is defocused along
the unstable eigen-direction of the Jacobian matrix J.

As the heights of the strips in figure 1.9 are effectively constant, we can con-
centrate on their thickness. If the height is ~ L, then the area of the ith strip is
M; = LI; for a strip of width ;.
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x(t) 0 8X(1) = 3 '5x(0)

Figure 1.10: The Jacobian matrix J* maps an infinites-
imal displacement §x at x, into a displacement J*(xp)dx X(O)
a finite time 7 later.
dx(0)

Each strip i in figure 1.9 contains a periodic point x;. The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width /; is well-approximated by the contraction around the periodic point x;
within the interval,

li = ai/I\, (1.5)

where A; is the unstable eigenvalue of the Jacobian matrix J'(x;) evaluated at
the ith periodic point for r = T, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Only the magnitude of
this eigenvalue matters, we can disregard its sign. The prefactors a; reflect the
overall size of the system and the particular distribution of starting values of x. As
the asymptotic trajectories are strongly mixed by bouncing chaotically around the
repeller, we expect their distribution to be insensitive to smooth variations in the
distribution of initial points.

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors a; ~ O(1) are overwhelmed by the exponential growth of
A, so we neglect them. If the hyperbolicity assumption is justified, we can replace
IM;| = Li; in (1.2) by 1/|A;| and consider the sum

(n)

Ly = )" 1/IAil,

i

where the sum goes over all periodic points of period n. We now define a gener-
ating function for sums over all periodic orbits of all lengths:

r@ = . (16)
n=1

Recall that for large n the nth level sum (1.2) tends to the limit I, — ™7, so the
escape rate y is determined by the smallest z = ¢” for which (1.6) diverges:

ze

F@=~ ) e)'= (1.7)
n=1

1—ze 7’

This is the property of I'(z) that motivated its definition. Next, we devise a formula
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for (1.6) expressing the escape rate in terms of periodic orbits:

00 (n)
-1
@ = 2,2 I
|
z z 2 2 i 2
= = 4+ 4 + + +
Aol A1l Aol [Aotl  |As0l  |A1]
2 2 2 2

+ + + + + (1.8)
IAoool Mool [Aotol  |Ai1ool

For sufficiently small z this sum is convergent. The escape rate y is now given by
the leading pole of (1.7), rather than by a numerical extrapolation of a sequence of
v, extracted from (1.3). As any finite truncation n < ntrypc of (1.8) is a polyno-
mial in z, convergent for any z, finding this pole requires that we know something
about I';, for any n, and that might be a tall order.

We could now proceed to estimate the location of the leading singularity of
I'(z) from finite truncations of (1.8) by methods such as Padé approximants. How-
ever, as we shall now show, it pays to first perform a simple resummation that
converts this divergence into a zero of a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is A}, A
prime cycle p is a single traversal of the orbit; its label is a non-repeating symbol
string of n, symbols. There is only one prime cycle for each cyclic permutation
class. For example, p=0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01 is not.

By the chain rule for derivatives the stability of a cycle is the same everywhere
along the orbit, so each prime cycle of length n, contributes 7, terms to the sum
(1.8). Hence (1.8) can be rewritten as

n

_ - b4 Flplp o
() = Z,,“””Z‘ (IA I) Z g v (1.9)

where the index p runs through all distinct prime cycles. Note that we have re-
summed the contribution of the cycle p to all times, so truncating the summation
up to given p is not a finite time n < n,, approximation, but an asymptotic, infinite
time estimate based by approximating stabilities of all cycles by a finite number of
the shortest cycles and their repeats. The n,z" factors in (1.9) suggest rewriting
the sum as a derivative

d
I'(z) = _Zd_z Zp: In(1 —1,)

Hence I'(z) is zXx derivative derivative of the logarithm of the infinite product

4

IApl

Vi@ =[la-1), 1= (1.10)
P
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This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/{(z). This is the
prototype formula of periodic orbit theory. The zero of 1/{(z) is a pole of I'(z),
and the problem of estimating the asymptotic escape rates from finite n sums
such as (1.2) is now reduced to a study of the zeros of the dynamical zeta function
(1.10). The escape rate is related by (1.7) to a divergence of ['(z), and I'(z) diverges
whenever 1/{(z) has a zero.

Easy, you say: ‘“Zeros of (1.10) can be read off the formula, a zero
ip = |A[J|1/np

for each term in the product. What’s the problem?” Dead wrong!

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton method searches for periodic solutions; we shall assume that
the numerics are under control, and that all short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical
optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped-including cycles longer than the shortest
omitted does not improve the accuracy. The result of such numerics is a table of
the shortest cycles, their periods and their stabilities.

Now expand the infinite product (1.10), grouping together the terms of the
same total symbol string length

1/¢ (1 = 1o)(1 = t1)(1 = t10)(1 = t100) - - -
= 1—1y—t —[tio — tito] — [(t100 — t10t0) + (t101 — t10t1)]
—[(t1000 — tot100) + (f1110 — t1t110)

+(t1001 — t1foo1 — tiotfo + tiotot1)] — . .. (L.1D)

The virtue of the expansion is that the sum of all terms of the same total length
n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

The calculation is now straightforward. We substitute a finite set of the eigen-
values and lengths of the shortest prime cycles into the cycle expansion (1.11), and
obtain a polynomial approximation to 1/£. We then vary z in (1.10) and determine
the escape rate y by finding the smallest z = ¢” for which (1.11) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points 0,
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, together
with their linearized neighborhoods, (right frame). In-
dicated are segments of two l-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

Figure 1.12: A longer cycle p” shadowed by a pair (a
‘pseudo orbit’) of shorter cycles p and p’.

1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant digits!
We have omitted an infinity of unstable cycles; so why does approximating the
dynamics by a finite number of the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a conse-
quence of the smoothness and analyticity of the underlying flow. Intuitively, one
can understand the convergence in terms of the geometrical picture sketched in
figure 1.11; the key observation is that the long orbits are shadowed by sequences
of shorter orbits.

A typical term in (1.11) is a difference of a long cycle {ab} minus its shadowing
approximation by shorter cycles {a} and {b} (see figure 1.12),

Aab
AuAp

tap — talpy = tap(1 — tatb/tab) = lab (1 - ) > (112)
where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (¢, = Z"'7), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in such combinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits 0, 1 and 01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around all three, tracing out an
equilateral triangle. The cycle O1 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2 and so on, so its
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itinerary is 2321. In terms of the bounce types shown in figure 1.6, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it executes
these bounces are very close to the corresponding angles for 0 and 1 cycles. Also
the distances traversed between bounces are similar so that the 2-cycle expanding
eigenvalue Ag; is close in magnitude to the product of the 1-cycle eigenvalues
AoAy.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as a
tessellation (a tiling) of the dynamical system, with smooth flow approximated by
its periodic orbit skeleton, each ‘tile’ centered on a periodic point, and the scale
of the ‘tile’ determined by the linearization of the flow around the periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo
orbit’ {a}{h} (see figure 1.12), lie close to each other in state space; long shadow-
ing pairs have to start out exponentially close to beat the exponential growth in
separation with time. If the weights associated with the orbits are multiplicative
along the flow (for example, by the chain rule for products of derivatives) and
the flow is smooth, the term in parenthesis in (1.12) falls off exponentially with
the cycle length, and therefore the curvature expansions are expected to be highly
convergent.

1.6 Change in time

MEN are deplorably ignorant with respect to natural

things and modern philosophers as though dreaming in the

darkness must be aroused and taught the uses of things the

dealing with things they must be made to quit the sort of

learning that comes only from books and that rests only

on vain arguments from probability and upon conjectures.
— William Gilbert, De Magnete, 1600

The above derivation of the dynamical zeta function formula for the escape rate
has one shortcoming; it estimates the fraction of survivors as a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite state space region M such
that a trajectory that exits M never reenters. For example, any pinball that falls
off the edge of a pinball table in figure 1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initial x whose trajectories remain
within M at time ¢ is expected to decay exponentially

Sy dxdy 6y = f1(x)

[(r) = - e,
Q) Jods

The integral over x starts a trajectory at every x € M. The integral over y tests
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whether this trajectory is still in M at time ¢. The kernel of this integral
L',0 =8y - ') (1.13)

is the Dirac delta function, as for a deterministic flow the initial point x maps
into a unique point y at time ¢. For discrete time, f"(x) is the nth iterate of the
map f. For continuous flows, f’(x) is the trajectory of the initial point x, and it
is appropriate to express the finite time kernel £’ in terms of A, the generator of
infinitesimal time translations

t tA
L=,

very much in the way the quantum evolution is generated by the Hamiltonian H,
the generator of infinitesimal time quantum transformations.

As the kernel £ is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimensional
map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle length
(in the case at hand, as 2"). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our compu-
tations will be carried out in the n — oo limit. Though a quick look at long-time
density of trajectories might reveal it to be complex beyond belief, this distribution
is still generated by a simple deterministic law, and with some luck and insight,
our labeling of possible motions will reflect this simplicity. If the rule that gets us
from one level of the classification hierarchy to the next does not depend strongly
on the level, the resulting hierarchy is approximately self-similar. We now turn
such approximate self-similarity to our advantage, by turning it into an operation,
the action of the evolution operator, whose iteration encodes the self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators changes everything. So far
our formulation has been heuristic, but in the evolution operator formalism the es-
cape rate and any other dynamical average are given by exact formulas, extracted
from the spectra of evolution operators. The key tools are trace formulas and
spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.13) for £'(x,y) enables us to evaluate the trace. Identify y with x
and integrate x over the whole state space. The result is an expression for tr £’ as
a sum over neighborhoods of prime cycles p and their repetitions

r L = ZT i|dit(t1 ri’; , (1.14)
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where T, is the period of prime cycle p, and the monodromy matrix M, is the
flow-transverse part of Jacobian matrix J (1.4). This formula has a simple geo-
metrical interpretation sketched in figure 1.13. After the rth return to a Poincaré
section, the initial tube M, has been stretched out along the expanding eigen-

directions, with the overlap with the initial volume given by 1/ |det (1 -M I’)) -
1/IAp|, the same weight we obtained heuristically in sect. 1.5.1.

The ‘spiky’ sum (1.14) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hand side is the smooth eigen-
value sum tr e = Y e, while the right-hand side equals zero everywhere except
for the setz = rT),. A Laplace transform smooths the sum over Dirac delta func-
tions in cycle periods and yields the trace formula for the eigenspectrum sg, s1, - - -
of the classical evolution operator:

00 1
dtes'uwe L1 = tr =
~f0+ s—A

S XL

(1.15)
a=0

The beauty of trace formulas lies in the fact that everything on the right-hand-
side—prime cycles p, their periods T, and the eigenvalues of M —is an invariant
property of the flow, independent of any coordinate choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

1
%lndet(s—ﬂ):tr%In(s—ﬂ):trs_ﬂ,

and integrating over s. In this way the spectral determinant of an evolution oper-
ator becomes related to the traces that we have just computed:

det (s — A) = exp ZZ

(1.16)

(1.17)
|det 1- M’)
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The 1/r factor is due to the s integration, leading to the replacement 7', — T, /rT),
in the periodic orbit expansion (1.15).

We have now retraced the heuristic derivation of the divergent sum (1.7) and
the dynamical zeta function (1.10), but this time with no approximations: formula
(1.17) is exact. The computation of the zeros of det (s — A) proceeds very much
like the computations of sect. 1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of individual trajectories by evolution operators which propa-
gate densities feels like a bit of voodoo. Nevertheless, something very radical and
deeply foundational has taken place. Understanding the distinction between evo-
lution of individual trajectories and the evolution of the densities of trajectories is
key to understanding statistical mechanics—this is the conceptual basis of the sec-
ond law of thermodynamics, and the origin of irreversibility of the arrow of time
for deterministic systems with time-reversible equations of motion: reversibility is
attainable for distributions whose measure in the space of density functions goes
exponentially to zero with time.

Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white and pure red; there
would be no pink. What is more, if we reversed the stirring, we would return to
the perfect white/red separation. However, that cannot be—in a very few turns of
the stirring stick the thickness of the layers goes from centimeters to Angstréms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics, and
already at the level of a few degrees of freedom the evolution of densities is irre-
versible. Furthermore, the theory that we shall develop here generalizes notions of
‘measure’ and ‘averaging’ to systems far from equilibrium, and transports us into
regions hitherto inaccessible with the tools of equilibrium statistical mechanics.

By going to a description in terms of the asymptotic time evolution operators
we give up tracking individual trajectories for long times, but trade in the un-
controllable trajectories for a powerful description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for transport
coeflicients such as the diffusion constants without any probabilistic assumptions.
The classical Boltzmann equation for evolution of 1-particle density is based on
stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle col-
lision. It is a very good approximate description of dilute gas dynamics, but
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a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cy-
cle averaging formulas such as the cycle expansion for the diffusion constant
2dD = lim7_(x(T)?>)/T of a particle diffusing chaotically across a spatially-
periodic array,

N
)k+1 (I’lp] ot npk)

2d (T>( Z (-1 |Ap1 A ’ (1.18)

Pkl

where 1, is a translation along one period of a spatially periodic ‘runaway’ tra-
jectory p. Such formulas are exact; the issue in their applications is what are
the most effective schemes of estimating the infinite cycle sums required for their
evaluation. Unlike most statistical mechanics, here there are no phenomenological
macroscopic parameters; quantities such as transport coefficients are calculable to
any desired accuracy from the microscopic dynamics.

The concepts of equilibrium statistical mechanics do help us, however, to un-
derstand the ways in which the simple-minded periodic orbit theory falters. A
nonhyperbolicity of the dynamics manifests itself in power-law correlations and
even ‘phase transitions.’

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is un-
happy in its own way.
— Anna Karenina, by Leo Tolstoy

With initial data accuracy 6x = |0x(0)| and system size L, a trajectory is predictable
only up to the finite Lyapunov time (1.1), TLysp = A~'1In|L/6x|. Beyond that,
chaos rules. And so the most successful applications of ‘chaos theory’ have so far
been to problems where observation time is much longer than a typical ‘turnover’
time, such as statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics, where the notion of tracking accurately a
given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguishable
from the probabilistic random walk diffusion, in low dimensional settings the de-
terministic diffusion is quite recognizable, through the fractal dependence of the
diffusion constant on the system parameters, and perhaps through non-Gaussion
relaxation to equilibrium (non-vanishing Burnett coefficients).

Several tabletop experiments that could measure transport on macroscopic
scales are sketched in figure 1.14 (each a tabletop, but an expensive tabletop).
Figure 1.14 (a) depicts a ‘tilted washboard;’ a particle in a gravity field bouncing
down the washboard, losing some energy at each bounce, or a charged particle in
a constant electric field trickling across a periodic condensed-matter device. The
interplay between chaotic dynamics and energy loss results in a terminal mean ve-
locity/conductance, a function of the washboard tilt or external electric field that
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Figure 1.14: (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip drag
force. (Y. Lan)

(c) Velocity

the periodic theory can predict accurately. Figure 1.14 (b) depicts a ‘cold atom lat-
tice’ of very accurate spatial periodicity, with a dilute cloud of atoms placed onto
a standing wave established by strong laser fields. Interaction of gravity with gen-
tle time-periodic jiggling of the EM fields induces a diffusion of the atomic cloud,
with a diffusion constant predicted by the periodic orbit theory. Figure 1.14 (c)
depicts a tip of an atomic force microscope (AFM) bouncing against a periodic
atomic surface moving at a constant velocity. The frictional drag experienced
is the interplay of the chaotic bouncing of the tip and the energy loss at each
tip/surface collision, accurately predicted by the periodic orbit theory. None of
these experiments have actually been carried out, (save for some numerical exper-
imentation), but are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lattice
diffusion constant, and AFM tip drag force. But the experimental proposal is sex-

ier than that, and goes into the heart of dynamical systems theory. romark Ad.1

Smale 1960s theory of the hyperbolic structure of the non—wandering set
(AKA ‘horseshoe’) was motivated by his ‘structural stability’ conjecture, which -
in non-technical terms - asserts that all trajectories of a chaotic dynamical system
deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in figure 1.14 (a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one of the
groves. An arbitrarily small change in the washboard slope can result in loss of
this collision, change a forward scattering into a backward scattering, and lead to
a discontinuous contribution to the mean velocity. You might hold out hope that
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such events are rare and average out, but not so - a loss of a short cycle leads to a
significant change in the cycle-expansion formula for a transport coefficient, such
as (1.18).

When we write an equation, it is typically parameterized by a set of parameters
by as coupling strengths, and we think of dynamical systems obtained by a smooth
variation of a parameter as a ‘family.” We would expect measurable predictions to
also vary smoothly, i.e., be ‘structurally stable.’

But dynamical systems families are ‘families’ only in a name. That the struc-
tural stability conjecture turned out to be badly wrong is, however, not a blow for
chaotic dynamics. Quite to the contrary, it is actually a virtue, perhaps the most
dramatic experimentally measurable prediction of chaotic dynamics.

As long as microscopic periodicity is exact, the prediction is counterintuitive
for a physicist - transport coeflicients are not smooth functions of system parame-
ters, rather they are non-monotonic, nowhere differentiable functions. Conversely,
if the macroscopic measurement yields a smooth dependence of the transport on
system parameters, the periodicity of the microscopic lattice is degraded by impu-
rities, and probabilistic assumptions of traditional statistical mechanics apply. So
the proposal is to —by measuring macroscopic transport— conductance, diffusion,
drag —observe determinism on nanoscales, and —for example— determine whether
an atomic surface is clean.

The signatures of deterministic chaos are even more baffling to an engineer:
a small increase of pressure across a pipe exhibiting turbulent flow does not nec-
essarily lead to an increase in the mean flow; mean flow dependence on pressure
drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom are
important, and chaotic motion time and space scales are commensurate with the
external driving and spatial scales. Further degrees of freedom act as noise that
smooths out the above fractal effects and restores a smooth functional dependence
of transport coefficients on external parameters.

1.9 What is not in ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as I can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer
This book offers everyman a breach into a domain hitherto reputed unreachable,

a domain traditionally traversed only by mathematical physicists and mathemati-
cians. What distinguishes it from mathematics is the insistence on computability
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and numerical convergence of methods offered. A rigorous proof, the end of the
story as far as a mathematician is concerned, might state that in a given setting,
for times in excess of 103? years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use to a hard-working
plumber, especially if her hands-on experience is that within the span of a few
typical ‘turnaround’ times the dynamics seems to settle on a (transient?) attractor
of dimension less than 3. If rigor, magic, fractals or brains is your thing, read
remark 1.5 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unchecked: the
nuts and bolt of the theory include ODEs, PDEs, stochastic ODEs, path integrals,
group theory, coding theory, graph theory, ergodic theory, linear operator theory,
quantum mechanics, etc.. We include material into the text proper on ‘need-to-
know’ basis, relegate technical details to appendices, and give pointers to further
reading in the remarks at the end of each chapter.

Résumé

This text is an exposition of the best of all possible theories of deterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on
describing the geometry of the space of possible outcomes, and evaluating av-
erages over this space, rather than attempting the impossible: precise prediction
of individual trajectories. The dynamics of densities of trajectories is described
in terms of evolution operators. In the evolution operator formalism the dynami-
cal averages are given by exact formulas, extracted from the spectra of evolution
operators. The key tools are trace formulas and spectral determinants.

The theory of evaluation of the spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a few fundamental cycles. These short cycles
capture the skeletal topology of the motion on a strange attractor/repeller in the
sense that any long orbit can approximately be pieced together from the nearby pe-
riodic orbits of finite length. This notion is made precise by approximating orbits
by prime cycles, and evaluating the associated curvatures. A curvature measures
the deviation of a longer cycle from its approximation by shorter cycles; smooth-
ness and the local instability of the flow implies exponential (or faster) fall-off for
(almost) all curvatures. Cycle expansions offer an efficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the hy-
perbolicity assumption, i.e., the assumption of exponential shrinkage of all strips
of the pinball repeller. By dropping the a; prefactors in (1.5), we have given up on

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022



CHAPTER 1. OVERTURE 29

any possibility of recovering the precise distribution of starting x (which should
anyhow be impossible due to the exponential growth of errors), but in exchange
we gain an effective description of the asymptotic behavior of the system. The
pleasant surprise of cycle expansions (1.10) is that the infinite time behavior of an
unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in ChaosBook — un-
stable flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning,
discrete symmetries, periodic orbits, averaging over chaotic sets, evolution oper-
ators, dynamical zeta functions, spectral determinants, cycle expansions, quantum
trace formulas, zeta functions, and so on to the semiclassical quantization of he-
lium — should give the reader some confidence in the broad sway of the theory.
The formalism should work for any average over any chaotic set which satisfies
two conditions:

1. the weight associated with the observable under consideration is multiplica-
tive along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities characterizing
chaotic systems, such as the escape rates, Lyapunov exponents, transport coeffi-
cients and quantum eigenvalues. A big surprise is that the semi-classical quantum
mechanics of systems classically chaotic is very much like the classical mechanics
of chaotic systems; both are described by zeta functions and cycle expansions of
the same form, with the same dependence on the topology of the classical flow.

But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost su-
perfluous.

—Gibbon

Commentary

Remark 1.1. Preparatory nonlinear dynamics texts.  ChaosBook aims to bridge the
gap between the physics and mathematics dynamical systems literature. The intended au-
dience is Henriette Roux, the perfect physics graduate student with a theoretical bent who
does not believe anything she is told. As a complementary presentation we recommend
Gaspard’s monograph [14] which covers much of the same ground in a highly readable
and scholarly manner.

As far as the prerequisites are concerned—ChaosBook is not an introduction to non-
linear dynamics. Nonlinear science requires a one semester basic course (advanced un-
dergraduate or first year graduate). A good start is the textbook by Strogatz [45], an
introduction to the applied mathematician’s visualization of flows, fixed points, mani-
folds, bifurcations. It is the most accessible introduction to nonlinear dynamics—a book

intro - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022



CHAPTER 1. OVERTURE 30

on differential equations in nonlinear disguise, and its broadly chosen examples and many
exercises make it a favorite with students. It is not strong on chaos. There the textbook
of Alligood, Sauer and Yorke [2] is preferable: an elegant introduction to maps, chaos,
period doubling, symbolic dynamics, fractals, dimensions—a good companion to Chaos-
Book. Introduction more comfortable to physicists is the textbook by Ott [30], with the
baker’s map used to illustrate many key techniques in analysis of chaotic systems. Ott is
perhaps harder than the above two as the first textbook on nonlinear dynamics. Sprott [44]
and Jackson [19] textbooks are very useful compendia of the *70s and onward ‘chaos’ lit-
erature which we, in the spirit of promises made in sect. 1.1, tend to pass over in silence.

An introductory course should give students skills in qualitative and numerical anal-
ysis of dynamical systems for short times (trajectories, fixed points, bifurcations) and
familiarize them with Cantor sets and symbolic dynamics for chaotic systems. For the
dynamical systems material covered here in chapters 2 to 4, as well as for the in-depth
study of bifurcation theory we warmly recommend Kuznetsov [24]. A good introduc-
tion to numerical experimentation with physically realistic systems is Tufillaro, Abbott,
and Reilly [47]. Willis [49] short course on Equilibria, periodic orbits and computing
them, is a very nice, student friendly introduction to numerical methods that underpin
modern fluid-dynamical applications of the theory developed in ChaosBook, with online
code samples. Korsch and Jodl [23] and Nusse and Yorke [29] also emphasize hands-on
approach to dynamics.

There are many excellent online introductory chaos courses. For some, see
ChaosBook.org/course | /preparatory.html. Robert Ghrist’s mesmerizing silent movies are
perfect complement to them.

With any of the above, and a graduate level-exposure to statistical mechanics, partial
differential equations and quantum mechanics, the stage is set for any of the one-semester
advanced courses based on ChaosBook.

Question 1.2. Henriette Roux asks
Q You do not do bifurcations?
A No, we do not do bifurcations here. You should already know all about bifurcations.

Remark 1.2. ChaosBook based courses. The best ChaosBook course is the
ChaosBook.org/coursel course. Other courses taught so far (for a listing, consult Chaos-
Book.org/courses) start out with the introductory chapters on qualitative dynamics, sym-
bolic dynamics and flows, and then continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formulas, zeta func-
tions, cycle expansions, Lyapunov exponents, billiards, transport coefficients, thermody-
namic formalism, period doubling, renormalization operators. For a quick tour, take Omri
Gat’s 2015 Periodic orbit theory of chaos (all of it in a Mathematica notebook) for a spin.
A graduate level introduction to statistical mechanics from the dynamical point view is
given by Dorfman [!1]; the Gaspard monograph [14] covers the same ground in more
depth. Driebe monograph [12] offers a nice introduction to the problem of irreversibil-
ity in dynamics. The role of ‘chaos’ in statistical mechanics is critically dissected by
Bricmont in his highly readable essay “Science of Chaos or Chaos in Science?” [10].

Spatiotemporal dynamical systems. Partial differential equations for dissipative sys-
tems, weak amplitude expansions, normal forms, symmetries and bifurcations, pseu-
dospectral methods, spatiotemporal chaos, turbulence. Holmes, Lumley and Berkooz [ 1 8]
offer a delightful discussion of why the Kuramoto-Sivashinsky equation deserves study as
a staging ground for a dynamical approach to study of turbulence in full-fledged Navier-
Stokes boundary shear flows (consult chapter 30).
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Quantum chaos. Semiclassical propagators, density of states, trace formulas, semiclassi-
cal spectral determinants, billiards, semiclassical helium, diffraction, creeping, tunneling,
higher-order 7 corrections. To read about this, hop to the quantum chaos introduction,
chapter 35.

Question 1.3. Henriette Roux asks

Q Why do they always teach classical mechanics first, nonlinear dynamics second? Isn’t
that upside down?

A Beats me.

Remark 1.3. ‘Strange attractor’. A ‘strange attractor’ appeared for the first time [38,

] in a 1971 David Ruelle and Floris Takens article [37]. The article was meant to
clarify a small mathematical point concerning hydrodynamic turbulence, and authors as-
sumed the article would go unnoticed and be immediately forgotten. Instead, it went viral,
becoming one of most cited publications in nonlinear science.

Remark 1.4. Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbook. The role of unstable periodic
orbits was already fully appreciated by Poincaré [8, 33], who noted that hidden in the ap-
parent chaos is a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths and
self-similar structure, and suggested that the cycles should be the key to chaotic dynamics.
Periodic orbits have been at core of much of the mathematical work on the theory of the
classical and quantum dynamical systems ever since. We refer the reader to the reprint
selection [26] for an overview of some of that literature.

Remark 1.5. If you seek rigor? If you find ChaosBook not rigorous enough,
you should turn to the mathematics literature. We give a short shrift to the theory of
bifurcations, and the KAM (Kolmogorov-Arnol’d-Moser) tori make only a tangential
appearance. We recommend Robinson’s advanced graduate level exposition of dynam-
ical systems theory [34] from Smale perspective. The most extensive reference is the
treatise by Katok and Hasselblatt [21], an impressive compendium of modern dynami-
cal systems theory. The fundamental papers in this field, all still valuable reading, are
Smale [43], Bowen [9] and Sinai [42]. Sinai’s paper is prescient and offers a vision and
a program that ties together dynamical systems and statistical mechanics. It is written
for readers versed in statistical mechanics. For a dynamical systems exposition, consult
Anosov and Sinai [3]. Markov partitions were introduced by Sinai in ref. [41]. The
classical text (though certainly not an easy read) on the subject of dynamical zeta func-
tions is Ruelle’s Thermodynamic Formalism: The Mathematical Structure of Equilibrium
Statistical Mechanics [36]. In Ruelle’s monograph transfer operator technique (or the
‘Perron-Frobenius theory’) and Smale’s theory of hyperbolic flows are applied to zeta
functions and correlation functions. The status of the theory from Ruelle’s point of view
is compactly summarized in his 1995 Pisa lectures [35]. Further excellent mathemat-
ical references on thermodynamic formalism are Parry and Pollicott’s monograph [31]
with emphasis on the symbolic dynamics aspects of the formalism, and Baladi’s clear and
compact reviews of the theory of dynamical zeta functions [5, 6].

Remark 1.6. If you seek magic? ChaosBook resolutely skirts number-theoretical
magic such as spaces of constant negative curvature, Poincaré tilings, modular domains,
Selberg Zeta functions, Riemann hypothesis, ... Why? While this beautiful mathematics
has been very inspirational, especially in studies of quantum chaos, almost no powerful
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method in its repertoire survives a transplant to a physical system that you are likely to
care about.

Remark 1.7. Grasshoppers vs. butterflies.  The ‘sensitivity to initial conditions’ was
discussed by Maxwell, then 30 years later by Poincaré. In weather prediction, the Lorenz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopper Effect’ in a book review
by W. S. Franklin [13]. In 1963 Lorenz ascribed a ‘seagull effect’ to an unnamed mete-
orologist, and in 1972 he repackaged it as the ‘Butterfly Effect’. Jamie L. Vernon [48]
writes: “During the 139th meeting of the American Association for the Advancement of
Science, Edward Lorenz posed a question, ‘Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?’ Lorenz’s insight called into question laws introduced as early
as 1687 by Sir Isaac Newton suggesting that nature is a probabilistic mechanical system,
‘a clockwork universe.” Similarly, Lorenz challenged Pierre-Simon Laplace, who argued
that unpredictability has no place in the universe, asserting that if we knew all the phys-
ical laws of nature, then ‘nothing would be uncertain and the future, as the past, would
be present to [our] eyes.” ” In this video @ Sabine Hossenfelder explains what Lorenz
really meant by the ‘Butterfly Effect’.

Remark 1.8. Sorry, no schmactals!

After all, it’s impossible to read a single tweet, or hear
him speak a sentence or two, without staring deep into
the abyss. He turns being artless into an art form; he is a
Picasso of pettiness; a Shakespeare of s**t. His faults are
fractal: even his flaws have flaws, and so on ad infinitum.

—Nate White

Question 1.4. Henriette Roux asks

Q Before any serious study of the topic, fractals would have been the first word to come
to my mind at the mention of chaos theory. So, if I may, why are fractals on the outs?

A We try to explain why in sect. 1.3.3: it’s a regrettable historical accident — fractal
pictures are cute, but not how the theory of chaotic dynamics actually works, which is a
subject much deeper and intellectually more beautiful — hence ChaosBook. Basically, in
the 1980’s physicist were trying to learn the new subject, and spent much time on 1-, 2-,
3-dimensional systems that they could visualize playing with computers. Some insights
were fruitful in understanding high-dimensional, physical problems. Fractals were not
one of them.

On a hype-free planet, the totality of what Hale & Kogak [17] have to say about this baby-
boomer phenomenon would suffice: “No exposition of planar maps would be complete
without mentioning fractals; so we mention them. Some of the popular resources are
Barnsley [7] and Peitgen & Richter [32].”

But, as people ask, we must say something about them. The word ‘fractal’ was
coined by Mandelbrot [27]. Addison’s introduction to fractal dimensions [!] offers a
well-motivated entry into this field. ChaosBook skirts mathematics and empirical practice
of fractal analysis, such as Hausdorff and fractal dimensions. For reasons that remain
mysterious to the authors - perhaps so that Mandelbrot could refer to himself both as the
mother of fractals and the grandmother of multifractals - some physics literature refers
to any fractal generated by more than one scale as a ‘multi’-fractal. This usage divides
fractals into 2 classes; one consisting of the canonical 1/3’s Cantor set and the Serapinski
gasket, and the second consisting of anything else, including all cases of physical interest.
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A bit like naming all one-legged creatures ‘monopeds’, and then claiming the credit for
the sole discovery of all two- or more long-leggedy beasties, and claiming the honor
of naming them ‘multipeds’.  Even though the experimental evidence for the fractal
geometry of nature is circumstantial [4], in studies of probabilistically assembled fractal
aggregates such as diffusion limited aggregates (DLA) better measures of ‘complexity’
are lacking. For deterministic systems, however, we can do much better, by studying
physically motivated and experimentally measurable quantities (escape rates, diffusion
coefficients, energy dissipation rates of turbulent flows, semiclassical atomic spectra, ...).
That’s what the ChaosBook is about.

Remark 1.9. Dynamics is!  This comes up a lot, so might just as well dispose of it
right away. “Dynamics is,” not “Dynamics are:”

dy-nam-ics (used with a singular verb) The branch of mechanics that deals
with the motion and equilibrium of systems under the action of forces, usu-
ally from outside the system.

Economist style guide says:

“A government, a party, [...] are all it and take a singular verb. So does
a country, even if its name looks plural. Thus The Philippines has a con-
gressional system, as does the United States; the Netherlands does not.
The United Nations is also singular. So are acoustics, ballistics, dynamics,
economics, kinetics, mathematics, mechanics, physics, politics and statics
when being used generally, without the definite article. But such -ics words
are plural when preceded by the, or the plus an adjective, or with a posses-
sive. [...] “The dynamics of the dynasty were dynamite’...

Remark 1.10. Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, there is a line of research in neu-
ronal dynamics that focuses on possible unstable periodic states, described for example in
refs. [15, 16, 28, 40].
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A guide to exercises

God can afford to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try
to work through the essential exercises. As not to fragment the text, the exercises
are indicated by text margin boxes such as the one on this margin, and collected
at the end of each chapter. By the end of a (two-semester) course you should have
completed at least three small projects: (a) compute everything for a 1-dimen-
sional repeller, (b) compute escape rate for a 3-disk game of pinball, (c) compute
a part of the quantum 3-disk game of pinball, or the helium spectrum, or if you
are interested in statistical rather than the quantum mechanics, compute a transport
coeflicient. The essential steps are:

exercise 23.2

e Dynamics
. count prime cycles, exercise 1.1, exercise 11.3, exercise 14.1
. pinball simulator, exercise 9.1, exercise 16.4
. pinball stability, exercise 16.6, exercise 16.4

1
2
3
4. pinball periodic orbits, exercise 16.5, exercise 16.3
5. helium integrator, exercise 2.11, exercise 7.4

6

. helium periodic orbits, exercise 16.10
e Averaging, numerical
1. pinball escape rate, exercise 20.3
o Averaging, periodic orbits

. cycle expansions, exercise 23.1, exercise 23.2
. pinball escape rate, exercise 23.4, exercise 23.5

. cycle expansions for averages, exercise 23.1, exercise 27.3

. pruning, transition graphs, exercise 18.6

1
2
3
4. cycle expansions for diffusion, exercise 24.1
5
6. desymmetrization exercise 25.1

7

. intermittency, phase transitions, exercise 29.6

The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by a chili &, or any number of ***
stars. If you solve one of those, it is probably worth a publication. Solutions to
many of the problems are available upon request. A clean solution, a pretty figure,
or a nice exercise that you contribute to ChaosBook will be gratefully acknowl-
edged. Often going through a solution is more instructive than reading the chapter
that problem is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics.  As periodic trajectories 1.2. Sensitivity to initial conditions. Assume that two pin-

will turn out to be our main tool to breach deep into
the realm of chaos, it pays to start familiarizing oneself
with them now by sketching and counting the few short-
est prime cycles (we return to this in sect. 18.4). Show
that the 3-disk pinball has 3 - 2"~! itineraries of length
n. List periodic orbits of lengths 2, 3, 4, 5, ---. Verify
that the shortest 3-disk prime cycles are 12, 13, 23, 123,
132, 1213, 1232, 1323, 12123, - - -. Try to sketch them.
(continued in exercise 15.7)

exerIntro - 28aug2007

ball trajectories start out parallel, but separated by 1
Angstrém, and the disks are of radius a = 1 cm and
center-to-center separation R = 6 cm. Try to estimate
in how many bounces the separation will grow to the
size of system (assuming that the trajectories have been
picked so they remain trapped for at least that long). Es-
timate the Who’s Pinball Wizard’s typical score (num-
ber of bounces) in a game without cheating, by hook or
crook (by the end of chapter 23 you should be in position
to make very accurate estimates).

ChaosBook.org edition17.5.5, Feb 3 2022



Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...] The
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanovi¢ and E.A. Spiegel)

periodic, and aperiodic. An ‘aperiodic’ solution is either ‘wandering’ or

belongs to a non—wandering set, which in turn can be decomposed into
into chain-recurrent sets. Various cases are illustrated with concrete examples,
such as the Rossler and Lorenz systems.

‘ ” J E DEFINE a dynamical system (M, f) and classify its solutions as equilibria,

fast track:
chapter 19, p. 370

2.1 Dynamical systems

I would have written a shorter book, but I didn’t have the
time.
— Channeling Blaise Pascal

In a dynamical system we observe the world as it evolves with time. We express

39
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Figure 2.1: A trajectory traced out by the evolution
rule f'. Starting from the state space point x, after a
time ¢, the point is at f*(x). X

our observations as numbers and record how they change; given sufficiently de-
tailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planets against the celestial
firmament provides an example. As the fixed stars traverse the sky from East to
West, the planets distinguish themselves by moving relative to the fixed stars. An-
cients discovered that by knowing a sequence of planet’s positions—latitudes and
longitudes—its future position could be predicted. '

For the solar system, tracking the latitude and longitude in the celestial sphere
suffices to completely specify the planet’s apparent motion. All possible values for
positions and velocities of the planets form the phase space of the system. More
generally, a state of a physical system, at a given instant in time, can be represented
by a single point in an abstract space called state space M (mnemonic: curly ‘M’
for a ‘manifold’). As the system changes, so does the representative point in state
space. We refer to the evolution of the totality of such points as a flow or dynamics.
The function f, which specifies the representative point at time ¢, is the evolution
rule.

If there is a definite rule f that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministic dynamical system,
the evolution rule takes one point of the state space and maps it into exactly one
point. However, this is not always possible. For example, knowing the tempera-
ture today is not enough to predict the temperature tomorrow; knowing the value
of a stock today will not determine its value tomorrow. With a sufficiently large
state space, we might be able to formulate an evolution rule. For example, this
expanded state space allows us to predict tomorrow’s temperature by measuring
points over the entire atmosphere of the planet. Even this is not quite true, and we
are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-
ries cannot intersect. We say ‘almost’ because there might exist a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may
think such sets a nuisance, but it is quite the contrary—they will enable us to parti-
tion state space, so that the dynamics can be better understood.

Dynamical evolution is an initial value problem, with d numbers sufficient to
determine what will happen time ¢ later. Locally, the state space M looks like
R¢. The local linear vector space (tangent space) at any given state space point
x € M can be thought of as a ‘chart’ (however, we shall use this term in a more

! In order not to interrupt the flow of exposition, the examples are always relegated to a separate
section, here sect. 2.6. But to understand the exposition, you have to work through the examples.

2 Measure zero? Think of rational numbers in a unit interval. They are dense (there is infinity
of them in any finite length interval), but you can throw darts at them until cows come home, and —
with probability 1 — never hit one.
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Figure 2.2: A flow: The evolution rule f* can be used
to map a region M; of the state space into the region

J'M)).

restricted sense, only after the continuous time and continuous symmetries have
been ‘quotiented out’, see sects. 3.1 and 13.1). Globally, the state space may be
a more complicated manifold such as a torus, a cylinder, or some other smooth
geometric object. By manifold we mean a smooth differentiable d-dimensional
space which looks like R? only locally. For example, the state space flow of an
autonomous Hamiltonian system is confined to a curved constant energy hyper-
surface. When we need to stress that the dimension d of M is greater than one,
we may refer to the point x € M as x; where i = 1,2,3,...,d. If the dynamics
is described by a set of PDEs (partial differential equations), the state space is
the infinite-dimensional function space, with a given instantaneous state or field
u = u(x) labeled by a set of continuous indices x. The evolution rule f* : M — M
tells us where the initial state x lands in M after the time interval ¢.

The pair (M, f) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f* can be differentiated as many
times as needed. Its action on a point x is sometimes indicated by f(x, f) to remind
us that f is really a function of two variables: the time and a point in state space.
Note that time is relative rather than absolute, so only the time interval is neces-
sary. This follows from the fact that a point in state space completely determines
all future evolution, and to locate where it lands in the future it is not necessary to
know anything besides the elapsed time interval. The time parameter can be a real
variable (f € R), in which case the evolution is called a flow, or an integer (¢ € Z),
in which case the evolution advances in discrete steps in time, given by iteration
of a map. The evolution parameter need not be the physical time; for example, a
time-stationary solution of a partial differential equation is parameterized by spa-
tial variables. In such situations one talks of a ‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-
selves through their orbits: given a state xp at initial time #y, the

flow map fr xo = x(xo0,0) (2.1)

yields the state x(¢) time # later. This evolution rule traces out a sequence of points
x(t) = f'(x0), the orbit through the point xo = x(0). We usually omit the x, label
from x(xp, ). By extension, we also talk of the evolution of a region M; of the state
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space. The language of continuum mechanics is quite helpful in visualizing such
deformations, not only in 3-dimensional space, but also in state spaces of arbitrary
dimension. Consider a motion f from the undeformed (reference or initial) region
(a ‘body’) M; to the deformed (current or final) region M; = f'(M;). We may
write the motion as a map

ft . Mi N Mf , (22)

such that every xg in M; is mapped to an x = f’(xg) in My, as in figure 2.2, where
x denotes the state in the deformed region, and x represents the state in the initial,
undeformed region.

The set of points that belong to the infinite-time trajectory (2.1) of a given
point xy is called the orbit of xo;

time orbit of xy : My, c M 2.3)

we shall talk about forward orbits, backward orbits, periodic orbits (see figure 2.3),
etc.. For a flow, a time orbit is a 1-dimensional continuous curve; for a map, it is a
sequence of points. In ChaosBook ‘trajectory’ refers to a set of points or a curve
segment traced out by x(¢) over a finite time interval ¢. ‘Orbit’ refers to the totality
of states that can be reached from xp, with state space M stratified into a union
of such orbits (each M,, labeled by a single point belonging to the set, xo = x(0)
for example). Under time evolution a trajectory segment is mapped into another
trajectory segment, but points within an orbit are only shifted; the orbit considered
as a set is unchanged. Hence an orbit is a dynamically invariant notion.

The central idea of ChaosBook is to replace the complicated, ergodic, asymp-
totic t+ — oo dynamics by a systematic hierarchy of compact time-invariant sets or
compact orbits (equilibria, periodic orbits, invariant tori, - - - ).

2.1.1 A classification of possible motions?

Ah, yes, Judgie, everything will go away someday. It’s the
waiting that’s so exquisitely wearing.
— Duke Ellington, to Robert Traver

What kinds of orbits are there? This is a grand question, and there are many
answers. Here is a first attempt to classify all possible orbits:

stationary:  f'(x) = x for all ¢
periodic:  f'(x) = f*Tr(x) for a given minimum period 7,
aperiodic:  f'(x) # f(x) forallt #1 .

A periodic orbit (or a cycle) p is the set of points M, C M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on a
periodic orbit as a periodic point, see figure 2.3. Periodic orbits form a very small
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Figure 2.3: A periodic point returns to the initial point
after a finite time, x = f77(x). Periodic orbit p is the

set of periodic points p = M, = {x1, x5, - - - } swept out
by the trajectory of any one of them in the finite time
T

p

subset of the state space, in the same sense that rational numbers are a set of zero
measure on the unit interval.

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with the notion of
periodic motion generalized to quasiperiodic (the superposition of M incommen-
surate frequencies) motion on a smooth torus, and families of solutions related
by a continuous symmetry. Further examples are afforded by stable / unstable
manifolds (swept by semi-infinite curves originating at an equilibrium along each
stability eigenvector) and the most baffling of all invariant orbits, the infinite time
ergodic orbits.

The ancients tried to make sense of all dynamics in terms of periodic motions,
epicycles, what we today call ‘integrable systems’. The embarrassing truth is that
for a generic dynamical system almost all motions are aperiodic. So we refine the
classification by dividing aperiodic motions into two subtypes: those that wander
off, and those that keep coming back.

A point x € M is called a wandering point, if there exists an open neighbor-
hood M of x to which the orbit never returns

fl(x) ¢ My forall 7> t,i,- 2.4)

In physics literature, the dynamics of such a state is often referred to as transient.

Wandering points do not take part in the long-time dynamics, so your first task
is to prune them from M as well as you can. What remains envelops the set of the
long-time orbits, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity and replace it by the notion of recurrence. A point
is recurrent or non-wandering, if for any open neighborhood My of x and any
time t,,,;, there exists a later time ¢, such that

fl(x) e My. (2.5)

In other words, the orbit of a non-wandering point reenters the neighborhood
M infinitely often. We shall denote the non—wandering set of f by Q, i.e., the
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union of all the non-wandering points of M. This non—-wandering set of f is key
to understanding the long-time behavior of a dynamical system; all calculations
undertaken here will be carried out on non—wandering sets.

So much about individual trajectories. What about clouds of initial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flow is globally contracting
onto a subset of M which we shall refer to as the attractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point (a sink), a periodic orbit
(a limit cycle), aperiodic, or any combination of the above. The most interesting
case is that of an aperiodic recurrent attractor, to which we shall refer loosely as a
strange attractor. We say ‘loosely’, as will soon become apparent that diagnosing
and proving existence of a genuine, card-carrying strange attractor is a highly
nontrivial undertaking; it requires explaining notions like ‘transitive’ and ‘chain-
recurrent’ that we will be ready to discuss only in sect. 17.1.

Conversely, a repeller is a non—wandering set ) that is enclosed by a con-
nected state space volume My, where nearly all points eventually exit My. An
example of a repeller is not hard to come by-the pinball game of sect. 1.3 is a
simple chaotic repeller. Q, the non—wandering set of f, is the union of all invari-
ant sets: attracting/repelling fixed points, strange attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that al-
most all non-wandering points are aperiodic, that we have given up the ancients’
fixation on periodic motions. Nothing could be further from the truth. If longer
and longer cycles approximate more and more accurately finite segments of ape-
riodic trajectories, we can establish control over non—wandering sets by defining
them as the closure of the union of all periodic points.

Before we can work out an example of a non—wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee
A flow is a continuous-time dynamical system. The evolution rule f* is a family

of mappings of M — M parameterized by t+ € R. Because ¢ represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

(@) f%x)=x (in O time there is no motion)
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(d) f(f(x) = f*'(x) (the evolution law is the same at all times)

(¢) the mapping (x,7) — f'(x) from M X R into M is continuous.

We shall often find it convenient to represent functional composition by ‘o’:
fT=fe P =110, (2.6)

The family of mappings f(x) thus forms a continuous (1-parameter forward Lie
semi-) group. Why ‘semi-’group? It may fail to form a group if the dynamics
is not reversible, and the rule f’(x) cannot be used to rerun the dynamics back-
wards in time, with negative ¢; with no reversibility, we cannot define the inverse
F(f'(x)) = fO(x) = x, in which case the family of mappings f’(x) does not
form a group. The dynamics of an exceedingly large number of situations that lie
beyond Lyapunov time cannot be run backwards, such as the dynamics of asymp-
totic attractors, dissipative partial differential equations, systems with noise, and
non-invertible maps. Hence, there’s a circumspect emphasis on semigroups. On
the other hand, there are many settings of physical interest, where dynamics is
reversible (such as finite-dimensional Hamiltonian flows), and where the family
of evolution maps f* does form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory, a smooth curve embedded in the state space as

x(t+71) = f(x0) = f(f(x0,0),7) (2.7)
and express the tangent to the curve at point x(¢) as
dx .
i O f(f (x0, 1), Dl =g = X(1), (2.8)
Tlr=0

the time derivative of the evolution rule, a vector evaluated at the point x(¢). By
considering all possible orbits, we obtain the vector x(¢) at any point x € M. This
vector field is a (generalized) velocity field:

X(t) = v(x). 2.9)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x) that
describes the evolution of a mechanical system. Equations of mechanics may ap-
pear different in form from (2.9), as they often involve higher time derivatives, but
an equation that is second or higher order in time can always be rewritten as a set
of first order equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.9). At each point of the
state space, a vector indicates the local direction in which the orbit evolves. The
length of the vector |v(x)| is the speed at point x, and the direction and length of
v(x) changes from point to point (warning: we have slipped into a highly non-
trivial notion of a “norm” or distance in state space). When the state space is a
complicated manifold embedded in R?, one can no longer think of the vector field
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as being embedded in the state space. Instead, we have to imagine that each point ({3

x in this state space is attached to a different tangent plane 7 M. The vector field
lives in the union of all these tangent planes, a space called the rangent bundle

™™= ] TM,. (2.10)
xeM
T M, is called a fiber at x, hence the whole thing is called the fiber bundle. Locally
a fiber bundle looks like the product of two R¢ spaces. Just relax: we’ll do our
best not to use such words again.

A simple example of a flow defined by a 2-dimensional vector field v(x) is
afforded by the unforced Duffing system, figure 2.4. The Lorenz flow of figure 2.5,
and Rossler flow of figure 2.6 , are representative 3-dimensional flows.

example 2.1 example 2.2 example 2.3
p. 62 p. 62 p. 62

The instantaneous velocity vector v is tangent to the orbit, except at the equi-
librium points, where it vanishes.

If v(xg) =0, (2.11)

X4 1s also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave, stationary solution, or steady
state. Our usage will be ‘equilibrium’ for a flow, ‘fixed point’ for a map. The
orbit remains forever stuck at x,. Otherwise the orbit passing through x( at time
t = 0 can be obtained by integrating the equations (2.9):

x(1) = ft(xo) =xp + f drv(x(1)), x(0) = xg. (2.12)
0

We shall consider here only autonomous flows, i.e., flows for which the vector
field v; is stationary, not explicitly dependent on time. A non-autonomous system

d
2 w1, 2.13)
dr
can always be converted into a system where time does not appear explicitly.
To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining

x = {y, }, with a stationary vector field
v(x) = [ w0 1) } . (2.14)

The new flow X = v(x) is autonomous, and the orbit y(7) can be read off x(¢) by
ignoring the last component of x.
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50

Figure 2.5: Lorenz “butterfly” strange attractor. (J.
Halcrow)

Figure 2.6: A trajectory of the Rossler flow at time
t =250. (G. Simon)

2.2.1 Lagrangian and Eulerian viewpoints

Continuum mechanics offers two profoundly different but mathematically equiva-
lent ways to represent a given state space flow, the ‘Lagrangian’ and the ‘Eulerian’
viewpoints. From the Eulerian perspective, one only cares about the current state
of the system. Think of a field of grass, where each blade of grass represents a
local velocity vector. From the Lagrangian viewpoint, one cares about where a
state space point comes from, and where it is going to. Think of this state space as
a bowl of linguini, where each noodle is an orbit labelled with an xy somewhere
along its path. In the Eulerian formulation, the flow is defined by specifying (2.9),
the velocity field v(x). In the Lagrangian formulation, it is given by the finite time
flow (2.12), i.e., the totality of the trajectories x(¢) comprising the deformed re-
gion, labeled by their origin xg in the initial undeformed region. If we mark the
orbit x(¢) by its initial point xg, we are describing the flow in the Lagrangian coor-
dinates. The Eulerian velocity v(x) at a fixed state space position x is equal to the
Lagrangian velocity v(x(t)) at the orbit passing through x at the instant 7. Because
f" is a single-valued function, any point on the orbit can be used to label the orbit.
The transport of the ‘material point’ xo at # = 0 to its value at the current point
x(f) = f'(xo) is a coordinate transformation from the Lagrangian coordinates to
the Eulerian coordinates.

In numerical work we are given the equations of motion (the local Eulerian
velocity field v(x)), but we care about the solutions of these equations (the global
Lagrangian flow). Conversely, in experimental work we observe ensembles of
Lagrangian trajectories from which we then extract the velocity field (in fluid
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dynamics this is achieved by particle image velocimetry (PIV)). Once an Eulerian
velocity field has been specified or extracted from the observational data, it is
straightforward to compute the Lagrangian trajectories, objects of great practical
interest in studies of long time dynamics, mixing, and transport.

fast track:
chapter 3, p. 67

2.3 Changing coordinates

Whatever else the students will need in later life, it is cer-
tain that they will have to handle changes of variables [...].
One should spend some time teaching in wealth of de-
tail relevant changes of variables. Luckily, some of these
are still included in textbooks, though no textbook now in
print awards this essential technique the importance it de-
serves. Worse, no one realizes that changes of variables
are not just a trick; they are a coherent theory [...].
— Ten Lessons, by Gian-Carlo Rota [39]

Problems are handed down to us in many shapes and forms, and they are not al-
ways expressed in the most convenient way. In order to simplify a given problem,
one may stretch, rotate, bend and mix the coordinates, but in doing so, the velocity
vector field will also change. The vector field lives in a (hyper)plane tangent to the
state space (remember the dreaded tangent bundle?), so changing the state space
coordinates affects the coordinates of the tangent space as well, in a way that we
will now describe.

Denote by A the conjugation function which maps the coordinates of the initial
state space M into the reparameterized state space M = h(M), with a point x € M
related to a point y € M by

y = hx) = (y1(x), y2(x), ..., ya(x)) .

The change of coordinates must be one-to-one, a diffeomorphism on open neigh-
borhoods in M and M, so given any point y we can go back to x = 4~ !(y). For
smooth flows the reparameterized dynamics should support the same number of
derivatives as the initial one. If / is a (piecewise) analytic function, we refer to &
as a smooth conjugacy.

What form does the velocity vector field X = v(x) take in the new coordinate
system y = h(x)? Let’s compute it first for a 1-dimensional dynamical system. Let
x(t) = f'(x) be the solution to the differential equation % = v(x) starting at x, and
y(t) = g'(y) be the solution to the same problem, but in the new coordinates. The
velocity vector field in the new coordinates follows from the chain rule:

dg' | _dvdx _d

wh) = d_(y) T dxdr  dx

. v(x).

t=0
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To understand this transformation for a state space of arbitrary dimension, a little
geometrical intuition pays off. The evolution rule g'(yo) on M can be computed
from the evolution rule f*(xo) on M by taking the initial point yo € M, going back
to M, evolving, and then mapping the final point x(f) back to M:

¥(0)=g'(vo) =ho foh™ (y). (2.15)

Here ‘o’ stands for functional composition /o f(x) = h(f(x)), so (2.15) is a short-
hand for y(f) = h(f'(h~'(y0))). Hence, h(x) is called a ‘conjugating function’; it is
a similarity transformation generalized to nonlinear coordinate transformations.

The vector field X = v(x) is locally tangent to the flow f7; it is related to the
flow by differentiation (2.8) along the orbit. The vector field y = w(y), y € M
locally tangent to g’, follows by the chain rule:

_ g _ 4t
vo) = 40| =g (hofren”m)
= KO ) = K () v(x). (2.16)

In order to rewrite the right-hand side as a function of y, note that the 9, differen-
tiation of h(h~'(y)) = y implies

oh

oh oh~!
Ox

-1 -1
-— Oh } . 2.17)
x Oy y

oh
=1 - 8_x(x) = [W@)

Thus, the equations of motion in the transformed coordinates, with the indices
reinstated, are

o' 17
Vi = wiy) = [W(w]__ V(). (2.18)

)

Imagine the state space as a rubber sheet with the flow lines drawn on it.
A coordinate change h corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersections of the distorted rubber
sheet. Trajectories that are closed loops in M will remain closed loops in the
new manifold M, but their shapes will change. Globally, & deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears the
tangent field by the coordinate transformation Jacobian matrix d;h;, yielding the
simple transformation law (2.16) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also
be reparameterized, s = s(¢), with the concomitant modification of (2.18). An
example is the 2-body collision regularization of the helium Hamiltonian (8.27),
to be undertaken in appendix A2.2.

In chapter 30 we shall dispose of the fear of ‘infinite-dimensional’ dynamical
systems—you might prefer to skip sect. 2.4 on first reading.
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u(x.t) \ 5

Figure 2.7: (a) The Ring of Fire, visualized as a
Bunsen burner flame flutter, with u = wu(x, ) the
velocity of the flame front at position x and time 7.

fixed time instant ¢ folded out on a plane, with spa-

(b) A profile of the velocity u of the flame front at k iy T 5 -1

tial periodicity u(x, t) = u(x+40, ) (from ref. [30]).

@ %7 0

2.4 Life in extreme dimensions

Sometimes I've believed as many as six impossible things
before breakfast.

— Lewis Carroll

Systems described by partial differential equations [PDEs] are said to be ‘infinite
dimensional’ dynamical systems, because in order to uniquely specify the state
of a spatially extended ‘field’, one needs infinitely many numbers, one for the
value of the field at each configuration space point. Even though the state space
is infinite-dimensional, the long-time dynamics of many such systems of physical
interest is finite-dimensional, contained within a ‘strange attractor’ or an ‘inertial
manifold’. Most of us find it hard to peer into four dimensions. How are we
to visualize -and why we would have any hope of visualizing- dynamics in such
extreme dimensions? A representative point is a point, and its trajectory is a curve
in any 2- or 3-dimensional projection, so that is not so hard. What is hard is to get
an understanding of relative disposition of different states. The coordinates have
to be chosen thoughtfully, since most of the interesting orbits appear minuiscule
in a randomly picked coordinate frame.

A dynamical system is specified by the pair (M, f), where d numbers uniquely
determine a state of the system, or the representative point x in the state space
manifold M. Here we focus on how one constructs such state space, and how
one visualizes a representative point x and its trajectory f’(x) time ¢ later. We
shall return to dynamics in chapter 30, where we examine the evolution rule f?
that maps a state space region M; into the region f'(M;) (see figure 2.2). Also
in chapter 30, we discuss the time-evolution equations for spatially-extended sys-
tems and the ‘turbulence’ that such systems exhibit.

2.4.1 Configuration space: a fluttering flame front

Consider the flame front flutter of gas burning on your kitchen stove. Such a ‘Bun-
sen burner’, invented by Géttingen chemistry prodigy Robert Bunsen in 1855,
entered popular culture in 1963 with the song “Ring of Fire” by Johnny Cash
et al. [6] . The flame front instabilities of a ‘Bunsen burner’ are perhaps the
most familiar example of a nonlinear system that exhibits ‘turbulence’ (or, more
modestly, ‘spatiotemporally chaotic behavior’): a typical configuration space (or
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Figure 2.8: A spatiotemporal plot of the Ring of
Fire “turbulent" solution, periodic domain u(x, 1) =
u(x + 207 V2, 1) is obtained by plotting the profile
of figure 2.7 (b) for successive time instants (ver-
tical axes). The color indicates the value of u at a
given position and instant in time (from ref. [9]).

the much abused word ‘physical’ space) visualization is sketched in figure 2.7.
Its state can be described by the ‘flame front velocity’ u = u(x, ) on a periodic
domain u(x,t) = u(x + L, 1).

The spatial, ‘configuration’ or ‘physical’ state space visualization of systems,
such as the ‘Ring of Fire’ (figure 2.7), offers little insight into their detailed dy-
namics. Furthermore, neither we do gain any additional insight into these dynam-
ics by studying a fixed time snapshot of velocity and vorticity fields using 3D
Navier-Stokes equations, a graphical representation of the flame front flutter in
time (figure 2.8), nor even a time-evolving video of a fluid. To truly understand
the dynamics of such systems, one must turn to the complementary, and often
more illuminating state space representations. In this context ‘flow’ refers to a
d-dimensional flow in the dynamical state space, not the flow of a fluid, and ‘ve-
locity’ to the state space tangent field x = v(x), not to the 3D configuration space
fluid velocity field u(x,7) € R3. A ‘representative point’ is a full specification of
the state x € M of the system, In today’s experiments or numerical simulations,
this is a set of anything from 16 to 10° numbers needed to specify a complete
snapshot of the flame front figure 2.7, or the state of volume of turbulent fluid in a
pipe at an instant in time.

chapter 30

2.4.2 Constructing a state space

Think globally, act locally. [ > ]
— Patrick Geddes

At this juncture, our everyday, plumber’s visual intuition actually interferes
with dynamical visualization of state space of a spatially-extended systems: while
the spatial dimension of the Ring of Fire is 1, its dimension as a dynamical system
is co. Absorbing this simple fact of life is the same rite of passage as going from
the 1-degree of freedom quantum mechanical oscillator to the ‘second quantiza-
tion” of quantum field theory, with its infinitely many quantum oscillator degrees
of freedom.

To develop some intuition about such dynamics we turn to experiments, or nu-
merical simulations, such as the Ring of Fire time evolution, figure 2.8. The first
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thing we note is that while the dynamics might be ‘turbulent’, for many such sys-
tems the long-time solutions tend to be smooth. This suggests that a discretization,
perhaps aided by interpolations such as n-point spatial derivatives, might give us
a representation of the dynamics of reasonable accuracy.

Discrete mesh: You can subdivide the configuration domain into a sufficiently
fine discrete grid of N boxes, replace space derivatives in the governing equations
by approximate discrete derivatives, and integrate a finite set of first order differ-
ential equations for the discretized spatial components u;(t) = u(jL/N, ), by any
integration routine you trust. Most often that’s the best you can do.

The next thing we note is that the solutions for many physical systems of
physical interest tend to be not only smooth, but also that the laws that govern
them are invariant in form under operations such as translations. For example,
in configuration space the fluttering flame front governing equations should be
invariant in their form under rotations, time translations, and reflection x — —x,
u— —u.

Spectral methods: The spatial periodicity u(x, ) = u(x + L, t) then suggests that
it might be convenient to work in the Fourier space,

+00

uen) = ) (t) €4, (2.19)

k=—00

where iy = xp + i yx = |iigle’®, gr = 2nk/L, L is the domain size, x is the spatial
coordinate and ¢ is time. Thus a state of a spatially 1-dimensional extended system
can be described by an infinite set of complex Fourier coefficients #ix(¢). The
velocity field u(x, 7) is real, so il = i, and we can replace the sum by an k >
0 sum, with u written as its reflection-symmetric part (sum of cosines) plus its
reflection-antisymmetric part (sum of sines). This is an example of an infinite-
dimensional state space, which we alluded to on page 50.

Intuitively the flame front is smooth, so Fourier coefficients ii; drop off fast
with k, and truncations of (2.19) to finite numbers of terms can yield highly ac-
curate states. In numerical computations this state space is truncated to a finite
number of real numbers. For example, a state might be specified by 2N real
Fourier coefficients, or ‘computational degrees of freedom’

X = (xl,yl,xz,yz,...,xN,yN)T. (2.20)

More sophisticated variants of such truncations are called in the literature Gdlerkin
truncations, or Gdlerkin projections.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x,t) over the configuration space, as in
figure 2.7 and figure 2.8, by inverting (2.19). Spatiotemporal patterns give us a
qualitative picture of the flow and a physical intuition about the energetics of the
flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space is much more informative.
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2.4.3 State space, as visualized by dummies

This is dedicated to Comrade Student Xiong Ding

— Prof. Dr. Dr. h.c. Gatto Nero, Grande Ufliciale
dell’Ordine della Stella della Notorieta Italiana

So the simplest way to construct (in practice a finite dimensional approximation
to) state space coordinates is by a discrete mesh u(x, t) — u;(t) or ‘spectral’ coef-
ficients u(x, t) — (). We shall refer to such coordinates as ‘computational de-
grees of freedom’. The same dynamics can look very different in different choices
of coordinates. And when we say that the dynamics is ‘61,506-dimensional’,
we mean that in order to capture a particular physical observable to a sufficient
number of digits of accuracy, we need at least 61,506 computational degrees of
freedom.

The question is: how is one to look at such state space flow? The laziest thing
to do is to examine the trajectory’s projections onto any three computational de-
grees of freedom, let’s say the first three Fourier modes (i, iis, ii3). Why would
you do that? Well, that’s what a computer spews out. This won’t do. Let’s accept
that you do not know much about high dimensions, but you have been born some-
place where they force you to watch athletes kick a ball, for hours on end. Your
choice of (i1, ity, ii3) coordinates means that you (or the TV camera) are standing
at a corner of the field. Far, far away, at the opposite end of the field, there is
action - but you only see a few little moving silhouettes, and can hardly see the
ball.

Or, if you are more inclined towards scholarly activities and would rather
whittle away hours away evaluating Meijer G-functions, here is a precise way of
saying the same thing: choose a direction in a high-dimensional state space and
call it basis vector e(l). Now randomly pick a state u in state space, and this gives
you have a second vector. What is the angle between these two vectors? The
cosine of that angle you compute by evaluating the ‘dot’ product (or L2 norm)

1
(uleMy = ‘—/fdxu-e(l), lall? = (uju). (2.21)
Q

Once you finish the exercise 2.13, you will know what every computer scientist
knows: the expectation value of the angle between any two high-dimensional
vectors picked at random is 90°, with a very small variance. In other words, when
using a random coordinate system in high dimensions, every distant silhouette of
Cristiano Ronaldo is vanishingly small. And as your lazy (@, i, it3) coordinates
are a random choice, your turbulent state might require 10° such coordinates to be
accurately resolved.

So, if you were a referee, or a camera operator, would your really just stand
there, in the far corner of the field?
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2.4.4 Exact state-space portraiture: go where the action is

(J.F. Gibson and P. Cvitanovi¢)

Let’s say you are interested in dynamics, especially recurrent dynamics, so
you scan the soccer field to identify prominent states of interest to you. You then
choose to characterize and observe recurrent coherent structures by using long-
time numerical simulations. If you form a basis set from these structures and
project the evolving state x(¢) onto this basis, coordinates so formed will capture
close recurrences to these states. That is, you form orthonormal basis functions
(e, e@, ... e™} from a set of linearly independent fluid states and produce a
state-space trajectory

x(0) = (X1(0), 22, - %)), xa() = Cu(t)e™) (2.22)

in the {€™} coordinate frame. The projection of the trajectory can be viewed by a
human in any of the 2d planes {e™, e} or in 3d perspective views {e(©), e/ e},
The dimensionality is lower than the full state space, so in such projections tra-
jectories can appear to cross. It is important to understand that this is a low-
dimensional visualization, not low-dimensional modeling, a truncation to fewer
computational degrees of freedom. The dynamics are computed with fully-resolved
direct numerical simulations and then projected onto basis sets to produce low-
dimensional state-space portraits, tailored to specific purposes and specific regions
of state space. The resulting portraiture depends on the physical states involved
and not on the (arbitrary) choice of a numerical representation. Such well-chosen
portraits reveal dynamical information visually, providing insight into dynamics
that can guide further analysis.

At first glance, turbulent dynamics visualized in state space might appear
hopelessly complex, but many detailed studies suggest it might be less complex
than feared: turbulent dynamics appears to be pieced together from near visita-
tions to exact invariant solutions, interspersed by transient interludes. Equilibria,
traveling waves, and periodic solutions embody Hopf’s vision: a repertoire of re-
current spatio-temporal patterns explored by turbulent dynamics. We conceive
of turbulence as a walk through a repertoire of unstable recurrent patterns. As a
turbulent flow evolves, every so often we catch a glimpse of a familiar pattern.
For any finite spatial resolution, the flow approximately follows for a finite time
a pattern belonging to a finite alphabet of admissible fluid states, represented in
ChaosBook by a set of exact invariant solutions.

There is an infinity of possible basis sets, but two types of bases appear par-
ticularly natural: (a) a global basis, determined by a set of dynamically important
states, or (b) a local basis, defined, for example, in terms of a given equilibrium
and its linear stability eigenvectors.

With this road map in hand, we can take a stroll through the state space of a
spatiotemporally turbulent flow. Like many dynamical narratives, this might turn
into a long trek through unfamiliar landscapes with many landmarks of local in-
terest. It is amazing that such a promenade is possible even in 10° dimensions
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(computational degrees of freedom). But a detailed road map is a necessary pre-
requisite for solving at least three of your outstanding problems: (a) uncover inter-
relations between (in principle infinite number of) unstable invariant solutions of a
turbulent flow, (b) partition state space (symbolic dynamics) in order to systemati-
cally explore turbulent dynamics, and (c) identify linearly stable eigenvectors and
their unstable-manifold continuations in order to transform a given spatiotemporal
state into a desired target state.

In summary, when dealing with spatiotemporally extended systems, you’ll
need dual vision - you will have to think both in configuration space and in the
state space.

2.5 Computing trajectories

On two occasions I have been asked [by members of Par-
liament], ‘Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ I am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to implement
some finite time-step prescription for integration of the equations of motion (2.9).
The simplest is the Euler integrator, which advances the trajectory by adding a
small vector 07 X velocity at each time step:

x; = x; +vi(x)or. (2.23)

This might suffice to get you started, but as soon as you need higher numerical ac-
curacy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If you are interested in Hamiltonian flows you might want to
implement a symplectic integrator of the type discussed in appendix A31.2.1. Ifa
‘sophisticated’ integration routine takes days and gobbles up terabits of memory,
you are using brain-damaged high level software. Try writing a few lines of your
own Runge-Kutta code in some mundane everyday language. While you abso-
lutely need to master the requisite numerical methods, this is neither the time nor
the place to expound upon them; how you learn them is your business. And if you
have developed some nice routines for solving problems in this text or can point
another student to some, let us know.

Résume

Start from a state space point and evolve it for a finite time. Then trace out its
trajectory. If you evolve it forward and backward for infinite time, you get its
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orbit, the set of all states reachable by evolution from a given state space point.
An orbit is a time-invariant notion. Time evolution marches points along its path,
but the set itself does not change. The flow describes the time evolution of all state
space points, i.e., the totality of all orbits; the evolution law f turns the state space
into a bowl of spaghetti, where each individual strand of spaghetti is an orbit.

Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the same spirit, turbulence in
spatially extended systems can be described in terms of recurrent spatiotemporal
patterns. Pictorially, dynamics drives a given spatially extended system through
a repertoire of unstable patterns; as we watch a turbulent system evolve, every so
often we catch a glimpse of a familiar pattern. For any finite spatial resolution
and finite time, the system follows approximately a pattern belonging to a finite
repertoire of possible patterns. The long-term dynamics can be thought of as a
walk through the space of such patterns. Recasting this image into mathematics is
the subject of this book.

State-space portraits are dynamically intrinsic, since their projections are de-
fined in terms of solutions of the equations of motion, and representation inde-
pendent, since the L2 product (2.21) is independent of the numerical representa-
tion. The method can be applied to any high-number of computational degrees
of freedom discretization of a dissipative flow. Production of state-space portraits
requires numerical data of configuration space fields evolving in time (obtained
from simulation or experiment), estimates of important physical states (such as
equilibria and their linear stability eigenfunctions), and a method of computing
the inner product between velocity fields over the physical domain.

Commentary

Remark 2.1. ‘State space’ or ‘phase space?’ In ChaosBook, state space is the
set of admissible states in a general d- or co-dimensional dynamical system. The term
phase space is reserved for Hamiltonian state spaces of 2D-dimensions, where D is the
number of Hamiltonian degrees of freedom. If the state space is a continuous smooth
manifold much of the literature [25, 32] refers to it as ‘phase space,” but we find the
control engineering usage sharper: in the state space (or ‘time-domain’) description of
an autonomous physical system, the instantaneous state of the system is represented as a
point within the ‘state space,” a space whose axes are the state variables, and the evolution
of a state is given by differential equations which are first-order in time. Hopf [26] would
refer to such a state as an ‘instantaneous phase’ of the system obeying a ‘differential law
of the phase motion’. The distinction made here is needed in a text where one treats
deterministic dynamical systems, stochastic systems and quantum-mechanical systems
on equal footing. The term ‘phase’ has a precise meaning in wave mechanics, quantum
mechanics and dynamics of integrable systems at the heart of Hamilton’s formulation of
Newtonian mechanics, while ‘state space’ is more descriptive of the way the notion is
used in the general theory of dynamical systems. Further confusion arises when prefix
spatio- as in ‘spatiotemporal’ is used in reference to states extended in the (1, 2, or 3-dim-
ensional) physical configuration space. They may exhibit spatial wave-like behaviors, but
their state space is co-dimensional.
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Much of the literature denotes the vector field in a first order differential equation
(2.9) by f(x) or F(x) or even X(x), and its integral for time ¢ by the ‘time-¢ forward map’
or ‘flow map’ x(xg,?) = ®(xo,?), or ¢,(xp), or something else. Here we treat maps and
flows on an equal footing, and we save Greek letters for matters quantum-mechanical. We
reserve the notation f'(x) for maps such as (2.12) and refer to a state space velocity vector
field as v(x). We come to regret this choice very far into the text, only by the time we
delve into Navier-Stokes equations.

Question 2.1. Henriette Roux’s professor begs to differ.

Q Why do you call these things ‘periodic orbits’? My professor refers to them as ‘non-
chaotic solutions’.

A 1It’s an insult to Henri Poincaré. He called periodic orbits ‘periodic orbits’, so why
rename them? It’s like calling 3/4 a “nonreal” number. The way one measures continuum
is by bracketing a real number by increasingly refined intervals, each finitely specified,
let’s say by a rational number 3/4. The way ergodic theory works is that the state space is
partitioned (coarse grained) into recurrent subregions, each containing within it an exactly
recurrent point (or a compact invariant subset, such as Poincaré’s relative periodic orbit
around L2, etc., etc.), which one can use as a marker. You can name it after your Russian
aunt’s hoola hoop, but that is not yet widely used nomenclature.

Remark 2.2. Rdssler and Duffing flows. The Duffing system (2.24) arises in
the study of electronic circuits [|5]. The Rossler flow (2.30) is the simplest flow which
exhibits many of the key aspects of chaotic dynamics. It was introduced in ref. [38] as
a set of equations describing no particular physical system, but capturing the essence
of Lorenz chaos in the most simple of smooth flows. Otto Rossler, a man of classical
education, was inspired in this quest by that rarely cited grandfather of chaos, Anaxagoras
(456 B.C.). This and references to earlier work can be found in refs. [22, 36, 46]. We
recommend in particular the inimitable Abraham and Shaw illustrated classic [1] for its
beautiful sketches of many flows, including the Rossler flow. Timothy Jones [28] has a
number of interesting simulations on a Drexel website.

The Rossler flow is the simplest flow which exhibits many of the key aspects of
chaotic dynamics; we shall use it and the 3-pinball systems throughout ChaosBook to
motivate introduction of Poincaré sections, return maps, symbolic dynamics, cycle ex-
pansions, and much else. Rossler flow is integrated in exercise 2.7, its equilibria are
determined in exercise 2.8, its Poincaré sections constructed in exercise 3.1, and the cor-
responding return map computed in exercise 3.2. Its volume contraction rate is computed
in exercise 4.3, its topology investigated in exercise 4.4, the shortest Rossler flow cy-
cles are computed and tabulated in exercise 7.1, and its Lyapunov exponents evaluated in
exercise 6.4.

Remark 2.3. Lorenz equation. The Lorenz equation (2.25) is the most celebrated
early illustration of “deterministic chaos” [32] (but not the first - that honor goes to Dame
Cartwright [5] in 1945. Amusingly, Denisov and Ponomarev [! 1] argue that Ben F. La-
posky might have been the first to observe chaotic attractors as early as 1953, which,
strictly speaking falls after 1945, even in Russia). Lorenz’s 1963 paper, which can be
found in reprint collections refs. [8, 24], is a pleasure to read, and it is still one of the
best introductions to the physics motivating such models (read more about Lorenz here).
The equations, a set of ODEs in R3, exhibit strange attractors. W. Tucker [47-49] has
proven rigorously (via interval arithmetic) that the Lorenz attractor is strange for the orig-
inal parameters (no stable orbits) and that it has a long stable periodic orbit for slightly
different parameters. In contrast to the hyperbolic strange attractors such as the weakly
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perturbed cat map [7], the Lorenz attractor is structurally unstable. Frgyland [17] has a
nice brief discussion of Lorenz flow. Frgyland and Alfsen [ | 8] plot many periodic and het-
eroclinic orbits of the Lorenz flow; some of the symmetric ones are included in ref. [17].
Galias and Tucker [19] compute all 2536 periodic orbits of symbolic dynamics periods
n < 14. Guckenheimer-Williams [23] and Afraimovich-Bykov-Shilnikov [2] offer an
in-depth discussion of the Lorenz equation. The most detailed study of the Lorenz equa-
tion was undertaken by Sparrow [43]. For a geophysics derivation, see Rothman course
notes [40]. For a physical interpretation of p as “Rayleigh number,” see Jackson [27] and
Seydel [41]. The Lorenz truncation to 3 modes, however, is so drastic that the model
bears no relation to the geophysical hydrodynamics problem that motivated it. Just for
fun, as Lorentz was such a lovable weatherman, in 1972 Willem Malkus constructed [33],
by a feat of reverse engineering, a physical system, a “water wheel”, popularized by Stro-
gatz [45], that is described by Lorentz equations. You can see it simulated Wolfram.com,
and tested experimentally at http://www.ace.gatech.edu. There is no deep physics in this
lovely game, it is but a cute distraction. For detailed pictures of Lorenz invariant mani-
folds consult Vol II of Jackson [27] and “Realtime visualization of invariant manifolds”
by Ronzan. The Lorenz attractor is a very thin fractal — as we shall see, stable manifold
thickness is of the order 10~* — whose fractal structure has been accurately resolved by D.

Viswanath [50, 51]. If you wonder what analytic function theory has to say about Lorenz,
check ref. [52]. Modular flows are your thing? E. Ghys and J. Leys have a beautiful tale
for you. Refs. [31, 34] might also be of interest. (continued in remark 11.1)

Remark 2.4. High-dimensional flows and their visualizations.  Dynamicist’s vision
of turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [25], see ap-
pendix A1.5. Computational neuroscience grapples with closely related visualization and
modeling issues [16, 20]. Much about high-dimensional state spaces is counterintuitive.
The literature that discusses the 90° angle found between any two high-dimensional vec-
tors is mostly about spikey spheres: see the draft of the Hopcroft and Kannan [4] book
and Ravi Kannan’s course; lecture notes by Hermann Flaschka on Some geometry in
high-dimensional spaces; Wegman and Solka [53] visualizations of high-dimensional
data; Spruill paper [44]; a lively mathoverflow.org thread on “Intuitive crutches for higher
dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [21] and described here are akin in spirit
to the low-dimensional projections of proper orthogonal decomposition (POD) model-
ing [3], in that both methods aim to capture key features and dynamics of the system in
just a few dimensions. But the method described here is very different from POD in a key
way: we construct basis sets from exact solutions of the fully-resolved dynamics rather
than from the empirical eigenfunctions of the POD. These exact solutions and their linear
stability modes (a) characterize the spatially-extended states precisely, as opposed to the
truncated expansions of the POD, (b) allow for different basis sets and projections for
different purposes and different regions of state space, (c) visualize every point in these
projections as a point in the full state space, but do not suggest low-dimensional ODE
models, and (d) are not limited to Fourier mode bases.

(J.F. Gibson and P. Cvitanovi¢)

Remark 2.5. Dynamical systems software: First of all, to understand how adults
in the room feel about this matter, consult Gian-Carlo Rota [39]. But integrate we must,
so: J.D. Meiss [35] has maintained for many years Sci.nonlinear FAQ which is now in
part superseded by the SIAM Dynamical Systems website www.dynamicalsystems.org.
The website glossary contains most of Meiss’s FAQ plus new ones, as well as an up-to-
date software list [42] with links to DSTool, xpp, AUTO [13, 14], etc.. Springer on-line
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Encyclopaedia of Mathematics maintains links to dynamical systems software packages
on ecom.springer.de/D/d130210.htm (dormant since 2000, though). Kuznetsov [29] Ap-
pendix D.9 gives an exhaustive overview of software available in 2004. More recent are
E&F Chaos of Diks et al. [12] and Datseris [10] DynamicalSystems.jl Julia package. For
further links to online codes check ChaosBook.org/extras, as well as remark 15.1.
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2.6 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected at the end of chapters. If
you want to return back to the main text, click on [click to return] pointer in the
margin.

Example 2.1. A 2-dimensional vector field v(x). A simple example of a flow is
afforded by the unforced Duffing system

()
y(@®)

(@)
—0.15 y(t) + x(1) — x(2)° (2.24)

plotted in figure 2.4. The 2-dimensional velocity vectors v(x) = (X,y) are drawn superim-
posed over the configuration coordinates (x(¢), y(¢)) of state space M, but they belong to
a different space (2.10), the tangent bundle T M.

Example 2.2. Lorenz strange attractor. Edward Lorenz arrived at the equation

X o(y —x)
)'c:v(x):l vy =] px-y-xz ] (2.25)
Z xy — bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed o = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQ, = (0, 0, 0) at the
origin is attractive. At p = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
located at

xpo, = (£4/blo— 1), £/blo-1),p- 1), (2.26)

We shall not explore the Lorenz flow dependence on the p parameter in what follows, but
here is a brief synopsis: the EQ, 1-dimensional unstable manifold closes into a homo-
clinic orbit at p = 13.56.... Beyond that, an infinity of associated periodic orbits are
generated, until p = 24.74 ..., where EQ) » undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice o =
10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined to
the strange attractor depicted in figure 2.5, and the positions of its equilibria are marked
in figure 11.2 (a). (continued in example 3.3)

Example 2.3. Rossler strange attractor.  The Duffing flow of figure 2.4 is bit of a
bore—every orbit ends up in one of the two attractive equilibrium points. Let’s construct
a flow that does not die out, but exhibits a recurrent dynamics. Start with a harmonic
oscillator

X =-y, y=x. (2.27)
The solutions are re”, re™", and the whole x-y plane rotates with constant angular velocity
6 = 1, period T = 2x. Now make the system unstable by adding

X =-y, y=x+ay, a>0, (2.28)
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or, in radial coordinates, 7 = arsin’0, § = 1 + (a/2)sin26. The plane is still rotating
with the same average angular velocity, but trajectories are now spiraling out. Any flow
in the plane either escapes, falls into an attracting equilibrium point, or converges to a
limit cycle. Richer dynamics requires at least one more dimension. In order to prevent
the trajectory from escaping to oo, kick it into 3rd dimension when x reaches some value
¢ by adding

i=b+z(x—c), ¢>0. (2.29)

As x crosses c, z shoots upwards exponentially, z ~ ¢*~" In order to bring it back, start
decreasing x by modifying its equation to

xX=-y-z.

Large z drives the trajectory toward x = 0; there the exponential contraction by e~ kicks
in, and the trajectory drops back toward the x-y plane. This frequently studied example of
an autonomous flow is called the Rdssler flow

X = -y-z
= x+ay
b+z(x-c¢), a=b=02, c=57 (2.30)

(for definitiveness, we fix the parameters a, b, ¢ in what follows). The system is as
simple as they get—it would be linear, were it not for the sole bilinear term zx. Even for so
‘simple’ a system the nature of long-time solutions is far from obvious.

There are two repelling equilibrium points (2.11):

! V1 —=4ab/c*)(c,—c/a,c/a)
x_. = (ab/c,-b/c,b/c), xy = (c,—c/a,c/a)
(x_,y-,z-) = (0.0070, —0.0351, 0.0351)
(X4, ¥4,24) = (5.6929, —28.464, 28.464) (2.31)

1
+ = —*
X (2

[\S)]

One is close to the origin by construction. The other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.6 (see also
figure 14.7 (a)). Trajectories that start out sufficiently close to the origin seem to converge
to a strange attractor. We say ‘seem’ as there exists no proof that such an attractor is
asymptotically aperiodic—it might well be that what we see is but a long transient on a
way to an attractive periodic orbit. For now, accept that figure 2.6 and similar figures in
what follows are examples of ‘strange attractors.’

(continued in exercise 2.8 and example 3.2) (R. Paskauskas)
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The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1.

2.2.

2.3.

2.4.

2.5.

Orbits do not intersect. An orbit in the state space M
is the set of points one gets by evolving x € M forwards
and backwards in time:

Mi=lyeM: f(x)=y forteR}.

Show that if two trajectories intersect, then they are the
same curve.

Evolution as a group.  The trajectory evolution f* is
a one-parameter semigroup, where (2.6)

ft+s — ft OfS,

Show that it is a commutative semigroup.

In this case, the commutative character of the semi-
group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other semigroup replacing time?

Almost ODE’s.
(a) Consider the point x on R evolving according
% = ¢*. Is this an ordinary differential equation?
(b) Is x = x(x(#)) an ordinary differential equation?
(c) What about x = x(r+1)?

All equilibrium points are fixed points.  Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f”.

Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’ ¢

X =-V¢(x)

where x € R, and ¢ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the function ¢.

(b) Show that all extrema of ¢ are fixed points of the
flow.

exerFlows - 23jan2015

2.6.

2.7.

2.8.

2.9.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for exam-
ple, ref. [37]) for x = v(x):

ki ke ks Kk

K1 K3 | K4 5
6+3+3+6+0(6T)

Xptl = Xt

ki = o0tv(x,), ko =0tv(x,+ki/2)
ks = O6tvx,+k/2)
ke = Otvix, +k3).

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

Rossler flow.  Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rossler flow (2.30). Does the result look like a ‘strange
attractor’?

Equilibria of the Rossler flow.

(a) Find all equilibrium points (x4,y4,z4) of the
Rossler system (2.30). How many are there?

(b) Assume that b = a. As we shall see, some surpris-
ingly large and small numbers arise in this system.
In order to understand their size, introduce param-
eters

e=alc, D=1-4€, p* =(1+ VD)/2.

Express all the equilibria in terms of (c, €, D, p*),
expand to the first order in €, and evaluate for
a=b=02¢c=>57in (2.30). In the case stud-
ied € =~ 0.03, these estimates are quite accurate.
(continued in exercise 3.1)

(Rytis PaSkauskas)

Can you integrate me? Integrating equations nu-
merically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
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EXERCISES

differential equations has a solution for all times and
there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
x=x%, x(0)=1.

(a) For what times do solutions of
X = x(x(1))

exist? Do you need a numerical routine to answer
this question?

(b)

Let’s test the integrator you wrote in exercise 2.6.
The equation

X=x (2.32)
with initial conditions x(0) = 2 and x = O has the
solution x(f) = e”(1 + ¢*'). Can your integrator
reproduce this solution for the interval ¢ € [0, 10]?
Check your solution by plotting the error as com-
pared to the exact result.

(©)

Test your integrator for

i=-x (2.33)
with the same initial conditions and integration in-
terval.

(d)

Now we will try something a little harder. The
equation is going to be third order

X+063i+x—|x|+1=0,

which can be checked—numerically—to be chaotic.
For initial conditions, we will always use ¥(0) =
X(0) = x(0) = 0. Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are sig-
nificant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fac-
toris ~ 2.4).

Determine the time interval for which the solution
of x = x2, x(0) = 1 exists.

(e)

Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from con-
fusing functional relationships, such as x(¢) = h~'(y(¢))
with numerical relationships, such as w(y) = 7' (x)v(x).
Working through an example will clear this up.

(a) The differential equation in M is x = {2x;, x;}
and the change of coordinates from M to M’ is
h(xi, xp) = {2x1 + x2, x1 — x2}. Solve for x(¢). Find
ht.
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2.12.

2.13.
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(b) Show that in the transformed space A, the differ-
ential equation is

dly |_1

dt| »» | 3
Solve this system. Does it match the solution in
the M space?

y1 +4y2

Sy1 +2y2 ]

Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to the quantization of helium,
we need to compute classical periodic orbits of the he-
lium system. We begin by evaluating periodic orbits for
the colinear helium atom (8.27)

H=1p

=5t
The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom, and the dynamics
can be visualized as motion in the (r,7,), r; > 0 quad-
rant. In (r, rp)-coordinates the potential is singular for
r; — 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. A2.2. In the transformed coor-
dinates (x, x2, p1, p2) the Hamiltonian equations of mo-
tion take the form

. PZ 2

P = 20 [2— ;2 - Qi1+ %)}

: P 1

P, = 20, [2— gl - Qi1+ %)}

. 1 . 1

0 = ZPIQ%, 0r = ZPZQ%. (2.34)

where R = (Q% + Q%)l/z.

Integrate the equations of motion by the fourth order
Runge-Kutta computer routine of exercise 2.6 (or what-
ever integration routine you like). A convenient way
to visualize the 3-dimensional state space orbit is by
projecting it onto the 2-dimensional (7(¢), r2(#)) plane.
(continued in exercise 3.4) (Gregor Tanner, Per
Rosenqvist)

Surface area of a unit sphere.
of a unit sphere in d dimensions.

Compute the volume

In high dimensions any two vectors are (nearly) or-
thogonal. Among humble plumbers laboring with ex-
tremely high-dimensional ODE discretizations of fluid
and other PDEs, there is an inclination to visualize the
oo-dimensional state space flow by projecting it onto a
basis constructed from a few random coordinates, let’s
say the 2nd Fourier mode along the spatial x direction
against the 4th Chebyshev mode along the y direction.
It’s easy, as these are typically the computational de-
grees of freedom. As we will now show, it’s easy but
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not smart, with vectors representing the dynamical states
of interest being almost orthogonal to any such random
basis.

Suppose your state space M is a real 10247-dimen-
sional vector space, and you pick from it two vectors
X1, X, € M at random. What is the angle between them
likely to be?

By asking for ‘angle between two vectors’ we have im-
plicitly assumed that there exist is a dot product

x17 - xp = |lxy x|l cos(6r2),

so let’s make these vectors unit vectors, || x;| = 1.
When you think about it, you would be hard put to
say what ‘uniform probability’ would mean for a vec-
tor x € M = R19%*7 put for a unit vector it is obvious:
probability that x direction lies within a solid angle dQ
is dQ/(unit hyper-sphere surface).

So what is the surface of the unit sphere (or, the total
solid angle) in d dimensions? One way to compute it is
to evaluate the Gaussian integral

Id - f d)C] NN d)Cd e_%('ﬁﬁ'm*—x?l) (235)

00

in cartesian and polar coordinates. Show that

(a) In cartesian coordinates I; = (2m)%/2.

(b) Recast the integrals in polar coordinate form. You
know how to compute this integral in 2 and 3
dimensions. Show by induction that the surface
S 4-1 of unit d-ball, or the total solid angle in even
and odd dimensions is given by

3 2(2n)* s 3 27k
T k-’ W T T

Sa (2.36)

(c) Show, by examining the form of the integrand in
the polar coordinates, that for arbitrary, perhaps
even complex dimension d € C

St =272 1T(d)2).

(In Quantum Field Theory integrals over 4-
momenta are brought to polar form and evaluated
as functions of a complex dimension parameter d.
This procedure is called the ‘dimensional regular-
ization’.)
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(d) Check your formula for d = 2 (1-sphere, or the
circle) and d = 3 (2-sphere, or the sphere).

(e) Determine the limit of S, for large d. (Hint: it’s
not what you think. Try Sterling’s formula).

So now that we know the volume of a sphere, what is the
most likely angle between two vectors xj, x, picked at
random? We can rotate coordinates so that x; is aligned
with the ‘z-axis’ of the hypersphere. An angle 6 then
defines a meridian around the ‘z-axis’.

(f) Show that probability P(6)d0 of finding two vec-
tors at angle 6 is given by the area of the merid-
ional strip of width d6, and derive the formula for
it:

1 I'd/2)
Va T(@d-1/2)
(One can write an analytic expression for this in

terms of Beta functions, but it is unnecessary for
the problem at hand.)

P(6)

(g) Show that for large d the probability P(6) tends
to a normal distribution with mean 6 = 7/2 and
variance 1/d.

So, in d-dimensional vector space the two random vec-
tors are nearly orthogonal, within accuracy of § = /2 +
1/d.

If you want to learn more, the lecture notes by Hermann
Flaschka, entitled Some geometry in high-dimensional
spaces, offer a high quality solution to this exercise.

If you are a humble plumber, and the notion of a vector
space is some abstract hocus-pocus to you, try thinking
this way. Your 2nd Fourier mode basis vector is some-
thing that wiggles twice along your computation do-
main. Your turbulent state is very wiggly. The product
of the two functions integrated over the computational
domain will average to zero, with a small leftover. We
have just estimated that with dumb choices of coordinate
bases this leftover will be of order of 1/10247, which is
embarrassingly small for displaying a phenomenon of
order ~ 1.

Several intelligent choices of coordinates for state space
projections are described in Gibson et al. [21] and the
web tutorial ChaosBook.org/tutorials.

Sara A. Solla and P. Cvitanovié
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Chapter 3

Discrete time dynamics

Gentles, perchance you wonder at this show; But wonder
on, till truth make all things plain.
— W. Shakespeare, A Midsummer Night’s Dream

tinuous or discrete. Discrete time dynamical systems arise naturally from

flows. In general there are two strategies for replacing a continuous-time
flow by iterated mappings; one can cut it into Poincaré sections or use strobing to
capture a sequence of instants in time. Think of your partner moving to the beat
in a disco: a sequence of frozen stills. While ‘strobing’ is what any numerical in-
tegrator does, by representing a trajectory by a sequence of time-integration step
separated points, strobing is in general not a reduction of a flow, as the sequence
of strobed points still resides in the full state space M, of dimensionality d. An
exception are non-autonomous flows that are externally periodically forced. In
that case it might be natural to observe the flow by strobing it at time intervals
fixed by an external forcing, as in example 8.7 where strobing of a periodically
forced Hamiltonian leads to the ‘standard map.’

THE TIME PARAMETER in the definition of a dynamical system can be either con-

In the Poincaré section method, one records the coordinates of a trajectory
whenever the trajectory crosses a prescribed trigger. This triggering event can
be as simple as the vanishing of one of the coordinates, or as complicated as the
trajectory cutting through a curved hypersurface. A Poincaré section (or, for the
remainder of ChaosBook, often just ‘section’) is not a projection onto a lower-
dimensional space: rather, it is a local change of coordinates to a direction along
the flow, and the remaining coordinates (spanning the section) transverse to it. No
information about the flow is lost by reducing it to a set of Poincaré section points
and the return maps connecting them. The full space trajectory can always be
reconstructed by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful vi-
sualization tool. But, the method of sections is more than a visualization tool;
it is also a fundamental tool of dynamics. To fully unravel the geometry of a

67
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Figure 3.1: A trajectory x(¢) that intersects a Poincaré
section P at times t,f,,13,%, and closes a cycle
(X1, X2, X3, X4), X = x(tr) € P of topological length
4 with respect to the section. In general, the intersec-
tions are not normal to the section. Note also that the
crossing z does not count, as it in the wrong direction.

chaotic flow, one has to quotient all of its symmetries, and time evolution is just
one of these symmetries. (This delphic piece of hindsight will be illuminated in
chapter 12.)

3.1 Poincaré sections

A continuous time flow decomposes the state space into Lagrangian ‘spaghetti’
of figure 2.2, a union of non-intersecting 1-dimensional orbits. Any point (2.3)
on an orbit can be used to label the orbit. Thus, the state space is reduced to a
‘skew-product’ of a (d—1)-dimensional space ¥ of labeling points £; € ¥ and the
corresponding 1-dimensional orbit curves M; on which the flow acts as a time
translation. However, orbits can be arbitrarily complicated and, if unstable, un-
controllable for times beyond the Lyapunov time (1.1). In practice, it is necessary
to split the orbit into finite trajectory segments, with time intervals corresponding
to the shortest recurrence times on a non-wondering set of the flow, i.e. finife times
for which the flow is computable.

A particular prescription for picking the orbit-labeling points is called a Poincaré

section. In introductory texts Poincaré sections are treated as pretty visualiza-
tions of chaotic flow, but their dynamical significance is much deeper than that.
Once a section is defined, a ‘Lagrangian’ description of the flow (discussed above,
page 47) is replaced by the ‘Eulerian’ formulation, with the trajectory-tangent ve-
locity field v(%), X € P, enabling us to go freely between the time-quotiened space
% and the full state space M. The transverse dynamics of this system is important
and describes how nearby trajectories attract/repeal each other. Also, transverse
dynamics is used to map P of £ — % induced by the flow. In contrast, dynamics
along orbits is of secondary importance.

Successive trajectory intersections with a Poincaré section, a (¢-1)-dimension-
al hypersurface embedded in the d-dimensional state space M, figure 3.1, define
the return map, or in the rest of ChaosBook, simply return map P(%x), a (d—1)-
dimensional map of form

& =PR) = fI%), ¥ ieP. (3.1

Here the first return function T(X)—-sometimes referred to as the ceiling function—is
the time of flight to the next section for a trajectory starting at x, see figure 3.2. The
choice of the section hypersurface P is altogether arbitrary. It is rarely possible
to define a single section that cuts across all trajectories of interest. Fortunately,
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one often needs only a local section in the neighborhood of a template point, a
finite hypersurface of codimension 1 intersected by a swarm of trajectories near
to the trajectory of interest (the case of several sections is discussed in sect. 15.6).
Such a hypersurface can be specified implicitly by a single condition, through a
function U(x) that is zero whenever a point x is on the Poincaré section,

XeP

if U®) =0. (3.2)

The gradient of U(x) evaluated at € P serves a two-fold function. First, the
flow should pierce the hypersurface #, rather than being tangent to it. A nearby
point X + dx is in the hypersurface # if U(x + 6x) = 0. A nearby point on the
trajectory is given by ox = vdt, so a traversal is ensured by the transversality
condition

d
v-VU) = Y v U@ #0, 9;UR) =
j=1

ux), xe?. 3.3)

6xj

Second, the gradient VU defines the orientation of the hypersurface . The flow
is oriented as well, and a periodic orbit can pierce P twice, traversing it in either
direction, as in figure 3.1. Hence the definition of return map P(X) needs to be
supplemented with the orientation condition

Xne1 = P(Xn), URns1) =U@R) =0, ne z*
d
DG 0;U(R) > 0. (3.4)
j=1

In this way the continuous time 7 flow x(z) = f*(x) is reduced to a discrete time n
sequence X, of successive oriented trajectory traversals of P.

The simplest choice of a Poincaré section is a hyperplane ¥ specified by a
template point (an important state of the system, located at the tip of the vector %’)
and a normal vector 7 perpendicular to the hyperplane. A Poincaré section point
X is in the hyperplane, if it satisfies the linear condition

xeP

iff UR)=@G-%)n=0. (3.5)
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Figure 3.3: (Right:) a sequence of Poincaré sec-
tions of the Rdossler strange attractor, defined by
planes through the z axis, oriented at angles (a)
—60° (b) 07, (c) 607, (d) 120°, in the x-y plane.
(Left:) side and x-y plane view of a typical tra-
jectory with Poincaré sections superimposed. (R.
Paskauskas)
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Consider a circular periodic orbit centered at %', but not lying in . It pierces
the hyperplane twice; the v - 7 > 0 traversal orientation condition (3.4) ensures
that the first return time is the full period of the cycle. The simplest choice of the
hyperplane orientation is to chose it to be normal to the tangent of the trajectory
passing through the template point, i.e., the state space velocity,

e iff UR)=@G-1)-vx)=0. (3.6)

With a sufficiently clever choice of a Poincaré section or a set of sections, any
orbit of interest intersects a section, see figure 3.3. Depending on the application,
one might need to convert the discrete time »n back to the continuous flow time.
This is accomplished by adding up the first return function times 7(%,), with the
accumulated flight time given by

thel =ty + (X)), =0, X, EP. 3.7

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

A few examples may help visualize this. A typical trajectory of the 3-dim-
ensional Rossler flow is plotted in figure 2.6. A sequence of Poincaré sections of
figure 3.3 illustrates the ‘stretch & fold’ action of Rossler flow. Figure 3.4 exhibits
a set of return maps (3.1).

example 3.1 example 3.2
p. 80 p. 80

The above examples illustrate why a Poincaré section gives a more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
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ent: the full return map is 2-dimensional, {r’, 7'} = 4 \ 4 / \\
P{r,z}. (R. Paskauskas) ¥
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portrait of the Rossler flow figure 2.6 gives us no sense of the thickness of the
attractor, we see clearly in the Poincaré sections of figure 3.3 that even though the
return maps are 2-dimensional — 2-dimensional, the flow contraction is so strong
that for all practical purposes it renders the return maps 1-dimensional. (We shall
quantify this claim in example 4.5.)

fast track:
sect. 3.3, p. 74

3.1.1 Section border

How far does the neighborhood of a template &’ extend along the hyperplane
(3.5)? A section captures faithfully neighboring orbits as long as it cuts them
transversally; it fails the moment the velocity field at point £* fails to pierce the
section. At this location the velocity is tangent to the section and, thus, orthogonal
to the template normal 7,

res, (3.8)

which shows that the normal component of v(X) vanishes at X*. For a smooth flow,
such points form a smooth (d—2)-dimensional section border S C P, encompass-
ing the open neighborhood of the template characterized by qualitatively similar
flow. We shall refer to this region of the section hyperplane as the (maximal) chart
of the template neighborhood for a given hyperplane (3.5).

If the template point is an equilibrium x,, no dynamics exist and velocity van-
ishes (v(x4) = 0 by definition of equilibrium). In this case velocity cannot be used
to define a normal to the section, but instead we use the local linearized flow to
construct the local Poincaré section . We orient P so that unstable eigenvectors
are transverse to the section, and the slowest contracting eigenvector is tangent to
the section, as in figure 4.6. This ensures that the flow is transverse to ¥ in an
open neighborhood of the template x,.

Visualize the flow as a smooth 3-dimensional steady fluid flow cut by a 2-dim-
ensional sheet of light. Lagrangian particle trajectories either cross, are tangent
to, or fail to reach this plane; the 1-dimensional curves of tangency points define
the section border. An example is offered by the velocity field of the Rossler flow
of figure 4.5. Pick a Poincaré section hyperplane so it goes through both equi-
librium points. The section might be transverse to a large neighborhood around
the inner equilibrium x_, but dynamics around the outer equilibrium x; is totally
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different. The competition between these two types of motion is likely to lead to
the vanishing of v, (%), the component of v(%) normal to the section, someplace
in-between the two equilibria. A section is good up to the section border, but
beyond it an orbit infinitesimally close to * generically does not cross the section
hyperplane.

For 3-dimensional flows, the section border S is a 1-dimensional closed curve
in the section 2-dimensional #, and easy to visualize. In higher dimensions, the
section border is a (d —2)-dimensional manifold, not easily visualized, and the
best one can do is to keep checking for change of sign (3.4) at Poincaré section
returns of nearby trajectories close to the section border hypersurface S; (3.8) will
be positive inside, negative immediately outside S.

Thus for a nonlinear flow, with its complicated curvilinear invariant manifolds,
a single section rarely suffices to capture all of the dynamics of interest.

3.1.2 What is the best Poincaré section?

In practice, picking sections is a dark and painful art, especially for high-dimens-
ional flows where the human visual cortex falls short. It helps to understand why
we need them in the first place.

Whenever a system has a continuous symmetry G, any two solutions related
by the symmetry are equivalent. We do not want to keep recomputing these over
and over. We would rather replace the whole continuous family of solutions by
one solution in order to be more efficient. This approach replaces the dynamics
(M, f) with dynamics on the quotient state space (M|/G, f). For now, we only
remark that constructing explicit quotient state space flow f is either extremely
difficult, impossible, or generates unintelligible literature. Our solution (see chap-
ter 12) will be to resort to the method of slices.

Time evolution itself is a 1-parameter Lie group, albeit a highly nontrivial one
(otherwise ChaosBook would not be as much of a doorstop). The invariants of the
flow are its infinite-time orbits; particularly useful invariants are compact orbits
such as equilibrium points, periodic orbits, and tori. For any orbit it suffices to
pick a single state space point x € M. The rest of the orbit is generated by the
flow.

Choice of this one ‘labeling’ point is utterly arbitrary; in dynamics this is
called a ‘Poincaré section’, and in theoretical physics this goes by the excep-
tionally uninformative name of ‘gauge fixing’. The price is that one generates
‘ghosts’, or, in dynamics, the price is that increasing dimensionality of the state
space adds further constraints (see sect. 7.2). Gauge fixing is a commonly de-
ployed but inelegant procedure where symmetry is broken for computational con-
venience, and restored only at the end of the calculation, when all broken pieces
are reassembled.

With this said, there are a few rules of thumb to follow: (a) You can pick as
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Figure 3.5: (a) Lorenz flow figure 2.5 cutby y = x
Poincaré section plane # through the z axis and
both EQ,, equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near the EQ, equilibrium, the flow EQ,

is cut by the second Poincaré section, #’, through

y = —x and the z axis. (b) Poincaré sections # and

%’ laid side-by-side. The singular nature of these

sections close to EQ, will be elucidated in exam-

ple 4.6 and figure 14.14 (b). (E. EQ P
Siminos) e

(a) (b)

EQ,

many sections as convenient, as discussed in sect. 15.6. (b) For ease of compu-
tation, pick linear sections (3.5) when possible. (c) If equilibria play important

role in organizing a flow, pick sections that go through them (see example 3.3). In ([([E
that case, try to place contracting eigenvectors inside the hyperplane, see Lorenz
figure 3.5. Remember, the stability eigenvectors are never orthogonal to each
other, unless that is imposed by some symmetry. (d) If you have a global discrete

or continuous symmetry, pick sections left invariant by the symmetry (see exam-

ple 11.8). For example, setting the normal vector 7 in (3.5) at x to be the velocity

v(x) is natural and locally transverse. (e) If you are solving a local problem, like
finding a periodic orbit, you do not need a global section. Pick a section or a set of ({5
(multi-shooting) sections on the fly, requiring only that they are locally transverse

to the flow. (f) If you have another rule of thumb dear to you, let us know.

example 3.3
p. 80

3.2 Computing a Poincaré section

(R. Mainieri)

For almost any flow of physical interest, a Poincaré section is not available in
analytic form, so one tends to determine it crudely, by numerically bracketing
the trajectory traversals of a section and iteratively narrowing the bracketing time
interval. We describe here a smarter method, which you will only need when
you seriously look at a strange attractor, with millions of points embedded in a
high(er)-dimensional Poincaré section - so skip this section on the first reading.

Consider the system (2.9) of ordinary differential equations in the vector vari-
able x = (x1,x2,...,Xq)
dx;
v, (3.9)

where the flow velocity v is a vector function of the position in state space x and
time ¢. In general, the map f™(x,) = x, + f dt v(x(7)) cannot be integrated ana-
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lytically, so we resort to numerical integration to determine the trajectories of the
system. Our task is to determine the points at which the numerically integrated
trajectory traverses a given hypersurface. The hypersurface will be specified im-
plicitly through a function U(x) that is zero, whenever a point x is on the Poincaré
section, such as the hyperplane (3.5).

If we use a tiny step size in our numerical integrator, we can observe the value
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very small integration time
step. However, there is a better way to land exactly on the Poincaré section.

Let t, be the time just before U changes sign, and ¢, the time just after it
changes sign. The method for landing exactly on the Poincaré section will be to
convert one of the space coordinates into an integration variable for the part of the
trajectory between t, and f,. Using

dxi dx;  dx

= Ok ) = vl £ 3.10
dxy di dxlm(x,) vi(x, 1), (3.10)

we can rewrite the equations of motion (3.9) as

i _ 1 dxa _ va

o dn (3.11)
Now we use x| as the ‘time’ in the integration routine and integrate it from x;(¢#,) to
the value of x; on the hypersurface, determined by the hypersurface intersection
condition (3.5). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of the section. The x;—axis need not
be perpendicular to the Poincaré section; any x; can be chosen as the integration
variable, provided the x;-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse (3.3), v; cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section.

example 3.4
p. 81

3.3 Mappings
Do it again! (and again! and again! and ...)
—Isabelle, age 3
We have motivated discrete time dynamics by considering sections of a continu-
ous flow and reduced the continuous-time flow to a family of maps P(X), mapping

points X from a section to a section. Many settings exist in which dynamics is in-
herently discrete, and naturally described by repeated iterations of the same map

f M- M,
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Figure 3.6: A flow x(¢) of figure 3.1 represented by
a return map that maps points in the Poincaré sec-
tion P as X,,; = f(%,). In this example the orbit of
X is periodic and consists of the four periodic points
(X1, X2, %3, £a).

or sequences of consecutive applications of a finite set of maps, a different map,
fa, fB, - - ., for points in different regions {Ma, Mg, --- , Mz},

{fA,fB,...fz} . M e M (3.12)

For example, such maps relate different sections among a set of Poincaré sections.
The discrete ‘time’ is then an integer, the number of applications of the map or
maps. Since explicitly writing out formulas involving repeated applications of a
set of maps can be awkward, we streamline the notation by denoting the (non-
commutative) map composition by ‘o’

Faleo f(faCO)) ) = fr o+ fz o fa(x), (3.13)
and the nth iterate of map f by
Freo=fof@=r(r'w), fow=x
The trajectory of x is the finite set of points
fx. (), £, F1 )

traversed in time n, and My, the orbit of x, is the subset of all points of M that
can be reached by iterations of f. A periodic point (cycle point) x; belonging to a
periodic orbit (cycle) of period n is a real solution of

o) = FUC f) ) = x, k=0,1,2,...,n—1. (3.14)

For example, the orbit of x| in figure 3.6 is a set of four cycle points, (X1, X2, X3, X4) .

The functional form of such return maps P as figure 3.4 can be approximated
by tabulating the results of integration of the flow from x to the first Poincaré sec-
tion return for many X € #, and constructing a function that interpolates through
these points. If we find a good approximation to P(%), we can get rid of numerical
integration altogether, by replacing the continuous time trajectory f’(%) by itera-
tion of the return map P(X). Constructing accurate P(X) for a given flow can be
tricky, but we can already learn much from approximate return maps. Multinomial
approximations

d d
Pu®) = ax+ ) bR+ ) cugkikj+...,  ReP (3.15)
j=1 ij=1
to return maps
Tner | [P1CE)
ol (G
Rdn+1 Pa(3n)
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1.5
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Figure 3.7: The strange attractor and an unstable pe- | /
riod 7 cycle of the Hénon map (3.18) with a = 1.4, / 0011101
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (from K.T. Hansen [6]) -1.5 ‘
-1.5 0.0
Xt-1

motivate the study of model mappings of the plane, such as the Hénon map and
the Lozi map.

example 3.5 example 3.6
p. 81 p. 82

What we get by iterating such maps is—at least qualitatively—not unlike what
we get from Poincaré section of flows such as the Rossler flow figure 3.4. For
an arbitrary initial point this process might converge to a stable limit cycle, to a
strange attractor, to a false attractor (due to roundoff errors), or diverge. In other
words, mindless iteration is essentially uncontrollable, and we will need to resort
to more thoughtful explorations. As we shall explain in due course, strategies for
systematic exploration rely on stable/unstable manifolds, periodic points, saddle-
straddle methods and so on.

example 3.7
p. 82

As we shall see in sect. 14.3, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is.

fast track:
sect. 4, p. 85

Résume

In recurrent dynamics a trajectory exits a region in state space and then reenters
it infinitely often, with finite return times. If the orbit is periodic, it returns after
a full period. So, on average, nothing much really happens along the trajectory,
but the behavior of neighboring trajectories transverse to the flow is quite impor-
tant. A visualization of a strange attractor can be greatly facilitated by a felicitous
choice of Poincaré sections, and the computation greatly sped up by a reduction of
flow to return maps. This observation motivates in turn the study of discrete-time
dynamical systems generated by iterations of maps.
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A particularly natural application of the Poincaré section method is the reduc-
tion of a billiard flow to a boundary-to-boundary return map, described in chap-
ter 9. As we show in appendix A2, further simplification of a return map, or any
nonlinear map, can be attained through rectifying these maps locally by means of
smooth conjugacies.

In truth, as we shall see in chapter 12, the reduction of continuous time flow
by the method of Poincaré sections is not a convenience, but an absolute necessity.
In order to make sense of an ergodic flow, all of its continuous symmetries must
be reduced, including the evolution in time.

Commentary

Remark 3.1. Functions, maps, mappings.  In mathematics, ‘mapping’ is a noun,
‘map’ is a verb. Nevertheless, ‘mapping’ is often shortened to ‘map’ and is often used
as a synonym for ‘function.” ‘Function’ is used for mappings that map to a single point
in R or C, while a mapping which maps to R? would be called a ‘mapping,” and not a
‘function.” Likewise, if a point maps to several points and/or has several pre-images, this
is a ‘many-to-many’ mapping, rather than a function. In his review [14], Smale refers to
iterated maps as ‘diffeomorphisms’, in contradistinction to ‘flows’, which are 1-parameter
groups of diffeomorphisms. In this sense, the dynamical evolution of an initial state to a
state finite time later is a (time-forward) map.

Remark 3.2. Determining a Poincaré section.  The trick described in sect. 3.2 is
accredited to Hénon [7, 10, 15]. The idea of changing the integration variable from time
to one of the coordinates, although simple, avoids the alternative of having to interpolate
the numerical solution to determine the intersection.

Question 3.1. Henriette Roux wants to know

Q Why does a Poincaré section have to be a hypersurface of codimension 1?

A In 2 dimensions a curve can intersect a 1-dimensional Poincaré section curve in a point,
but it has zero probability of intersecting a random O-dimensional point in the plane. In 3
dimensions a line intersects a 2-dimensional plane in a single point, but it has zero proba-
bility of intersecting a random 1-dimensional line, or a random 0-dimensional point. In 4
dimensions a line intersects a 3-dimensional hyperplane (a volume) in a single point, but
it has zero probability of intersecting a random 2-dimensional plane. You need a Poincaré
section to separate, at least locally, the d-dimensional state space above the section hy-
persurface from the state space below, and only a codimension 1 = (d - 1)-dimensional
hypersurface can do that. If a trajectory were a 2-dimensional ribbon or a tube, it would
intersect a Poincaré section of codimension 2 in a point, but a generic codimension 3
hypersurface would not cut it at all.

Remark 3.3. Hénon, Lozi maps. The Hénon map is of no particular physical import
in and of itself—its significance lies in the fact that it is a minimal normal form for mod-
eling flows near a saddle-node bifurcation, and that it is a prototype of the stretching and
folding dynamics that leads to deterministic chaos. It is generic in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and mixtures of hyperbolic and non—
hyperbolic behaviors. Its construction was motivated by the best known early example of
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‘deterministic chaos,’ the Lorenz equation, see example 2.2 and remark 2.3. Y. Pomeau’s
studied the Lorenz attractor on an analog computer, and his insights into its stretching and
folding dynamics motivated Hénon [9] to introduce the Hénon map in 1976. Hénon’s
and Lorenz’s original papers can be found in reprint collections refs. [3, 8]. They are a
pleasure to read, and these articles are still the best introduction to the physics motivating
such models. Hénon [9] conjectured that a generic initial point converges to a strange at-
tractor, for an (a, b) = (1.4,0.3) Hénon map. Its existence has never been proven. While
for all practical purposes this is a strange attractor, it has not been demonstrated that long
time iterations are not attracted by some long attracting limit cycle. Indeed, the pruning
front techniques that we describe below enable us to find stable attractors arbitrarily close
by in the parameter space, such as the 13-cycle attractor at (a, b) = (1.39945219,0.3). A
rigorous proof of the existence of Hénon attractors close to 1-dimensional parabola map
was developed by Benedicks and Carleson [1]. A detailed description of the dynamics of
the Hénon map is given by Mira and coworkers [4, 5, 12], as well as many other authors.
The Lozi map (3.20) is particularly convenient in investigating the symbolic dynamics
of 2-dimensional mappings. Both the Lorenz and Lozi [1 1] systems uniformly expand
smooth systems with singularities. The existence of the attractor for the Lozi map was
proven by M. Misiurewicz [ 3], and the existence of the SRB measure was established by
L.-S. Young [16].
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3.4 Examples

The reader is urged to study the examples collected at the ends of chapters. If
you want to return back to the main text, click on [click to return] pointer on the
margin.

What about smooth, continuous time flows, with no obvious surfaces that
would be good Poincaré sections?

Example 3.1. Pendulum. The phase space of a simple pendulum is 2-dimension-
al: momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a point
traces a trajectory through this phase space. As long as the motion is oscillatory, all
pendulum orbits are loops. Thus, every trajectory periodically intersects the line at a
single point, where the line represents the Poincaré section.

Consider next a pendulum with friction, such as the unforced Duffing system plotted
in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will intersect the
Poincaré section y = 0 at a series of points that get closer and closer to either one of the
equilibrium points, where the Duffing oscillator is at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a piece
of paper. The next example (as well as example 30.4) offers a better illustration of
the utility of visualization of dynamics by means of Poincaré sections.

Example 3.2. Rossler flow. (Continued from example 2.3) Consider figure 2.6, a
typical trajectory of the 3-dimensional Rossler flow (2.30). The strange attractor wraps
around the z axis, so one choice for a Poincaré section is a plane passing through the
z axis. A sequence of such Poincaré sections placed radially at increasing angles with
respect to the x axis, figure 3.3, illustrates the ‘stretch & fold’ action of the Rossler flow,
by assembling these sections into a series of snapshots of the flow. A line segment in (a),
traversing the width of the attractor at y = 0, x > 0 section, starts out close to the x-y plane,
and after the stretching (a) — (b) followed by the folding (c) — (d), the folded segment
returns (d) — (a) close to the initial segment, strongly compressed. In one Poincaré return
the interval is thus stretched, folded and mapped onto itself, so the flow is expanding. It
is also mixing, as demonstrated in one Poincaré return. In this situation, a point from the
interior of the attractor maps onto the outer edge, while an edge point lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return map (3.1),
as in figure 3.4. Cases (a) and (d) are examples of nice 1-to-1 return maps. While (b) and
(c) appear multimodal and non-invertible, these apparent traits are artifacts of projecting a
2-dimensional return map (7, z,) = (¥u+1, Zn+1) ONto a 1-dimensional subspace r,, — 7,41.
(continued in example 3.4)

Example 3.3. Sections of Lorenz flow. (Continued from example 2.2) The plane
% fixed by the x = y diagonal and the z-axis depicted in figure 3.5 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilibria,
xgg, = (0,0,0) and the (2.26) pair xgg,, Xgg,. This Poincaré section meets the orientation
condition (3.4), and the points where the flow pierces info the section are marked by dots.
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Equilibria xgg,, Xgo, are centers of out-spirals, and close to them the section is trans-
verse to the flow. However, close to EQy, trajectories pass the z-axis either by crossing
the section ¥ or staying on the viewer’s side. We are free to deploy as many sections
as we wish; in order to capture the whole flow in this neighborhood, we add the second
Poincaré section, #’, through the y = —x diagonal and the z-axis. Together the two sec-
tions, figure 3.5 (b), capture the whole flow near EQy. In contrast to Rossler sections
of figure 3.3, these appear very singular. We explain this singularity in example 4.6 and
postpone construction of a return map until example 11.8. (E. Siminos and J. Halcrow)

Example 3.4. Computation of Rossler flow Poincaré sections. (Continued from
example 3.2) Convert Rossler equation (2.30) to cylindrical coordinates:

P = wv,=—zcosf+arsin’0
0 = vg:1+zsin0+6—lsin29
r 2
z = v,=b+z(rcosf—c). (3.16)

Poincaré sections of figure 3.3 are defined by the fixing angle U(x) = 6 — 6y = 0. In

principle one should use the equilibrium x, from (2.31) as the origin, and its eigenvectors

as the coordinate frame, but here original coordinates suffice. For parameter values (2.30)

and (xo, Yo, zo) sufficiently far away from the inner equilibrium, 6 increases monotonically

with time. Integrate
dr

t d
— =v,/vg, — = 1/vg, <

40 40 d_e = UZ/UQ (317)

from (r,, 6,,2,) to the next Poincaré section at 6,.;, and switch the integration back to
(x,y,7) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)

Example 3.5. Hénon map. The map

Xpp1 = 1- ax,% + by,
Yne1t = Xn (3.18)

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence relation

Xui1 = 1 —ax> +bx,_; . (3.19)

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the ‘stretch & fold” dynamics of re-
turn maps such as Rossler’s, figure 3.3. It can be obtained by a truncation of a polynomial
approximation (3.15) to a return map (3.15) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is depicted
in figure 3.7), is obtained by picking an arbitrary starting point and iterating (3.18) on a

computer.

Always plot the dynamics of such maps in the (x,, x,4+;) plane, rather than in the
(xn, yn) plane, and make sure that the ordinate and abscissa scales are the same, so x,, =
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Xn+1 18 the 45° diagonal. There are several reasons why one should plot this way: (a) we
think of the Hénon map as a model return map x, — x,+1, and (b) as parameter b varies,
the attractor will change its y-axis scale, while in the (x,, x,+1) plane it goes to a parabola
as b — 0, as it should.

As we shall soon see, periodic orbits will be key to understanding the long-time dy-
namics, so we also plot a typical periodic orbit of such a system, in this case an unstable
period 7 cycle. Numerical determination of such cycles will be explained in sect. 34.1,
and the periodic point labels 0111010, 1110100, - - - in sect. 15.2. (continued in exam-
ple 15.4)

Example 3.6. Lozi map. Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.18) given by

Xor1 = L —alx,| + by,
Yn+1 = Xn. (3.20)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the ‘stretch &
fold’ type.

Example 3.7. Parabola. For a sufficiently large value of the stretching parameter
a, one iteration of the Hénon map (3.18) stretches and folds a region of the (x,y) plane
centered around the origin, as will be illustrated in figure 15.5. Parameter a controls
the amount of stretching, while parameter b controls the thickness of the folded image
through the ‘1-step memory’ term bx,—; in (3.19). In figure 3.7, parameter b is rather
large, b = 0.3, so the attractor is rather thick and the transverse fractal structure clearly
visible. For vanishingly small b, the Hénon map reduces to a 1-dimensional quadratic
map

Xog1 = 1 —ax?. (3.21)

By setting b = 0, we lose determinism: the inverse of map (3.21) has two real preimages
{x_,,x__,} for most x,. If Bourbaki is your native dialect, the Hénon map is injective or
one-to-one, but the quadratic map is surjective or many-to-one. Still, this 1-dimensional
approximation is very instructive. (continued in example 14.6)
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Exercises

3.1.

3.2

3.3.

Poincaré sections of the Rossler flow.  (continuation
of exercise 2.8) Calculate numerically a Poincaré sec-
tion (or several Poincaré sections) of the Rossler flow.
Since Rossler flow state space is 3D, the flow maps onto
a 2D Poincaré section. Do you see that in your nu-
merical results? Does replacing the return map for this
section by a 1-dimensional map give a good approxi-
mation? More precisely, estimate the thickness of the
strange attractor. (continued as exercise 4.4)

(R. Paskauskas)

A return return map for the Rossler flow. (continu-
ation of exercise 3.1) The return maps of figure 3.4 ap-
pear multimodal and non-invertible, which is an artifact
of the 2-dimensional return map (R,,z,) = (Ru+15Zn+1)
being projected onto the 1-dimensional subspace R, —
Rn+1 .

Construct a genuine s,4+; = f(s,) return map by param-
eterizing points on a Poincaré section of the attractor
figure 3.3 by a Euclidean length s computed curvilin-
early along the attractor section. (For a discussion of
curvilinear parametrizations of invariant manifolds, see
sect. 15.1.1.)

This is best done (using methods to be developed in
what follows) by a continuation of the unstable man-
ifold of the 1-cycle embedded in the strange attractor,
figure 7.5 (b).

(P. Cvitanovi¢)

Arbitrary Poincaré sections. We will generalize
the construction of Poincaré sections, so that any sec-
tion shape is allowable, as specified by the equation
U(x)=0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equation as

dxk

@

with dt/ds = k, and choosing « to be 1 or 1/f].
This allows one to switch between ¢ and x; as the
integration ’time.’

(3.22)

(b) Introduce an extra dimension x,| into your sys-

tem and set
Xpe1 = U(X). (3.23)

How can this be used to find a Poincaré section?

exerMaps - 29jan2012

3.4. Classical collinear helium dynamics.

3.5.

3.6.

3.7.

(continuation of exercise 2.11) Make a Poincaré sec-
tion by plotting (r;, p;) whenever r, = 0: Note that for
ry = 0, py is already determined by (8.27). Compare
your results with figure A2.3 (b).

(Gregor Tanner, Per Rosenqvist)
Hénon map fixed points. Show that the two fixed

points (xo, Xp), (x1,x;) of the Hénon map (3.18) are
given by

~(1=b) =~ V-0 +4a

X0 =
2a
—(1 = N AV)
o - (1-b)+ \2/6(11 b +4a G24)

Fixed points of maps. A continuous function F is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity of F to show that a 1-dimen-
sional contraction F of the interval [0, 1] has at
least one fixed point.

(b) In auniform (hyperbolic) contraction, the slope of
F is always smaller than one, |F’| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

Section border for Rossler. (continuation of exer-
cise 3.1) Determine numerically section borders (3.8)
for several Rossler flow Poincaré sections of exercise 3.1
and figure 3.3, at least for angles

(a) —60°, (b) 0°, and

(c) A Poincaré section hyperplane that goes through
both equilibria, see (2.31) and figure 4.5. Two
points only fix a line: think of a criterion for a
good orientation of the section hyperplane, per-
haps by demanding that the contracting eigenvec-
tor of the “inner’ equilibrium x_ lies in it.

(d) (Optional) Hand- or computer-draw a visualiza-
tion of the section border as a 3-dimensional fluid
flow, which either crosses, is tangent to, or fails to
cross a sheet of light cutting across the flow.
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As the state space is 3-dimensional, the section borders sections that go through the z-axis, the normal velocity
are 1-dimensional, and it should be easy to outline the v, (X) is tangent to the circle through X, and vanishes for
border by plotting the color-coded magnitude of v, (%), 6 in polar coordinates (3.16), but that is not true for other
the component of v(X) normal to the section, for a fine Poincaré sections, such as in case (c).

grid of 2-dimensional Poincaré section plane points. For (P. Cvitanovic)
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Chapter 4

Local stability

It does not say in the Bible that all laws of nature are ex-
pressible linearly.

— Enrico Fermi

(R. Mainieri and P. Cvitanovi¢)

point. Our next task is to define and determine the size of a neighborhood

of x(#). We shall do this by assuming that the flow is locally smooth and by
describing the local geometry of the neighborhood by studying the flow linearized
around x(¢). Nearby points aligned along the stable (contracting) directions remain
in the neighborhood of the trajectory x(r) = f'(xo); the ones to keep an eye on are
the points which leave the neighborhood along the unstable directions. As we shall
demonstrate in chapter 21, the expanding directions matter in hyperbolic systems.
The repercussions are far-reaching. As long as the number of unstable directions
is finite, the same theory applies to finite-dimensional ODEs, state space volume
preserving Hamiltonian flows, and dissipative, volume contracting infinite-dim-
ensional PDEs. [ > ]

S o FAR we have concentrated on describing the trajectory of a single initial

In order to streamline the exposition, in this chapter all examples are collected
in sect. 4.8. We strongly recommend that you work through these examples: you
can get to them and back to the text by clicking on the [example] links, such as

example 4.8
p. 100

4.1 Flows transport neighborhoods o .
A\

As a swarm of representative points moves along, it carries along and distorts !
neighborhoods. The deformation of an infinitesimal neighborhood is best un- ([
derstood by considering a trajectory originating near xo = x(0), with an initial
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infinitesimal deviation vector dx(0). The flow then transports the deviation vector
dx(t) along the trajectory x(xo,?) = f'(xo).

4.1.1 Instantaneous rate of shear

The system of linear equations of variations for the displacement of the infinites-
imally close neighbor x + x follows from the flow equations (2.9) by Taylor [
expanding to linear order

Xi + Ox; —v,(x+6x)~v(x)+za 6x]

The infinitesimal deviation vector dx is thus transported along the trajectory x(xo, t),
with time variation given by

d 61),'
Emmm—gaﬁm

As both the displacement and the trajectory depend on the initial point x( and the
time ¢, we shall often abbreviate the notation to x(xg, ) — x(f) — x, 0x;(xo,1) —
o0x;(t) — o6x in what follows. Taken together, the set of equations

K= vi(x),  oxi= ) Aj(x)ox; (4.2)
j

6xj(x0,1) . 4.1

x=x(x0,1)

governs the dynamics in the tangent bundle (x, 6x) € TM obtained by adjoining
the d-dimensional tangent space dx € T M, to every point x € M in the d-dim-
ensional state space M C RY. The stability matrix or velocity gradients matrix

l](x) Vl(x) (4.3)
Xj
describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow. A swarm of neighboring points of x() is instantaneously sheared
by the action of the stability matrix, ox(t + 6f) = 0x(¢) + 0t A(x,) 0x(¢). A is a
tensorial rate of deformation, so it is a bit hard (if not impossible) to draw.

example 4.1
p. 100
4.1.2 Finite time linearized flow
By Taylor expanding a finite time flow to linear order, [ > ]
7 (x 0)
flxo +6x) = ﬂm+zé, Sxj+ e, (4.4)

one finds that the linearized neighborhood is transported by the Jacobian matrix
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Figure 4.1: For finite times a local frame is trans-
ported along the orbit and deformed by Jacobian ma-
trix J'. As J' is not self-adjoint, an initial orthogonal
frame is mapped into a non-orthogonal one. x(1)

Ox(1);

0 -
3x0);” Jxp) =1. 4.5)

x(1) = J'(x0) 6xo , Jij(x0) =
For example, in 2 dimensions the Jacobian matrix for change from initial to final
coordinates is

, 0x,y) _[3—;; %l
7 N

= = %
d(x0,y0) % Iy

The Jacobian matrix is evaluated on a trajectory segment that starts at point
Xxo = x(fp) and ends at point x; = x(t1), t; > fo. As the trajectory x(¢) is determin-
istic, the initial point xo and the elapsed time ¢ in (4.5) suffice to determine J, but
occasionally we find it helpful to be explicit about the initial and final times and
state space positions, and write

Ox(t1);
ax(l‘o)j '

1=K
Jii " = Jijtisto) = Jij(xr, s X0, fo) =

(4.6)

The map f' is assumed invertible and differentiable so that J' exists. For
sufficiently short times J' remains close to 1, so detJ' > 0. By continuity, det J’
remains positive for all times ¢. However, for discrete time maps, det J” can have
either sign.

4.1.3 Co-moving frames

J describes the deformation of an infinitesimal neighborhood at a finite time ¢ in
the co-moving frame of x(¢#). This deformation of an initial frame at xg into a
non-orthogonal frame at x(¢) is described by the eigenvectors and eigenvalues of
the Jacobian matrix of the linearized flow (see figure 4.1),

JteW) = Aje(j), j=1,2---.d. 4.7

Throughout this text the symbol Ay will always denote the kth eigenvalue (the
stability multiplier) of the finite time Jacobian matrix J’. Symbol A% will be
reserved for the kth stability exponent, with real part u® and phase w®: uploaded
2014-12-24

Ap=et AW = 4B 4 ,®, (4.8)

As J' is a real matrix, its eigenvalues are either real or come in complex conjugate
pairs,

(At Mgy} = {000 pu0-i00y
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with magnitude [A| = |Ags1] = exp(tu®). The phase w® describes the rotation
velocity in the plane spanned by the pair of real eigenvectors, {Ree®, Ime®},
with one period of rotation given by T = 27/w® .

example 4.4
p. 101

J'(x0) depends on the initial point x( and the elapsed time 7. For notational
brevity we omitted this dependence, but in general both the eigenvalues and the
eigenvectors, Aj = Aj(xo,7), -+, €Y = e(xo, 1), also depend on the trajectory
traversed.

Nearby trajectories diverge exponentially with time along unstable directions
and approach each other along stable directions; however, the distance between
trajectories both increases and decreases with time along marginal directions at
rates slower than exponential. The relative path of nearby trajectories (i.e., di-
verging, approaching or changing) corresponds to the multipliers (eigenvalues) of
the Jacobian matrix with magnitude larger than, smaller than, or equal to 1. In the
literature, the adjectives neutral, indifferent and center are often used instead of
‘marginal’. Attracting, or stable directions are sometimes called ‘asymptotically
stable’, and so on.

One of the preferred directions is what one might expect, which is the direc-
tion of the flow itself. To see that, consider two initial points along a trajectory
separated by infinitesimal flight time 6t: dxg = f‘”(xo) — xp = v(x9)ot. By the
semigroup property of the flow, f/*% = fo'*! where

fo(x0) = fé drv(x(1)) + f'(x0) = 5t v(x(1) + f'(x0) -

Expanding both sides of f'(f%(xg)) = f°(f"(xo)), keeping the leading term in
6t, and using the definition of the Jacobian matrix (4.5), we observe that J'(xg)
transports the velocity vector at xg to the velocity vector at x(¢) (see figure 4.1):

v(x(1)) = J'(x0) v(xo) - (4.9)

4.2 Computing the Jacobian matrix

As we started by assuming that we know the equations of motion, from (4.3) we
also know stability matrix A, the instantaneous rate of shear of an infinitesimal
neighborhood §x;(¢) of the trajectory x(#). What we do not know is the finite time
deformation (4.5), so our next task is to relate the stability matrix A to the Jacobian
matrix J’. In terms of differential equations, the relationship between these two
matrices is found by taking the time derivative of (4.5) and replacing dx by (4.2)

t
;Z_t ox(t) = cjl—f Sxo = Adx(t) = AJ 6xq .
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Hence the matrix elements of the [dxd] Jacobian matrix satisfy the ‘tangent linear
equations’

%Jt(xo) =A(x)J'(x0), x= f'(xp), initial condition JO(xo) =1. (4.10)

For autonomous flows, the matrix of velocity gradients A(x) depends only on x,
not time, while J* depends on both the state space position and time. Given a nu-
merical routine for integrating the equations of motion, evaluation of the Jacobian
matrix requires minimal additional programming effort; one simply extends the
d-dimensional integration routine and integrates the d elements of J/(x) concur-
rently with f'(xo).

The qualifier ‘simply’, however, is simply a scam perpetrated by introductory
‘chaos’ courses. (1) Integration will work for short finite times, but for expo-
nentially unstable flows one quickly runs into numerical over- and/or underflow
problems. (2) For high-dimensional flows the analytical expressions for elements
of A are probably so cumbersome that A fits on no computer. Further thought will
have to go into implementing this calculation.

So now we know how to compute Jacobian matrix J’ given the stability matrix
A, at least when the d” extra equations are not too expensive to compute. Mission
accomplished.

fast track:
chapter 8, p. 143

And yet... there are mopping up operations left to do. We persist until we derive
the integral formula (4.19) for the Jacobian matrix, an analogue of the finite-time
‘Green’s function’ or ‘path integral’ solutions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a suf-
ficiently small neighborhood it is essentially linear. Hence the next section, which
might seem an embarrassment (what is a section on linear flows doing in a book
on nonlinear dynamics?), offers a firm stepping stone on the way to understanding
nonlinear flows. Linear charts are the key tool of differential geometry, general
relativity, etc., so we are in good company. If you know your eigenvalues and
eigenvectors, you may prefer to fast forward here.

fast track:
sect. 4.4, p. 91

4.3 A linear diversion

Linear is good, nonlinear is bad.
—Jean Bellissard
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Linear fields are the simplest vector fields, described by linear differential equa-
tions which can be solved explicitly, with solutions that are good for all times.
The state space for linear differential equations is M = R, and the equations of
motion (2.9) are written in terms of a vector x and a constant stability matrix A as

X =v(x) = Ax. (4.11)
Solving this equation means finding the state space trajectory

x() = (x1(2), x2(0), . . ., xa(1))

passing through a given initial point xy. If x(¢) is a solution with x(0) = xg and
y(t) another solution with y(0) = yg, then the linear combination ax(t) + by(¢) with
a,b € R is also a solution, but now starting at the point axg + byg. At any instant
in time, the space of solutions is a d-dimensional vector space, spanned by a basis
of d linearly independent solutions.

How do we solve the linear differential equation (4.11)? If instead of a matrix
equation we have a scalar one, x = Ax, the solution is x(f) = e"'xy. In order
to solve the d-dimensional matrix case, it is helpful to rederive this solution by
studying what happens for a short time step 6¢. If time ¢+ = O coincides with
position x(0), then

x(61) — x(0)
ot

which we iterate m times to obtain Euler’s formula for compounding interest

= Ax(0), (4.12)

x(t) ~ (1 + %/l)m x(0) = e”x(O). 4.13)

The term in parentheses acts on the initial condition x(0) and evolves it to x(¢) by
taking m small time steps ot = t/m. As m — co, the term in parentheses converges
to 1. Consider now the matrix version of equation (4.12):

x(61) — x(0)

s = Ax(0). (4.14)

A representative point x is now a vector in R¢ acted on by the matrix A, as in
(4.11). Denoting by 1 the identity matrix, and repeating the steps (4.12) and (4.13)
we obtain Euler’s formula for the exponential of a matrix:
t m
x(t) = J'x(0),  J =€ = lim (1 + —A) , (4.15)
m—o0 m
where J' = J(¢) is a short hand for exp(zA). We will find this definition for the

exponential of a matrix helpful in the general case, where the matrix A = A(x(¥))
varies along a trajectory.

Now that we have some feeling for the qualitative behavior of eigenvectors and
eigenvalues of linear flows, we are ready to return to the nonlinear case. What
replaces the exponential in (4.15) then?

example 4.2 fast track:
p. 100 sect. 4.4, p. 91
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4.4 Stability of flows

How does one determine the eigenvalues of the finite time local deformation J for
a general nonlinear smooth flow? The Jacobian matrix is computed by integrating
the equations of variations (4.2)

x(t) = fl(xo), Ox(x0,8) = J'(x0)x(x0,0). (4.16)

The equations for J(x() are linear, so we should be able to integrate them—but in
order to make sense of the answer, we derive this integral step by step.

Consider the case of a general, non-stationary trajectory x(#). The exponential
of a constant matrix can be defined either by its Taylor series expansion or in terms
of the Euler limit (4.15):

© ik
= t—‘Ak = lim (1+ iA)m : 4.17)
k! m—co m
Taylor expanding is fine if A is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
task at hand. For dynamical systems, the local rate of neighborhood distortion
A(x) depends on where we are along the trajectory. The linearized neighborhood
is deformed along the flow, and the m discrete time-step approximation to J' is
therefore given by a generalization of the Euler product (4.17):

1 1
J(xo) = lim [ | +6tAx,)) = lim ]—[ 01 AG) (4.18)
m-—-00 n=m m—00 n=m
— lim eétA(xm)e(StA(xm_l) L e&tA(xz)eétA(xl) ,
m—oo

where 0t = (1 —ty)/m, and x, = x(fo + not). “Reverse” order in the product
indices is to remind you that the successive infinitesimal deformation are applied
by multiplying from the left. The m — oo limit of this procedure is the formal
integral that you might have seen in quantum mechanics courses, but now turns
out to have nothing to do with ‘quantum’, it’s just linear algebra,

J(x0) = [Tefo’ dm(x(f»] N (4.19)
ij

where T stands for time-ordered integration, defined as the continuum limit of

successive multiplications (4.18). This integral formula for J' is the main con-

ceptual result of the present chapter. It is the finite time companion of the differ-

ential definition (4.10). The definition (4.18) makes evident important properties

of Jacobian matrices, such as their being multiplicative along the flow,

J* () = J' () T (%), where x’ = f(xo), (4.20)

which is an immediate consequence of the time-ordered product structure of (4.18).

However, in practice J is evaluated by integrating (4.10) along with the ODEs that
define a particular flow.
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4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the iter-
ation of a map follows from Taylor expanding the iterated mapping at finite time
n to linear order, as in (4.4). The linearized neighborhood is transported by the
Jacobian matrix evaluated at a discrete set of timesn = 1,2,...,

of"(x
J" Jil
1 an

(x0) = 4.21)

X=X0

As in the finite time case (4.8), Ay denotes the kth eigenvalue or multiplier of the
finite time Jacobian matrix J”. There is really no difference from the continuous
time case, other than that now the Jacobian matrix is evaluated at integer times.

example 4.9
p. 104

The formula for the linearization of nth iterate of a d-dimensional map
T'(x0) = J(e-1) - JOen) (x0) s xj = f(x0), (4.22)

in terms of single time steps J;; = df;/0x; follows from the chain rule for func-
tional composition,

afi)

Ofi(x)
Yk '

6xi

9 d
) =)

k=1 y=f(x)

If you prefer to think of a discrete time dynamics as a sequence of Poincaré sec-
tion returns, then (4.22) follows from (4.20); Jacobian matrices are multiplicative
along the flow.

example 4.10 fast track:
p. 105 chapter 8, p. 143

4.6 Stability of return maps

(R. Paskauskas and P. Cvitanovi¢)

We now relate the linear stability of the return map P : £ — P defined in sect. 3.1
to the stability of the continuous time flow in the full state space.

The hypersurface # can be specified implicitly through a function U(x) that
is zero whenever a point x is on the Poincaré section. A nearby point x + dx
is in the hypersurface P if U(x + 6x) = 0, and the same is true for variations
around the first return point x” = x(7). Thus, expanding U(x") to linear order in
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U(x)=0 £

Figure 4.2: If x(¢) intersects the Poincaré section
P at time 7, the nearby x(f) + dx(¢) trajectory inter-
sects it time 7 + ot later. As (U’ - Vv'6r) = —(U’ - /]‘6)(‘ st
J 6x), the difference in arrival times is given by ot = X0 ’
(U’ - Jéx)/(U" - V).

X(t)+Ox(t)

variation dx restricted to the Poincaré section, and applying the chain rule leads to
the condition

d , ’

oU(x') dx;

8x,- dx‘,-

(4.23)

i=1 P

In what follows U; = d,U is the gradient of U defined in (3.3), unprimed quan-
tities refer to the starting point x = xg € £, v = v(xp), and the primed quantities
to the first return: x’ = x(1), v/ = v(x’), U’ = U(x’). For brevity we shall also
denote the full state space Jacobian matrix at the first return by J = J7(xp). Both
the first return x” and the time of flight to the next Poincaré section 7(x) depend
on the starting point x, so the Jacobian matrix

/

Jxyij= —

4.24
7 (4.24)

P

with both initial and the final variation constrained to the Poincaré section hyper-
surface P is related to the continuous flow Jacobian matrix by

dx;
dx;

1

ox, dxl’ dr oy dr
=—+——=J;;+Vvi—.
P Ox; dt dx; g "dx;

The return time variation dt/dx, figure 4.2, is eliminated by substituting this ex-
pression into the constraint (4.23),

dr
0=0;U"J;; "LoU ) —,
J+(v )de

yielding the projection of the full space d-dimensional Jacobian matrix to the re-
turn map (d—1)-dimensional Jacobian matrix:

P P 4.25
ij = zk_m kj- ( )

Substituting (4.9) we verify that the initial velocity v(x) is a zero-eigenvector of J
Jv=0, (4.26)

so the Poincaré section eliminates variations parallel to v, and J is a rank (d—1)-
dimensional matrix, i.e., one less than the dimension of the continuous time flow.
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4.7 Neighborhood volume

Consider an infinitesimal state space volume AV = dxdx,- - -dx, centered around
the point xq at time = 0. The volume AV’ around the point x" = x(¢) time ¢ later
is (see figure 4.1)

AV

AV’ =
AV

a /
AV = ‘det %‘ AV = |det J'(xo)| AV, (4.27)

so the |det J] is the ratio of the initial and the final volumes. The determinant
det J'(xp) = Hle A;i(xp,1) is the product of the Jacobian matrix (4.5) stability
multipliers (4.8). We shall refer to this determinant as the Jacobian of the flow.
To evaluate it, use the matrix identity Indet J = tr In J, take the time derivative
and substitute the J evolution equation (4.10):

d d d 1dJ
—InAV($) = —IndetJ =tr—InJ =tr [-— | =trA = d;v;.
g AV = g Inde Yt r(Jalt) ! Vi

(Here, as elsewhere in ChaosBook, a repeated index implies summation.) In-
tegrate both sides to obtain the time evolution of an infinitesimal volume (see
Liouville’s formula wiki)

f t
det J'(xp) = exp [ f thrA(x(T))] = exp [ f dt 0;vi(x(1))] . (4.28)
0 0

The divergence 9;v; characterizes the behavior of a state space volume in the in-
finitesimal neighborhood of the trajectory. As this is a scalar quantity, the integral
in the exponent (4.19) needs no time ordering. So all we need to do is evaluate the
time average

0ivi

1
lim - | dr ZA,','()C(T))
0 i=1

t—oo
d
[ [Aixo.0
i=1

1
lim — In

t—oo [

d
= Z 1D (xp, 00) (4.29)
i=1

along the trajectory. If the flow is not singular, the stability matrix elements are
everywhere bounded from above, A;; < M, and so is the trace }’; A;;. The time in-
tegral in (4.28) thus grows at most linearly with z, ;v; is bounded for all times, and
numerical estimates of the t — oo limit in (4.29) are not marred by any blowups.
In numerical evaluations of stability exponents, the sum rule (4.29) can serve as a
helpful check on the accuracy of the computation.

example 4.8
p. 104

If 0;v; < 0 at a given state space point x, the flow is locally contracting, and the
trajectory might be falling into an attractor. If 9;v;(x) < O for all x € M, the flow
is globally contracting, with the dimension of the attractor necessarily smaller
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than the dimension of state space M. For co-dimensional dissipative flows, such
as Navier-Stokes, the co of stability exponents x4 in (4.29) can be arbitrarily
negative; as such exponents represent damping of arbitrarily kinky modes of a
viscous fluid, they are of no interest for study of steady turbulence. So the sum
(4.29) should be truncated to a finite number d,,, of leading stability exponents.
We shall refer to this integer as a physical dimension of a strange attractor, in fluid
dynamics often referred to as the inertial manifold. Every expanding or marginal
direction contributes 1 to dpys, and then to get a lower bound on dy, one has
to keep at least as many negative u” as needed to ensure that the sum (4.29) is
globally contracting. As nonlinear terms can mix various terms in such a way that
expansion in some directions overwhelms the strongly contracting ones, dppys is
larger than this bound, but still a finite number.

This is an amazing result: a fluid’s state space is co-dimensional, but its long
term dynamics is confined to a finite-dimensional(!) subspace, the reason why we
can apply the few degrees of freedom technology developed here to co-dimension-
al field theories.

If 9;v; = 0, the flow preserves state space volume, det J' = 1, and the flow
is incompressible. An important class of such flows are the Hamiltonian flows
considered in chapter 8 But before we can get to that, Henriette Roux, the perfect
student and always alert, pipes up, asks question 4.3.

Résumé

A neighborhood of a trajectory deforms as it is transported by a flow. Let us
summarize the linearized flow notation used throughout ChaosBook.

Differential formulation, flows: Equations
x=v, Sx = Adx

govern the dynamics in the tangent bundle (x,5x) € T M obtained by adjoining
the d-dimensional tangent space ox € T M, to every point x € M in the d-dim-
ensional state space M C R?. In the linear approximation, the stability matrix
A = 0v/dx describes the instantaneous rate of shearing / compression / expansion
of an infinitesimal neighborhood of state space point x.

Finite time formulation, maps: A discrete set of trajectory points {xop, xq, :-- ,
Xn, -} € M can be generated by composing finite-time maps, either given as
Xn+1 = f(xy), or obtained by integrating the dynamical equations

Tn+1
A n —_— p—
Xni1 = fO(00) = Xy +f drv(x(1)), Aty = tyy1 — In, (4.30)
tn
for a discrete sequence of times {tg,t;,-- ,,, -}, specified by some criterion

such as strobing or Poincaré sections. In the discrete time formulation the dynam-
ics in the tangent bundle (x, dx) € TM is governed by

Xn1 = f(xn),  Oxpp1 = J(X4) 0%,
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where

0Xpi1

J(xy) = T8 (x,) = o

is the 1-time step Jacobian matrix. The deformation after a finite time ¢ is de-
scribed by the Jacobian matrix

T'(xp) = Te Ji drAGx(r) ’

where T stands for the time-ordered integration, defined multiplicatively along the
trajectory. For discrete time maps, this represents multiplication by the time-step
Jacobian matrix J along the n points xg, x1, X2, . .., X,—1 on the trajectory of xg,

J"(x0) = J(xp—1) J(xn—2) - -+ J(x1) J(x0) ,

where J(x) is the 1-time step Jacobian matrix.

In ChaosBook the stability multiplier Ay denotes the kth eigenvalue of the
finite time Jacobian matrix J/(xg), u® the real part of kth stability exponent, and
6® its phase,

A = et,u+i9

For complex eigenvalue pairs the ‘angular velocity’ w describes rotational motion
in the plane spanned by the real and imaginary parts of the corresponding pair of
complex eigenvectors. This angular velocity w has to be carefully “unwrapped”
because most numerical routines return

0=tw mod 2.

The eigenvalues and eigen-directions of the Jacobian matrix describe the de-
formation of an initial infinitesimal cloud of neighboring trajectories into a dis-
torted cloud at a finite time ¢ later. Nearby trajectories separate exponentially
along unstable eigen-directions, approach each other along stable directions, and
the distance between trajectories changes slowly along marginal or center direc-
tions. The Jacobian matrix J’ is in general neither symmetric, nor diagonalizable
by a rotation, nor do its (left or right) eigenvectors define an orthonormal coordi-
nate frame. Furthermore, although the Jacobian matrices are multiplicative along
the flow, their eigenvalues are generally not multiplicative in dimensions higher
than one.  This lack of a multiplicative nature for eigenvalues has important
repercussions for both classical and quantum dynamics.

Commentary

Remark 4.1. Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.3 we only sketch, and in appendix A4 recapitulate a few facts that
our narrative relies on. A useful reference book is Meyer [16]. The basic facts are pre-
sented at length in many textbooks. Frequently cited linear algebra references are Golub
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and Van Loan [7], Coleman and Van Loan [4], and Watkins [24, 25]. The standard refer-
ences that exhaustively enumerate and explain all possible cases are Hirsch and Smale [9]
and Arnol’d [2]. A quick overview is given by Izhikevich [I1]; for different notions of
orbit stability see Holmes and Shea-Brown [10]. For ChaosBook purposes, we enjoyed
the discussion in chapter 2 Meiss [15], chapter 1 of Perko [17] and chapters 3 and 5 of
Glendinning [5]; we also liked the discussion of norms, least square problems, and differ-
ences between singular value and eigenvalue decompositions in Trefethen and Bau [22].
Appendix A of Stone and Goldbart [20] is an advanced summary of almost everything a
graduate student needs to know about linear algebra. More pedestrian and perhaps easier
to read is Chapter 3 of Arfken and Weber [1]. Truesdell [23] and Gurtin [8] are excellent
references for the continuum mechanics perspective on state space dynamics. For a gen-
tle introduction into parallels between dynamical systems and continuum mechanics, see
Christov et al. [3] .

The nomenclature tends to be a bit confusing. A Jacobian matrix (4.5) is sometimes
referred to as the fundamental solution matrix or simply fundamental matrix, a name in-
herited from the theory of linear ODEs, or the Fréchet derivative of the nonlinear mapping
f'(x), or the ‘tangent linear propagator’, or even as the ‘error matrix’ (Lorenz [13]). The
formula (4.22) for the linearization of nth iterate of a d-dimensional map is called a linear
cocyle, a multiplicative cocyle, a derivative cocyle or simply a cocyle by some. Since ma-
trix J describes the deformation of an infinitesimal neighborhood at a finite time ¢ in the
co-moving frame of x(¢), it is called a deformation gradient or a transplacement gradient
in continuum mechanics. It is often denoted Df, but for our needs (we shall have to sort
through a plethora of related Jacobian matrices) matrix notation J is more economical.
Single discrete time-step Jacobian Jj; = 0f;/0x; in (4.22) is referred to as the ‘tangent
map’ by Skokos [18, 19]. For a discussion of ‘fundamental matrix’ see appendix A4.2.

We follow Tabor [21] in referring to A in (4.3) as the ‘stability matrix’; it is also re-
ferred to as the ‘velocity gradients matrix’ or ‘velocity gradient tensor’. Matrix A is used
to describe stability of equilibria, time-invariant points in state space; whereas, the stabil-
ity of trajectories is described by Jacobian matrices. Goldhirsch, Sulem, and Orszag [0]
call it the ‘Hessenberg matrix’, and refer to the equations of variations (4.1) as ‘stability
equations.” Manos et al. [14] refer to (4.1) as the ‘variational equations’.

Sometimes A, which describes the instantaneous shear of the neighborhood of x(xy, 1),
is referred to as the ‘Jacobian matrix’, a particularly unfortunate usage when one considers
linearized stability of an equilibrium point (5.1). A is not a Jacobian matrix, just as a
generator of SO(2) rotation is not a rotation; A is a generator of an infinitesimal time
step deformation, JO ~ 1 + ASt. What Jacobi had in mind in his 1841 fundamental
paper [12] on determinants (today known as ‘Jacobians’) were transformations between
different coordinate frames. These are dimensionless quantities, while dimensionally A;;
is 1/[time].

More unfortunate still is referring to the Jacobian matrix J' = exp(tA) as an ‘evo-
lution operator’, which here (see sect. 20.2) refers to something altogether different. In
ChaosBook Jacobian matrix J* always refers to (4.5), the linearized deformation after a
finite time ¢, either for a continuous time flow, or a discrete time mapping.

Question 4.1. Henriette Roux is confused

Q What’s the difference between the stability matrix A and the Jacobian matrix J'?

A The velocity gradients matrix A is the instantaneous shear rate of a neighborhood
of a point x. Dimensionally it is (I1/time). The Jacobian matrix J’ is a dimensionless
matrix of ratios of distances across the neighborhood after a finite time t, divided by initial
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distances. Stability matrix A is a matrix of spatial derivatives. J is obtained by a finite
time integration over A.

Question 4.2. Henriette Roux wants to know

Q So, computing eigenvalues and eigenvectors seems like a good thing. But how do you
really do it?

A Any text on numerics of matrices discusses how this is done; the keywords are ‘Gram-
Schmidt’, and for high-dimensional flows ‘Krylov subspace’ and ‘Arnoldi iteration’. Con-
ceptually (but not for numerical purposes) we like the economical description of neigh-
borhoods of equilibria and periodic orbits afforded by projection operators. While usually
not phrased in language of projection operators, the requisite linear algebra is standard.
This is a sidetrack that you will likely find confusing at the first go, so it is relegated to
appendix A4.

Question 4.3. Henriette Roux does not like our Jacobian matrix

Q Ido not like our definition of the Jacobian matrix in terms of the time-ordered expo-
nential (4.19). Depending on the signs of multipliers, the left hand side of (4.28) can be
either positive or negative. But the right hand side is an exponential of a real number, and
that can only be positive. What gives?

A As we shall see much later on in this text, in discussion of topological indices arising
in semiclassical quantization, this is not at all a dumb question.
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4.8 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected here. If you want to return
back to the main text, click on [click to return] pointer on the margin.

Example 4.1. Rossler and Lorenz flows, linearized. (Continued from exam-
ple 3.4) For the Rossler (2.30) and Lorenz (2.25) flows, the stability matrices are re-
spectively

0o -1 -1 - o 0
ARM=[1 a 0 ) AL0,=(p—z -1 —x]. 4.31)

z 0 x-c y x -b

(continued in example 4.5)

Example 4.2. Jacobian matrix eigenvalues, diagonalizable case. = Should we be so
lucky that A = Ap happens to be a diagonal matrix with eigenvalues (1,1, ..., A@),
the exponential is simply

el/l(]) DY 0
J= e = ) (4.32)
0 ..

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form A, = U~'AU. Then J can also be brought to a diagonal form (insert
factors 1 = UU~! between the terms of the product (4.15)):

J =t = Uty (4.33)

The action of both A and J is very simple; the axes of an orthogonal coordinate system
where A is diagonal are also the eigen-directions of J’, and under the flow the neighbor-
hood is deformed by a multiplication by an eigenvalue factor for each coordinate axis.

We recapitulate the basic facts of linear algebra in appendix A4. The following
2-dimensional example serves well to highlight the most important types of linear
flows:

Example 4.3. Linear stability of 2-dimensional flows. For a 2-dimensional flow
the eigenvalues A", 1® of A are either real, leading to a linear motion along their eigen-
vectors, x;(f) = x;(0) exp(tA), or form a complex conjugate pair AV = p + iw, A? =
U — iw, leading to a circular or spiral motion in the [x;, x;] plane.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case of real AV > 0, 1® < 0, x; grows exponentially with time, and
X, contracts exponentially. This behavior, called a saddle, is sketched in figure 4.3, as
are the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(7)| diverges exponentially when ¢ > 0, and in-spiral contracts
into (0, 0) when u < 0. The phase velocity w controls its oscillations.
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////1‘;
a7

Figure 4.3: Trajectories in linearized neighborhoods
of several 2-dimensional equilibria: saddle (hyper-
bolic), in node (attracting), center (elliptic), in spiral.

(&

saddle out node  in node
A

Figure 4.4: Qualitatively distinct types of stability
exponents {11, 1?}, i.e., eigenvalues of the [2x2] - - ‘ -

stability matrix A.

center  outspiral in spiral
A A

If eigenvalues A = A® = A are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a) A can be
brought to diagonal form and (b) A can be brought to Jordan form, which (in dimension
2 or higher) has zeros everywhere except for the repeating eigenvalues on the diagonal
and some 1’s directly above it. For every such Jordan [d, Xd,] block there is only one
eigenvector per block.

We sketch the full set of possibilities in figures 4.3 and 4.4, and we work out in detail
the most important cases in appendix A4, example A4.2. 90
Example 4.4. Complex eigenvalues: in-out spirals. As M has only real entries,
it will in general have either real eigenvalues, or complex conjugate pairs of eigenvalues.
Also the corresponding eigenvectors can be either real or complex. All coordinates used
in defining a dynamical flow are real numbers, so what is the meaning of a complex eigen-
vector?

If Ak, Ax1 eigenvalues that lie within a diagonal [2 % 2] sub-block M’ ¢ M form a
complex conjugate pair, {Ag, Ak+1} = {¢ + iw, u — iw}, the corresponding complex eigen-
vectors can be replaced by their real and imaginary parts, {e®, e**D} — (Re e®, Im e®)}.
In this 2-dimensional real representation, M’ — A, the block A is a sum of the rescaling-
xidentity and the generator of SO(2) rotations in the {Re e/, Im 'V} plane.

_|H Tw | _ 1 0 0 -1
=8 =l VeV 9]
Trajectories of X = Ax, given by x(f) = J'x(0), where (omitting e®,e®, ... eigen-
directions)
f_ 1A _ | COSwt —sin wt
Jf=el=e [ sin wt  cos wr |’ (4.34)

spiral in/out around (x, y) = (0, 0), see figure 4.3, with the rotation period 7" and the radial

expansion /contraction multiplier along the e eigen-direction per a turn of the spiral:
p / P & & p P exercise A4.1
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Figure 4.5: Two trajectories of the Rossler flow initi-
ated in the neighborhood of the ‘+’ or ‘outer’ equilib-
rium point (2.31). (R. Paskauskas)

T =2nlw, Avadiar = €™ (4.35)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x,¥) = (0,0) is of order = T (and not, let us say, 1000 T, or 10727).

Example 4.5. Stability of equilibria of the Rossler flow. (Continued from exam-
ple 4.1) The Rosler system (2.30) has two equilibrium points (2.31), the inner equilib-
rium (x_,y—, z-), and the outer equilibrium point (x*, y*,z"). Together with their expo-
nents (eigenvalues of the stability matrix), the two equilibria yield quite detailed informa-
tion about the flow. Figure 4.5 shows two trajectories which start in the neighborhood of
the outer ‘+’ equilibrium. Trajectories to the right of the equilibrium point ‘+’ escape, and
those to the left spiral toward the inner equilibrium point ‘—’, where they seem to wander
chaotically for all times. The stable manifold of the outer equilibrium point thus serves as
the attraction basin boundary. Consider now the numerical values for eigenvalues of the
two equilibria:

@ u? £ i0®) = (-5.686, 0.0970 + i0.9951)

O 4.36
WP u? £ iw?)= (01929, —4.596x 1070 +i5.428). (4.36)

Outer equilibrium: The ,uf) + iw&z) complex eigenvalue pair implies that the neighbor-

hood of the outer equilibrium point rotates with angular period 7, = |27r/ a)(+2)| = 1.1575.
The multiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts
in the stable manifold plane is the excruciatingly slow multiplier A ~ exp(pf)TJr) =
0.9999947 per rotation. For each period the point of the stable manifold moves away
along the unstable eigen-direction by factor A} =~ exp(pi')TJ,) = 1.2497. Hence the
slow spiraling on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The ,u(_z) + iw® complex eigenvalue pair tells us that the neighbor-
hood of the ‘-’ equilibrium point rotates with angular period 7_ = |27r/ w(_2)| = 6.313,
slightly faster than the harmonic oscillator estimate in (2.27). The multiplier by which
a trajectory that starts near the ‘-’ equilibrium point spirals away per one rotation is
Aradial ® exp(,u(_z)T_) = 1.84. The ,u(_l) eigenvalue is essentially the z expansion cor-
recting parameter ¢ introduced in (2.29). For each Poincaré section return, the trajectory
is contracted into the stable manifold by the amazing factor of A; ~ exp(u"T_) = 107156

).

Suppose you start with a 1 mm interval pointing in the A; eigen-direction. After one
Poincaré return the interval is of the order of 10™* fermi, the furthest we will get into
subnuclear structure in this book. Of course, from the mathematical point of view, the
flow is reversible, and the return map is invertible. (continued in example 14.3)

(R. Paskauskas)
Example 4.6. Stability of Lorenz flow equilibria.  (Continued from example 4.1) A

glance at figure 3.5 suggests that the flow is organized by its 3 equilibria, so let us have a
closer look at their stable/unstable manifolds.
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Figure 4.6: (a) A perspective view of the lin-
earized Lorenz flow near EQ, equilibrium, see fig- 2
ure 3.5(a). The unstable eigenplane of EQ, is
spanned by {Ree",Ime"}; the stable subspace A
by the stable eigenvector €. (b) Lorenz flow -1
near the EQ, equilibrium: unstable eigenvector
e, stable eigenvectors e?, e®. Trajectories ini- ®
tiated at distances 1078 - -- 10712, 107!* away from ¢
the z-axis exit finite distance from EQ, along the ¢
(e, e®) eigenvectors plane. Due to the strong 1" 10~ - 0.5
expansion, the EQ, equilibrium is, for all practical EQ, 102 !
purposes, unreachable, and the EQ; — EQy hete- Re ¢V 1010
roclinic connection never observed in simulations 10_11\)
such as figure 2.5. (E. Siminos; continued in fig- ye— |S
ure 14.14.) B EB
(@) om0 () i
The EQ equilibrium stability matrix (4.31) evaluated at xgg, = (0,0,0) is block-
diagonal. The z-axis is an eigenvector with a contracting eigenvalue A? = —b. From 18

(4.42) it follows that all [x, y] areas shrink at the rate —(o+ 1). Indeed, the [x, y] submatrix

4.37)

=7 4)

has a real expanding/contracting eigenvalue pair A1 = —(o + 1)/2 + /(o — 1)2/4 + po,
with the right eigenvectors e, e® in the [x,y] plane, given by (either) column of the
projection operator

00 T 10— 0

A- - 91 1 —o — AW
( o-4 o i%je(l,3). (438)

0 —1=-29 |

EQ) equilibria have no symmetry, so their eigenvalues are given by the roots of a
cubic equation, the secular determinant det (A — A1) = O:

LB+ +b+ 1)+ (0 +p)+20b(p—-1)=0. (4.39)

For p > 24.74, EQ » have one stable real eigenvalue and one unstable complex conjugate
pair, leading to a spiral-out instability and the strange attractor depicted in figure 2.5.

All numerical plots of the Lorenz flow are carried out here with the Lorenz parameters
settoo =10, b = 8/3, p = 28. We note the corresponding stability exponents for future
reference,

EQy: (A1, 2,13 = (11.83, —2.666, —22.83)

EQ: M+ iwh,A®) = (0094 £i10.19, —13.85). (4.40)

We also note the rotation period Trg, = 2/w'" about EQ; and the associated expan-
sion/contraction multipliers A” = exp(u’ Ty, ) per spiral-out turn:

Tgg, =0.6163, (A, A®) = (1.060,1.957 x 107*). (4.41)

We learn that the typical turnover time scale in this problem is of the order T = Tgg, ~ 1
(and not, let us say, 1000, or 107?). Combined with the contraction rate (4.42), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ~ 107 per
mean turnover time.
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In the EQ; neighborhood, the unstable manifold trajectories slowly spiral out, with a
very small radial per-turn expansion multiplier A"’ ~ 1.06 and a very strong contraction
multiplier A® ~ 10~* onto the unstable manifold, figure 4.6 (a). This contraction con-
fines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface, which is
evident in figure 3.5.

In the xgg, = (0,0,0) equilibrium neighborhood, the extremely strong A®) ~ —23
contraction along the ¢® direction confines the hyperbolic dynamics near EQy to the
plane spanned by the unstable eigenvector eV, with AV’ ~ 12, and the slowest con-
traction rate eigenvector e® along the z-axis, with A® ~ —3. In this plane, the strong
expansion along e overwhelms the slow A® ~ —3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQy, figure 4.6 (b). Thus, lin-
earization describes analytically both the singular dip in the Poincaré sections of figure 3.5
and the empirical scarcity of trajectories close to EQy. (continued in example 4.8)

(E. Siminos and J. Halcrow)

Example 4.7. Lorenz flow: A global portrait. (Continued from example 4.6) As
the EQ; unstable manifold spirals out, the strip that starts out in the section above EQ;
in figure 3.5 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ.

How? Since the dynamics is linear (see figure 4.6 (a)) in the neighborhood of EQ,,
there is no need to integrate numerically the final segment of the heteroclinic connection.
It is sufficient to bring a trajectory a small distance away from E Qy, continue analytically
to a small distance beyond EQy and then resume the numerical integration.

What happens next? Trajectories to the left of the z-axis shoot off along the e
direction, and those to the right along —e(. Given that xy > 0 along the e direction, the
nonlinear term in the z equation (2.25) bends both branches of the EQ unstable manifold
WH*(EQp) upwards. Then ... - never mind. We postpone completion of this narrative
to example 11.8, where the discrete symmetry of Lorenz flow will help us streamline
the analysis. As we shall show, what we already know about the 3 equilibria and their
stable/unstable manifolds suffices to completely pin down the topology of Lorenz flow.
(continued in example 11.8)

(E. Siminos and J. Halcrow)

Example 4.8. Lorenz flow state space contraction.  (Continued from example 4.6) It
follows from (4.31) and (4.29) that Lorenz flow is volume contracting,

3
Av; = Z A, f)=-0c-b-1, (4.42)
i=1
at a constant, coordinate- and p-independent rate, set by Lorenz to d;v; = —13.66 . For

periodic orbits and long time averages, there is no contraction/expansion along the flow,
AW =0, and the sum of 1% is constant by (4.42). Thus, we compute only one independent
exponent . (continued in example 11.8)

Example 4.9. Stability of a 1-dimensional map. Consider the orbit{. .., x_1, X, X1, X2, . .

of a 1-dimensional map x,; = f(x,). When studying linear stability (and higher deriva-
tives) of the map, it is often convenient to use a local coordinate system z, centered on the

stability - 16jan2022 ChaosBook.org edition17.5.5, Feb 3 2022
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Figure 4.7: A unimodal map, together with fixed

points 0, 1, 2-cycle 01 and 3-cycle 011.

orbit point x,, together with a notation for the map, its derivative, and, by the chain rule,
the derivative of the kth iterate f* evaluated at the point x,,

X = Xg+Z4, fa(Zu) = f(xu + Za)
fo = f(x
Ao k) = f = frge o fonfas k22 (4.43)

Here a is the label of point x,, and the label a+1 is shorthand for the next point b on the
orbit of x,, x, = x,41 = f(x,). For example, a period-3 periodic point in figure 4.7 might
have label a = 011, and by x;19 = f(xo11) the next point label is b = 110.

Example 4.10. Hénon map Jacobian matrix. For the Hénon map (3.18) the Jacobian
matrix for the nth iterate of the map is

1
wmpfﬁ”@iﬂ, X = 0,30, (4.44)

m=n

The determinant of the Hénon one time-step Jacobian matrix (4.44) is constant,
detM = A1A, = —b. (4.45)

In this case only one eigenvalue A; = —b/A, needs to be determined. This is not an
accident; a constant Jacobian was one of desiderata that led Hénon to construct a map of
this particular form.

stability - 16jan2022 ChaosBook.org edition17.5.5, Feb 3 2022
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Exercises

4.1. Trace-log of a matrix. Prove that

det M = " "M

for an arbitrary nonsingular finite dimensional matrix M,
detM # 0.

4.2. Stability, diagonal case. Verify the relation (4.33)

J =t =UleU, Ap=UAU'.

4.3. State space volume contraction.

(a) Compute the Rossler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous 0;v; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of 9;v;. If you see regions
of local expansion, explain them.

(c) (optional) Color-code the points on the trajec-
tory by the sign (and perhaps the magnitude) of
aiv,- — (9,‘\/,'.

(d) Compute numerically the average contraction rate
(4.29) along a typical trajectory on the Rossler at-
tractor. Plot it as a function of time.

(e) Argue on the basis of your results that this attrac-

tor has a smaller dimension than the state space

d=3.

(optional) Start some trajectories on the escape

side of the outer equilibrium, and color-code the

points on the trajectory. Is the flow volume con-
tracting?

®

(continued in exercise 23.10)

4.4. Topology of the Rossler flow. (continuation of exer-

cise 3.1)

(a) Show that equation |det (A — A1)| = O for Rossler
flow in the notation of exercise 2.8 can be written
as

B+ 2c(pF—e)+Ap*/e+1-ctepT)FcVD =0
(4.46)

exerStability - 11mar2013

(b) Solve (4.46) for eigenvalues A* for each equilib-
rium as an expansion in powers of €. Derive

A =—c+ ec/(®+ 1) + o(e)
A, = ec®/[2( + D] + o()
1+ €/[2(c% + D] + o(€)
AT =ce(1-€)+ o(e%)

(4.47)

A= —€¢%/2 + o(€%)
05 = V1 +1/e(1 + o(e)

Compare with exact eigenvalues. What are dy-
namical implications of the extravagant value of
A7? (continued as exercise 7.1)

(R. Paskauskas)

4.5. Time-ordered exponentials. Given a time dependent
matrix A(f) check that the time-ordered exponential

J(1) = Te Ji drA@)

may be written as

J0) = v Jy d [ dts - [ dtAG) - Alt)

and verify, by using this representation, that J(¢) satisfies
the equation

J(1) = A0J(1),

with the initial condition J(0) = 1.

4.6. A contracting baker’s map. Consider a contracting
(or ‘dissipative’) baker’s map, acting on a unit square

[0,1]2 = [0, 1] x [0, 1], defined by

Xn+1 Xn/3
= <1/2
()= (52 ) e
Xn+1 _ xn/3+1/2
(yn+1 )_( 2yn_1 ) yn>]/2

This map shrinks strips by a factor of 1/3 in the x-
direction, and then it stretches (and folds) them by a fac-
tor of 2 in the y-direction.

By how much does the state space volume contract for
one iteration of the map?
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Chapter 5

Cycle stability

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

and the ways in which the orbits intertwine— are invariant under a general

continuous change of coordinates. Equilibria and periodic orbits are flow-
invariant sets, in the sense that the flow only shifts points along a periodic orbit,
but the periodic orbit as the set of periodic points remains unchanged in time. Sur-
prisingly, there also exist quantities that depend on the notion of metric distance
between points, but nevertheless do not change value under a smooth change of
coordinates. Local quantities, such as the eigenvalues of equilibria and periodic
orbits and global quantities, such as Lyapunov exponents, metric entropy, and
fractal dimensions, are examples of dynamical system properties that are inde-
pendent of coordinate choice.

TOPOLOGICAL FEATURES of a dynamical system —singularities, periodic orbits,

We now turn to the first, local class of such invariants, linear stability of equi-
libria and periodic orbits of flows and maps. This will give us metric information
about local dynamics, as well as a key concept regarding the neighborhood around
point x. The size of a neighborhood is primarily determined by the number of
expanding directions and their rates of expansion; contracting directions play only
a secondary role (see sect. 5.6).

If you already know that eigenvalues of periodic orbits are invariants of a flow,
skip this chapter.

fast track:
chapter 7, p. 134

As noted on page 43, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic—nevertheless, equilibria and
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periodic orbits turn out to be the key to unraveling chaotic dynamics. Here we
note a few of the properties that make them so precious to a theorist.

5.1 Equilibria

At the still point, there the dance is.
—T. S. Eliot, Four Quartets - Burnt Norton 100:15:30)

For a start, consider the case where x, is an equilibrium point (2.11). Ex-
panding around the equilibrium point x,, using the fact that the stability matrix
A = A(x,) in (4.2) is constant, and integrating, f'(x) = x, + eM(x — Xg) e,
we verify that the simple formula (4.15) applies also to the Jacobian matrix of an
equilibrium point,

To=eb, T =T(xg) . Ag = Axy). (5.1

When an equilibrium point is stationary, time plays no role. The eigenvalues and
the eigenvectors of the stability matrix A, evaluated at the equilibrium point x,,

A, eV = /lglj) e , 5.2)

describe the linearized neighborhood of the equilibrium point, with stability expo-
nents /151’) = ,u((;) + iwﬁf) independent of any particular coordinate choice. Assume

that these eigenvalues are non-degenerate, 1) # A%®) for any pair of eigenvalues.

e Ifall u) < 0, then the equilibrium is stable, or a sink. For o) = 0, it is an
in-node; for w9 # 0, it is an in-spiral.

e If some u') < 0, and other ' > 0, the equilibrium is hyperbolic, or a
saddle.

e Ifall 4 > 0, then the equilibrium is repelling, or a source. For w'? = 0, it
is an out-node; for w9 # 0, it is an out-spiral.

e If some 'Y = 0, think again (you have a symmetry or a bifurcation).

For 2-dimensional flows, these types of equilibrium stabilities are illustrated in
figures 4.4 and 4.3. The stability matrix eigenvectors (5.2) are the eigenvectors of
the Jacobian matrix as well, J! e = exp(mgjj)) el .

5.2 Periodic orbits

An obvious virtue of periodic orbits is that they are topological invariants. A fixed
point remains fixed for any choice of coordinates, and similarly a periodic orbit
remains periodic in any representation of the dynamics. Any re-parametrization

invariants - 170ct2021 ChaosBook.org edition17.5.5, Feb 3 2022
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Figure 5.1: For a prime cycle p, Floquet matrix
J,, returns an infinitesimal spherical neighborhood of
Xo € M, stretched into an ellipsoid, with overlap ra-
tio along the eigendirection € of J,(x) given by the
Floquet multiplier |A;|. These ratios are invariant, un-
der smooth nonlinear reparametrizations of state space
coordinates, and also represent an intrinsic property of
cycle p.

of a dynamical system that preserves its topology has to preserve topological re-
lations between periodic orbits, such as their relative inter-windings and knots.
So the mere existence of periodic orbits suffices to partially organize the spatial
layout of a non—wandering set. No less important, as we shall now show, is the
fact that cycle eigenvalues are metric invariants; they determine the relative sizes
of neighborhoods in a non—wandering set.

We start by noting that due to the multiplicative structure (4.20) of Jacobian
matrices, the Jacobian matrix for the rth repeat of a prime cycle p of period T is

JT) = I ) - T opd T (x) = T (5.3)

where J,(x) = J T(x) is the Jacobian matrix for a single traversal of the prime cycle
p- When x € M,,, x is any point on the cycle, and T (x) = x as f'(x) returns to x
for every multiple of period 7. Hence, it suffices to restrict our considerations to
the stability of prime cycles.

fast track:
sect. 5.3, p. 111

5.2.1 Cycle stability

The time-dependent T-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hence from now on we shall
refer to a Jacobian matrix evaluated on a periodic orbit p either as a [dXxd] Floquet
matrix J, or a [(d—1) X (d—1)] monodromy matrix M, to its eigenvalues A; as
Floquet multipliers (4.7), and to

AP = 1) + i) (5.4)
as Floquet exponents. In the literature they are sometimes called “characteristic”
multipliers and exponents. The stretching/contraction rates per unit time are given
by the real parts of Floquet exponents

) 1
w) = T,ln A - (5.5)

invariants - 170ct2021 ChaosBook.org edition17.5.5, Feb 3 2022
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Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory x’(¢), except those on its center
and stable manifolds.

The factor 1/T), in the definition of the Floquet exponents is motivated by its form
for the linear dynamical systems, for example (4.32). (Parenthetically, a Floquet
exponent is not a Lyapunov exponent (6.11) evaluated on one period of prime
cycle p; the relation is subtler than that, read chapter 6). When A is real, we do
care about o) = A ilIAjl € {+1,—1}, the sign of the jth Floquet multiplier. If
o” = —1 and |Aj| # 1, the corresponding eigen-direction is said to be inverse
hyperbolic. Keeping track of this by case-by-case enumeration is an unnecessary
nuisance, so most of our formulas will be stated in terms of the Floquet multipliers

A j rather than in the terms of the multiplier signs o, exponents x4 and phases
)
w.

In dynamics the expanding directions, |A.| > 1, have to be taken care of first,
while the contracting directions |A.| < 1 tend to take care of themselves. Hence,
we always order multipliers Ay in order of decreasing magnitude |A;| > |Az] >

.2 |Aq4l. Since |Aj| = ¢ this is the same as ordering by ¥ > u® > ... >
1D . We sort the Floquet multipliers {Ap1, Apa, ..., Ap g} of the Floquet matrix
evaluated on the p-cycle into three sets {e, m, c}

expanding: {Ale =1{Ap;: |Apj| > 1}
{A}e {A(J) (J) > O}
marginal:  {A}, = {A,;: |A,, i|1=1 (5.6)
W = 1) =0)
contracting: {A}. {ApJ |Apj| <1}
We =V 4 <0y,

In what follows, the volume of an expanding manifold plays an important role.
The product of this expanding Floquet multipliers is denoted by A, (no jth eigen-
value index),

Ap =[] Ape- (5.7)

As J), is a real matrix, complex eigenvalues always come in complex conjugate
pairs, A, 41 = A; ;» 80 the product (5.7) is always real.

A periodic orbit of a continuous-time flow, or of a map, or a fixed point of a
map is
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e stable, attracting, a sink or a limit cycle if all |Aj| < 1 (real parts of all
of its Floquet exponents, other than the vanishing longitudinal exponent
for perturbations tangent to the cycle, see sect. 5.3.1, are strictly negative,
0> #(1) > ﬂ(j)).

e hyperbolic or saddle, unstable to perturbations outside its stable manifold
if some |A;| > 1, and other |Aj| < 1 (a set of u) > gy, > 0 is strictly
positive, and the rest is strictly negative).

e clliptic, neutral or marginal if all |A;| = 1 (u = 0).

e partially hyperbolic, if u) = 0 for a subset of exponents (other than the
longitudinal one).

e repelling or source, unstable to any perturbation if all |A;| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal exponent, are strictly
positive, ) > u@ > 0).

The region of system parameter values for which a periodic orbit p is stable is
called the stability window of p. The set of initial points that are asymptotically
attracted to M), as t — +oo (for a fixed set of system parameter values) is called
the basin of attraction of limit cycle p.  Repelling and hyperbolic cycles are
unstable to generic perturbations, and thus said to be unstable, see figure 5.2.

If all Floquet exponents (other than the vanishing longitudinal exponent) of
all periodic orbits of a flow are strictly bounded away from zero, the flow is
said to be hyperbolic. Otherwise the flow is said to be nonhyperbolic. A con-
fined smooth flow or map is generically nonhyperbolic, with partial ellipticity or
marginality expected only in the presence of continuous symmetries, or for bi-
furcation parameter values. As we shall see in chapter 12, in the presence of
continuous symmetries, equilibria and periodic orbits are not likely solutions, and
their role is played by higher-dimensional tori, relative equilibria and relative pe-
riodic orbits. For Hamiltonian flows the symplectic Sp(d) symmetry (Liouville
phase-space volume conservation, Poincaré invariants) leads to a proliferation of
elliptic and partially hyperbolic tori.

example 5.1 example 5.2
p. 120 p. 120

5.3 Floquet multipliers are invariant

As already noted in (5.1), if the stability matrix A(x) is computed on an equilib-
rium point g,

Ay = Axy) (5.8)

its eigenvalues /l(qk) are flow- and coordinate transformations invariant, so we label
them by g, omit (x;).
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The 1-dimensional map Floquet multiplier (5.23) is a product of derivatives
over all points around the cycle, and is therefore independent of which periodic
point is chosen as the initial one. In higher dimensions the form of the Floquet
matrix J,(xo) in (5.3) does depend on the choice of coordinates and the initial
point xop € M,,. Nevertheless, as we shall now show, the cycle Floguet multipliers
are intrinsic property of a cycle in any dimension. Consider the ith eigenvalue,
eigenvector pair (A, e)) computed from J » evaluated at a periodic point x,

Jx)eP(x) = AjeV(x), xeM,. (5.9)

Consider another point on the cycle at time ¢ later, x’ = f(x) whose Floquet matrix
is J,(x). By the semigroup property (4.20), J7*' = J™*T the Jacobian matrix at
x’ can be written either as

JIH ) = JT () J'(x) = Tp(xX) J'(0),

or J'(x)J »(x). Multiplying (5.9) by J'(x), we find that the Floquet matrix evalu-
ated at x’ has the same Floquet multiplier,

J(x) ey = A e (), eDx)=J'(x)eP (), (5.10)

but with the eigenvector e/ transported along the flow x — x’ to e(x’) =
J'(x)eY(x). Hence, in the spirit of the Floquet theory (appendix A4.2.1) one
can define time-periodic eigenvectors (in a co-moving ‘Lagrangian frame’)

D)= e I e0), eV =e(x1), x()eM,.  (5.11)

J, evaluated anywhere along the cycle has the same set of Floquet multipliers
{A1,Az, -+, 1,--+ ,Ag1}. Quantities such as tr J,(x), det J,(x) depend only on
the eigenvalues of J,(x) and not on the starting point x. Thus, in expressions such
as det (1 - J[’,(x)), we may omit reference to x,

det(1-J7) =det(1-Ji(x)) foranyxeM,. (5.12)

We postpone the proof that the cycle Floquet multipliers are smooth conjugacy
invariants of the flow to sect. 5.4; time-forward map (5.10) is the special case of
this general property of smooth manifolds and their tangent spaces.

5.3.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous symmetry of the
flow (which one should immediately exploit to simplify the problem), or a nonhy-
perbolicity of a flow (a source of much pain, hard to avoid). In that case (typical
of parameter values for which bifurcations occur) one has to go beyond linear
stability, deal with Jordan type subspaces (see example 4.3), and sub-exponential
growth rates, such as *. For flow-invariant solutions such as periodic orbits, the
time evolution is itself a continuous symmetry, hence a periodic orbit of a flow
always has a marginal Floquet multiplier, as we now show.
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Figure 5.3: Any two points along a periodic orbit p
are mapped into themselves after one cycle period T Sx
hence, a longitudinal deviation vector dx = v(x()dt is

mapped into itself by the cycle Jacobian matrix J,,.

The Jacobian matrix J'(x) transports the velocity field v(x) by (4.9), v(x(?)) =
J'(x0) v(xp) . In general the velocity at point x(7) does not point in the same di-
rection as the velocity at point xp, so this is not an eigenvalue condition for J';
the Jacobian matrix computed for an arbitrary segment of an arbitrary trajectory
has no invariant meaning. However, if the orbit is periodic, x(7,) = x(0), after a
complete period

Jp(x) v(x) = v(x), xXeM,. (5.13)

Two successive points on the cycle, with an initial distance 6x = x’(0) — x(0) apart,
are separated by exactly the same distance after a completed period 6x(T) = 6x,
see figure 5.3; hence, for a periodic orbit of a flow, the velocity field v at any point
along the cycle is an eigenvector eD(x) = v(x) of the Jacobian matrix J » with the
unit Floquet multiplier, zero Floquet exponent

Ay=1, A =9, (5.14)

The continuous invariance that gives rise to this marginal Floquet multiplier is
the invariance of a cycle (the set M,,) under a time translation of its points along
the cycle. As we shall see in sect. 5.5, this marginal stability direction can be
eliminated by cutting the cycle by a Poincaré section and replacing the continuous
flow Floquet matrix by the Floquet matrix of the return map.

If the flow is governed by a time-independent Hamiltonian, the energy is con-
served, and that leads to an additional marginal Floquet multiplier (we shall show
in sect. 8.4 that due to the symplectic invariance (8.21) real eigenvalues come in
pairs). Further marginal eigenvalues arise in presence of continuous symmetries,
as discussed in chapter 12.

5.4 Floquet multipliers are metric invariants

In sect. 5.3 we established that for a given flow, the Floquet multipliers are intrin-
sic to a given cycle, independent of the starting point along the cycle. Now we
prove a much stronger statement: cycle Floquet multipliers are smooth conjugacy
or metric invariants of the flow, the same in any representation of the dynamical
system. That follows by elementary differential geometry considerations:
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If the same dynamics is given by a map f in x coordinates, and a map g in
the y = h(x) coordinates, then f and g (or any other good representation) are
related by a smooth conjugacy, a reparameterization and a coordinate transforma-
tion g = ho foh~! which maps nearby points of f into nearby points of g. As both
f and g are arbitrary representations of the dynamical system, the explicit form
of the conjugacy 4 is of no interest, only the properties invariant under any trans-
formation & are of general import. Furthermore, a good representation should not
mutilate the data; the mapping 4 must be a smooth conjugacy which maps nearby
points of f into nearby points of g.

This smoothness guarantees that the cycles are not only topological invariants,
but that their linearized neighborhoods are also metric invariants. For a fixed point
f(x) = x of a 1-dimensional map this follows from the chain rule for derivatives,

1
gu = MfM*@v%*w%,
(x)
’ 4 1 _
=huvmwm—fm. (5.15)

In d dimensions the relationship between the maps in different coordinate rep-
resentations is again g o h = h o f. The chain rule now relates J’, the Jacobian
matrix of the map g, to the Jacobian matrix of map f:

T 0ij = T Q)i ul ()75 (5.16)
where the coordinate transformation Jacobian matrices are

(X = % and  [(x);' = g—;;. (5.17)
(Here, as elsewhere in ChaosBook, a repeated index implies summation.) If x is
an equilibrium point, x = f(x), I' is the matrix inverse of !, and (5.16) is a
similarity transformation and thus preserves eigenvalues. It is easy to verify that
in the case of period n), cycle Jy,(y) and J,(x) are again related by a similarity
transformation. (Note, though, that this is not true for J"(x) with r # n,). As
stability of a flow can always be reduced to stability of a Poincaré return map, a
Floquet multiplier of any cycle, for a flow or a map in arbitrary dimension, is a
metric invariant of the dynamical system.

The ith Floquet (multiplier, eigenvector) pair (A;, ¢?) are computed from J
evaluated at a periodic point x, J(x)e?(x) = A;e)(x), x € M, . Multiplying
by I'(x) from the left, and inserting 1 = ['(x)~'T'(x), we find that the J evaluated at
y = h(x) has the same Floquet multiplier,

Ime?y) = Aie?@y), (5.18)

but with the eigenvector e?(x) mapped to eD(y) =T(x)e?(x).
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5.5 Stability of return map cycles

(R. Paskauskas and P. Cvitanovi¢)

If a continuous flow periodic orbit p pierces the Poincaré section # once, the
section point is a fixed point of the return map P with stability (4.25)

— 1, (5.19)

with all primes dropped, as the initial and the final points coincide, x’ = f7(x) = x.
If the periodic orbit p pierces the Poincaré section n times, the same observation
applies to the nth iterate of P.

We have already established in (4.26) that the velocity v(x) is a zero eigen-
vector of the Poincaré section Floquet matrix, Jv = 0. Consider next (A,, @),
the full state space ath (eigenvalue, eigenvector) pair (5.9), evaluated at a periodic
point on a Poincaré section,

J)eD(x) = AgeP(x), xe?P. (5.20)

Multiplying (5.19) by €@ and inserting (5.20), we find that the full state space
Floquet matrix and the Poincaré section Floquet matrix J have the same Floquet
multiplier

J)&9(x) = A8 9(x), xeP, (5.21)

where @ is a projection of the full state space eigenvector onto the Poincaré
section:

Vi Uk
(v-U)

@) = ((xk - )(e“”)k : (5.22)
Hence, J » evaluated on any Poincaré section point along the cycle p has the same
set of Floquet multipliers {A1, Ao, - - - A4} as the full state space Floquet matrix J,,
except for the marginal unit Floquet multiplier (5.14).

As established in (4.26), due to the continuous symmetry (time invariance) J b
is a rank d—1 matrix. We shall refer to the rank [(d—1—-N)X (d—1-N)] submatrix
with N —1 continuous symmetries quotiented out as the monodromy matrix M,
(from Greek mono- = alone, single, and dromo = run, racecourse, meaning a
single run around the stadium). Quotienting continuous symmetries is discussed
in chapter 12 below.

5.6 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood of x(t),
and that is why we care about the Floquet multipliers, and especially the unstable
(expanding) ones.
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Nearby points aligned along the stable (contracting) directions remain in the
neighborhood of the trajectory x(f) = f’(xo); the ones to keep an eye on are the
points which leave the neighborhood along the unstable directions. All chaos
arises from flights along these these directions. The sub-volume |[My| = [17 Ax;
of the set of points which get no further away from f’(xo) than L, the typical size
of the system, is fixed by the condition that Ax;A; = O(L) in each expanding di-
rection i. Hence the neighborhood size scales as |[M,,| o O(L4%)/ IAp| oc 1/IA,l,
where A, is the product of expanding Floquet multipliers (5.7) only; contracting
ones play a secondary role. Discussion of sect. 1.5.1, figure 1.9, and figure 5.1
illustrate intersection of initial volume with its return, and chapters 15 and 21 il-
lustrate the key role that unstable directions play in systematically partitioning the
state space of a given dynamical system. The contracting directions are so sec-
ondary that even infinitely many of them (for example, the infinity of contracting
eigen-directions of the spatiotemporal dynamics of Chapter 30) will not matter.

So the dynamically important information is carried by the expanding sub-
volume, not the total volume computed so easily in (4.29). That is also the reason
why dissipative and Hamiltonian chaotic flows are more alike than one would
naively expect for ‘compressible’ vs. ‘incompressible’ flows. In hyperbolic sys-
tems, what matters are the expanding directions. Whether the contracting eigen-
values are inverses of the expanding ones or not is of secondary importance. As
long as the number of unstable directions is finite, the same theory applies both to
the finite-dimensional ODEs and infinite-dimensional PDEs.

Résume

Periodic orbits play a central role in any invariant characterization of the dynam-
ics, because (a) their existence and inter-relations are a topological, coordinate-
independent property of the dynamics, and (b) their Floquet multipliers are metric
invariants, i.e. Floquet multipliers of a periodic orbit remain invariant under any
smooth nonlinear change of coordinates f — ho f o h™' . Let us summarize the
linearized flow notation used throughout ChaosBook.

Stability of invariant solutions: The linear stability of an equilibrium v(x,) = 0
is described by the eigenvalues and eigenvectors {1, e/} of the stability matrix
A evaluated at the equilibrium point, and the linear stability of a periodic orbit

fT(x) =x,xeM,,
Jp(x) e(j)(x) =A; e(j)(x) i A= oD AVT ’

by its Floquet multipliers, vectors and exponents {A ;, €}, where 1) = pD+iw.
For every continuous symmetry there is a marginal eigen-direction, with A; = 1,
AY = 0. With all 1 + N continuous symmetries quotiented out (Poincaré sections
for time, slices for continuous symmetries of dynamics, see chapter 13), linear
stability of a periodic orbit (and, more generally, of a partially hyperbolic torus)
is described by the [(d-1-N) X (d-1-N)] monodromy matrix, all of whose Floquet
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multipliers |A | # 1 are generically strictly hyperbolic,

My(x)eV(x) = Aje(x),  xeM,/G.

We shall show in chapter 14 that extending the linearized stability hyperbolic
eigen-directions into stable and unstable manifolds yields important global infor-
mation about the topological organization of state space. What matters most are
the expanding directions. The physically important information is carried by the
unstable manifold, and the expanding sub-volume characterized by the product of
expanding Floquet multipliers of J,. As long as the number of unstable direc-
tions is finite, the theory developed here can be applied to flows of arbitrarily high
dimension.

- in depth: fast track:
” appendix A4, p. 899 chapter 11, p. 186
Commentary

Remark 5.1. Periodic orbits vs. ‘cycles’.  Throughout this text, the terms ‘periodic
orbit’ and ‘cycle’ (which has many other uses in mathematics) are used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ is easier on the ear than ‘pseudo-
periodic-orbit’. In Soviet times obscure abbreviations were a rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). How Kadanoff and Tang [7]
felt about the matter they let on by referring to these as ‘repulsive cycles’. We refer to
unstable periodic orbits simply as ‘periodic orbits’, and the stable ones as ‘limit cycles’.
Strogatz [11] refers to periodic orbits as ‘closed orbits’ if they are isolated, in order to
distinguish limit cycles and unstable orbits from the continuous family of the harmonic
oscillator periodic orbits. Lost in the mists of time is the excitement experienced by the
first physicist to discover that there are periodic orbits other than the limit cycles reached
by mindless computation forward in time; but once one understands that there are at
most several stable limit cycles (SPOs?) as opposed to the Smale horseshoe infinities
of unstable cycles (UPOs?), what is gained by prefix "U’? A bit like calling all bicycles
‘unstable bicycles’.

Remark 5.2. Periodic orbits and Floquet theory. Study of time-dependent and 7-
periodic vector fields is a classical subject in the theory of differential equations [6]. The
fundamental G. Floquet theorem [2] is from 1883, but stability of periodic orbits was al-
ready well understood by G. W. Hill [5] in 1877. G. W. Hill’s work on lunar motions is
discussed by M. C. Gutzwiller [3], whose night job for many years were precise calcula-
tions of lunar dynamics. In physics literature, Floquet exponents often assume different
names according to the context where the theory is applied. They are called Bloch phases
in the discussion of Schrodinger equation with a periodic potential [ ], or quasi-momenta
in the quantum theory of time-periodic Hamiltonians. For clear discussions of stabilities
of periodic orbits, see Hale [4] and Robinson [10]. Here a discussion of Floquet theory is
given in appendix A4.2.1. For further reading on periodic orbits, consult Moehlis and K.
Josi¢ [9] Scholarpedia.org article.
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Question 5.1. Henriette Roux

Q In my 61,506-dimensional computation of a Navier-Stokes equilibrium I generated
about 30 eigenvectors before I wanted to move on. How many of these eigenvectors are
worth generating for a particular solution and why?

A A rule of the thumb is that you need all equilibrium eigenvalues / periodic orbit Floquet
exponents with positive real parts, and at least those negative exponents whose magnitude
is less or comparable to the largest expanding eigenvalue. More precisely, keep adding
the next least contracting eigenvalue to the sum of the preceding ones as long as the sum
is positive (Kaplan-Yorke criterion) [8]. Then, just to be conservative, double the number
of eigenvalues you keep. You do not need to worry about the remaining (let’s say, 100
thousand, or a few million!) eigen-directions for which the negative eigenvalues are of
larger magnitude, as they always contract. Nonlinear terms cannot mix them up in such a
way that expansion in some directions overwhelms the strongly contracting ones.

Question 5.2. Henriette Roux

Q Assume you have a periodic orbit of period 7. The Floquet eigenvectors of a Floquet
matrix evolved along a periodic orbit are covariant vectors (A4.29). Assume the Jacobian
matrix evolved along the periodic orbit has all contracting multipliers, except one multi-
plier that becomes expanding at ¢ = 7'/2 but then turns contracting at t = 7. Can we say
that the periodic orbit is stable? According to Floquet theory, the periodic orbit is unstable
if the multipliers of the Floquet matrix (the Jacobian matrix at time ¢ = T') are unstable.
When a multiplier of the Jacobian matrix is expanding in the middle of the periodic orbit,
att = T /2, what is happening there?

A The only thing that is meaningful are Floquet multipliers, the eigenvalues of a Flo-
quet matrix (the Jacobian matrix evaluated at the full period T, or its multiple). Floquet
eigenvectors are ‘covariant’ but their orientation depends on the choice of coordinates and
where you evaluate them along the orbit. What happens along the orbit is largely irrelevant
— intermediate multipliers for times other than exactly the period could be contracting or
expanding, but that has no invariant meaning, the multipliers depend on coordinate choice
and can be changed by time and state space coordinates reparametrizations. For example,
consider the Brusselator limit cycle in “Noise is your friend” slides. The cloud of points
around the limit cycle shrinks or expands according to the instantaneous stability, but its
Floquet multipliers are an invariant property of the limit cycle.

Re “largely irrelevant” above: In “Dimension of turbulence” we argue that it is the
angles between covariant vectors approaching arbitrarily close to zero that leads to mixing
together the physical dimensions of an attractor, but we have not really established that.
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5.7 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.

Example 5.1. Stability of cycles of 1-dimensional maps. The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.43) for stability of the n,th
iterate of the map

ny—1

d
Ap = d_xofnp(xO) = yly:([) ' Gm)s Xm = f"(x0). (5.23)

A, is a property of the cycle, not the initial periodic point, as taking any periodic point in
the p cycle as the initial one yields the same A,,.

A critical point x, is a value of x for which the mapping f(x) has a vanishing deriva-
tive, f'(x.) = 0. A periodic orbit of a 1-dimensional map is stable if

|AP| =

F G ) f Conpet) -+ f ) f ()| < 1,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n, the slope A, of the nth iterate f"(x) evaluated on
a periodic point x (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1, the
p-cycle is unstable.

Example 5.2. Stability of cycles for maps. No matter what method one uses to deter-
mine unstable cycles, the theory developed here requires that their Floquet multipliers be
evaluated as well. For maps a Floquet matrix is easily evaluated by picking any periodic
point as a starting point, running once around a prime cycle, and multiplying the individ-
ual periodic point Jacobian matrices according to (4.22). For example, the Floquet matrix
M, for a prime cycle p of length n, of the Hénon map (3.18) is given by (4.44),

1
-2 b
MP(XO)zl_[[ ka 0:|a xkeMP’

k=n,,
and the Floquet matrix M), for a 2-dimensional billiard prime cycle p of length n,, is
1
Mp=<—1>”"]};[[ 0o 1 H n ]

and follows from (9.10). The decreasing order of indices for the products in the above
formulas is a reminder that the successive time steps correspond to multiplication from
the left, M, (x1) = M(x,,) - - - M(x1). We shall compute Floquet multipliers of Hénon map
cycles once we learn how to find their periodic orbits, see exercise 16.11.
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Exercises

5.1. A limit cycle with analytic Floquet exponent. G. Bard Ermentrout

There are only two examples of nonlinear flows for
which the general solution (g(?), p(#)) and the Floquet
multipliers can be evaluated analytically. Both are
cheats. One example is the 2-dimensional flow

p+q(l-q* - p?
—q+p(l-q" -ph.

q
p
Determine all periodic solutions of this flow, and deter-

mine analytically their Floquet exponents. Hint: go to
polar coordinates (g, p) = (rcos 6, rsin ).

exerInvariants - 13jun2008

5.2.

5.3.

The other example of a limit cycle with analytic Flo-
quet exponent. What is the other example of a
nonlinear flow for which the Floquet multipliers can be
evaluated analytically? Hint: email G.B. Ermentrout.

Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
by solving a third example (or more) of a nonlinear flow
for which the Floquet multipliers can be evaluated ana-
lytically.
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Chapter 6

Lyapunov exponents

[...] people should be taught linear algebra a lot earlier
than they are now, because it short-circuits a lot of really
stupid and painful and idiotic material.

— Stephen Boyd

namics: Is a given system ‘chaotic’? And if so, how chaotic? If all points

in a neighborhood of a trajectory converge toward the same orbit, the attrac-
tor is a fixed point or a limit cycle. However, if the attractor is strange, any two
trajectories x(r) = f'(xo) and x(r) + 6x(t) = f'(xo + dxp) that start out very close to
each other separate exponentially with time, and in a finite time their separation
attains the size of the accessible state space.

l ET US APPLY our newly acquired tools to the fundamental diagnostics in dy-

This sensitivity to initial conditions can be quantified as
16x(0) 1 ~ e | 60 | 6.1)

where A, the mean rate of separation of trajectories of the system, is called the
leading Lyapunov exponent. In the limit of infinite time the Lyapunov exponent
is a global measure of the rate at which nearby trajectories diverge, averaged over
the strange attractor. As it so often goes with easy ideas, it turns out that Lyapunov
exponents are not natural for studying dynamics, and we would have passed them
over in silence, were it not for so much literature that talks about them. So in a
textbook we are duty bound to explain what all the excitement is about. But then
we round the chapter off with a scholarly remark almost as long as the chapter
itself: we do not recommend that you evaluate Lyapunov exponents and Lyapunov
singular vectors. Instead, compute the stability exponents / covariant vectors.

example 6.1
p. 131
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https://www.youtube.com/watch?v=c-cwTbMlxC0&feature=PlayList&p=06960BA52D0DB32B&index=9
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Figure 6.1: The linearized flow maps a swarm
of initial points in an infinitesimal spherical neigh-
borhood of squared radius 6x* at x, into an ellip-
soid 6x"(JTJ)dx at x(¢) a finite time ¢ later, rotated
and stretched/compressed along the principal axes by
streches {o;} .

6.1 Stretch, strain and twirl

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

In general the Jacobian matrix J is neither diagonal, nor diagonalizable, nor con-
stant along the trajectory. What is a geometrical meaning of mapping a neigh-
borhood by J? Here insights into continuum mechanics are helpful, in particular
polar decomposition visualizes flow linearization as a mapping of the initial ball
into an ellipsoid (figure 6.1).

First, a few definitions: A symmetric [d X d] matrix Q is positive definite,
Q > 0, if x"Qx > 0 for any nonzero vector x € RY. Q is negative definite,
Q < 0, if x"Qx < 0 for any nonzero vector x. Alternatively, Q is a positive
(negative) definite matrix if all its eigenvalues are positive (negative). A matrix
R is orthogonal if RTR = 1, and proper orthogonal if detR = +1. Here the
superscript T denotes the transpose. For example, (xi,--- ,xg) is a row vector,
(x1,-++ ,xg)" is a column vector. The singular values of matrix J are the square
roots of the eigenvalues {0'3} of JJT, where T denotes Hermitian transpose.

By the polar decomposition theorem, a deformation J can be factored into a
rotation R and a right / left stretch tensor U / V,

J=RU =VR, (6.2)

where R is a proper-orthogonal matrix and U, V are symmetric positive definite
matrices with strictly positive real eigenvalues {01, 07%, - , 04} called principal
stretches (singular values, Hankel singular values), and with orthonormal eigen-
vector bases,

Uu® = ou®, D, 4@ . D)
v = op@ 0@ Dy (6.3)

o; > 1 for stretching and 0 < o; < 1 for compression along the direction u
or v, {u)} are the principal axes of strain at the initial point xo; {v\/} are the
principal axes of strain at the present placement x. From a geometric point of
view, J maps the unit sphere into an ellipsoid, figure 6.1; the principal stretches
are then the lengths of the semiaxes of this ellipsoid. The rotation matrix R carries
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Figure 6.2: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.

d%,

the initial axes of strain into the present ones, V = RURT . The eigenvalues of the

right Cauchy-Green strain tensor: JTJ = U?
left Cauchy-Green strain tensor: JJT = V? (6.4)

are {0'5}, the squares of principal stretches.

example 6.2
p. 132

6.2 Lyapunov exponents

(J. Mathiesen and P. Cvitanovic)

The mean growth rate of the distance || dx(¢)|| /|| 0xo || between neighboring
trajectories (6.1) is given by the leading Lyapunov exponent which can be esti-
mated for long (but not too long) time ¢ as

L Ly ex@ i
1 6x(0) Il

~ - (6.5)
For notational brevity, we shall often suppress the dependence of quantities such
as A = A(xp, 1), 0x(t) = 6x(xg, t) on the initial point xo. One can use (6.5) as is,
take a small initial separation dxg, track the distance between two nearby trajecto-
ries until || 6x(¢1) || gets significantly big, then record #;4; = In(||dx(#() || / || 6x0 [I),
rescale 0x(t;) by factor dxy/dx(t1), and continue add infinitum, as in figure 6.2,
with the leading Lyapunov exponent given by

o1
/I:}LI?O?ZIM"’ I=Zt,’. (6.6)

Deciding what is a safe ’linear range’, the distance beyond which the separation
vector dx(¢) should be rescaled, is a dark art.

We can start out with a small x and try to estimate the leading Lyapunov ex-
ponent A from (6.6), but now that we have quantified the notion of linear stability
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in chapter 4, we can do better. The problem with measuring the growth rate of the
distance between two points is that as the points separate, the measurement is less
and less a local measurement. In the study of experimental time series this might
be the only option, but if we have equations of motion, a better way is to measure
the growth rate of vectors transverse to a given orbit.

Given the equations of motion, for infinitesimal 6x we know the 6x;(¢)/6x;(0)
ratio exactly, as this is by definition the Jacobian matrix
6x,-(t) 6x,-(t)
im =
5x(0)=0 6x;(0)  9x;(0)

so the leading Lyapunov exponent can be computed from linearization (4.16)

(LYY N Ty
oml tll)rggln(n JTI'R) (6.7)

A(xp) = lim lln
t—oo f

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector i1 = dxg/ || dxo || matters. If one does not
care about the orientation of the separation vector between a trajectory and its per-
turbation, but only its magnitude, one can interpret H J'6x0 H - Oxo (JTTIN 6xp
as the error correlation matrix. In the continuum mechanics language, the right
Cauchy-Green strain tensor J'J (6.4) is the natural object to describe how lin-
earized neighborhoods deform. In the theory of dynamical systems the stretches
of continuum mechanics are called the finite-time Lyapunov or characteristic ex-
ponents,

Axo, 7 1) = %m | 77 || = zltln (AT . (6.8)

They depend on the initial point xo and on the direction of the unit vector 7,
[[72]] = 1 at the initial time. If this vector is aligned along the ith principal stretch,
i = u'”, then the corresponding finite-time Lyapunov exponent (rate of stretching)
is given by

. 1
Aj(x03 1) = Axo, u5 1) = " In o (x0; 7). (6.9)

We do not need to compute the strain tensor eigenbasis to determine the leading
Lyapunov exponent,

T 1 AT gt T gt
—hlen(n JTI'R) . (6.10)

t—0o

A(xo, 7)) = lim % In || J'A

By expanding the initial orientation in the strain tensor eigenbasis (6.3), 71 = X (7 -
uDu | we have

d
AT R = 0 u®)?e? = (- uD)et (14 003 /D))
i=1

with stretches ordered by decreasing magnitude, oy > 03 > o03---. For long
times the largest stretch dominates exponentially in (6.10), provided the orien-
tation 7 of the initial separation was not chosen perpendicular to the dominant
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Figure 6.3: A numerical computation of the loga-

rithm of the stretch A7 (J""J")# in formula (6.10) for the =]
Rossler flow (2.30), plotted as a function of the Rossler
time units. The slope is the leading Lyapunov exponent
A = 0.09. The exponent is positive, so numerics lends
credence to the hypothesis that the Rossler attractor is
chaotic. The big unexplained jump illustrates perils of =]
Lyapunov exponents numerics. (J. Mathiesen) =R

expanding eigen-direction u". Furthermore, for long times, J'7 is dominated by
the largest stability multiplier A, so the leading Lyapunov exponent is

1
Axg) = lim ?{m e H+ln|A1(xo,t)|+O(e_2(’l'_/lz)’)}
1
= lim —In|A1(x0. ) 6.11)

where Aj(xo, ?) is the leading eigenvalue of J'(xg). The leading Lyapunov expo-
nent now follows from the Jacobian matrix by numerical integration of (4.10).
The equations can be integrated accurately for a finite time. Hence, the infi-
nite time limit of (6.7) can be only estimated from a finite set of evaluations of
% In(A" J'TJ'11) as function of time, such as figure 6.3 for the Rossler flow (2.30).

As the local expansion and contraction rates vary along the flow, the temporal
dependence exhibits small and large humps. The sudden fall to a low value in
figure 6.3 is caused by a close passage to a folding point of the attractor. This
evaluation of the Lyapunov exponent proves that the very existence of a strange
attractor is a difficult problem. The approximately monotone part of the curve
you can use (at your own peril) to estimate the leading Lyapunov exponent by a
straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (6.11) directly. First of all, the state
space is dense with atypical trajectories; for example, if xo happens to lie on a
periodic orbit p, 4 would be simply In|o,1|/T,, a local property of cycle p, not
a global property of the dynamical system. Furthermore, even if xy happens to
be a ‘generic’ state space point, it is still not obvious that In|o, 1 (xo, )|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectory gets captured in the neigh-
borhood of an elliptic island every so often and can stay there for arbitrarily long
time. During such an episode, the orbit is nearly stable and In |o-, 1 (xo, #)|/f can dip
arbitrarily close to 0*. For state space volume non-preserving flows, the trajectory
can traverse locally contracting regions, and In |0, 1 (xo, )|/¢ can occasionally go
negative; even worse, one never knows whether the asymptotic attractor is peri-
odic or ‘chaotic’, so any finite time estimate of A might be dead wrong.
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Résumé

Let us summarize the ‘stability’ chapters 4 to 6. A neighborhood of a trajectory
deforms as it is transported by a flow. In the linear approximation, the stabil-
ity matrix A describes the shearing / compression / expansion of an infinitesimal
neighborhood in an infinitesimal time step. The deformation after a finite time ¢
is described by the Jacobian matrix J’, whose eigenvalues (stability multipliers)
depend on the choice of coordinates.

Floquet multipliers and eigen-vectors are intrinsic, invariant properties of finite-
time, compact invariant solutions, such as periodic orbits and relative periodic or-
bits; they are explained in chapter 5. Stability exponents [7] are the corresponding
long-time limits estimated from typical ergodic trajectories.

Finite-time Lyapunov exponents and the associated principal axes are defined
in (6.8). Oseledec Lyapunov exponents are the t — oo limit of these.

Commentary

Remark 6.1. Lyapunov exponents are uncool, and ChaosBook resolutely does not use
them at all, for reasons to be explained below.

Eigenvectors / eigenvalues are suitable for studying iterated forms of a matrix, such
as the Jacobian matrix J' or exponential exp(tA), and are thus a natural tool for studying
dynamics. Principal vectors are not, they are suited to studying the matrix J' itself. The
polar (singular value) decomposition is convenient for numerical work (any matrix, square
or rectangular, can be brought to such form), as a way of estimating the effective rank of
matrix J by separating the large, significant singular values from the small, negligible
singular values.

Lorenz [13, 14, 30] pioneered the use of singular vectors in chaotic dynamics. We
found the Goldhirsch, Sulem and Orszag [7] exposition very clear, and we also enjoyed
Hoover and Hoover’s [10] pedagogical introduction to computation of Lyapunov spec-
tra by the method of Lagrange multipliers. Greene and Kim [8] discuss singular values
vs. Jacobian matrix eigenvalues. While they conclude that “singular values, rather than
eigenvalues, are the appropriate quantities to consider when studying chaotic systems,”
we beg to differ. Their Fig. 3, which illustrates various semiaxes of the ellipsoid in the
case of the Lorenz attractor, as well as the figures in ref. [20], are a persuasive argument
for not using singular values. The covariant vectors are tangent to the attractor, while the
principal axes of strain point away from it. It is the perturbations within the attractor that
describe the long-time dynamics; these perturbations lie within the subspace spanned by
the leading covariant vectors.

That is the first problem with Lyapunov exponents: stretches {o;} are not related to
the Jacobian matrix J' eigenvalues {A;} in any simple way. The eigenvectors {u')} of
strain tensor J'J that determine the orientation of the principal axes, are distinct from
the Jacobian matrix eigenvectors {e'?}. The strain tensor J'J satisfies no multiplicative
semigroup property such as (4.20); unlike the Jacobian matrix (5.3), the strain tensor
JT'J" for the rth repeat of a prime cycle p is not given by a power of J'J for the single
traversal of the prime cycle p. Under time evolution the covariant vectors map forward
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as e — Jel) (transport of the velocity vector (4.9) is an example). In contrast, the
principal axes have to be recomputed from scratch for each time .

If Lyapunov exponents are not dynamical, why are they invoked so frequently? One
reason is fear of mathematics. The monumental and therefore rarely read Oseledec [ 18,
] Multiplicative Ergodic Theorem states that the limits (6.7—6.11) exist for almost all
points xy and vectors 7, and that there are at most d distinct Lyapunov exponents 4;(xg) as
71 ranges over the tangent space. To intimidate the reader further we note in passing that
“moreover there is a fibration of the tangent space T, M, L'(x) c L’(x) c---c L' (x) =
T M, such that if 2 € L(x) \ L'~!(x) the limit (6.7) equals A;(x).” The Oseledec proof is
important mathematics, but the method is not helpful in elucidating dynamics.

The other reason to study singular vectors is physical and practical. Lorenz [13, 14,

] was interested in the propagation of errors, i.e., how does a cloud of initial points

x(0) + 6x(0), distributed as a Gaussian with covariance matrix Q(0) = (6x(0) 6x(0)™),

evolve in time? For linearized flow with initial isotropic distribution Q(0) = €1, the
answer is given by the left Cauchy-Green strain tensor,

0@t = (6x(0) J JT6x(0) Yy =T 0D J = €J JT. (6.12)

The deep problem with Lyapunov exponents is that the intuitive definition (6.5) de-
pends on the notion of distance || 5x(¢) || between two state space points. The Euclidean (or
[?) distance is natural in the theory of 3D continuous media, but what the norm should be
for other state spaces is far from clear, especially in high dimensions and for PDEs. As we
have shown in sect. 5.3, Floquet multipliers are invariant under all local smooth nonlinear
coordinate transformations, they are intrinsic to the flow, and the Floquet eigenvectors are
independent of the definition of the norm [26]. In contrast, the stretches {o;}, and the
right/left principal axes depend on the choice of the norm. Appending them to dynamics
destroys its invariance.

In dynamical systems literature, there is probably no name more liberally used and
more confusing than that of Lyapunov (AKA Liapunov). Singular values / principal axes
of strain tensor J'J (objects natural to the theory of deformations) and their long-time lim-
its can indeed be traced back to the thesis of Lyapunov [15, 18] (English translation [16]),
and justly deserve sobriquet ‘Lyapunov’. Oseledec [ 18] refers to them as ‘Liapunov char-
acteristic numbers’, and Eckmann and Ruelle [4] as ‘characteristic exponents’. The natu-
ral objects in dynamics are the linearized flow Jacobian matrix J’, and its eigenvalues and
eigenvectors (stability or characteristic multipliers and covariant vectors). Why should
they also be called ‘Lyapunov’? The Jacobian matrix eigenvectors {€/’} (the covariant
vectors) are often called ‘covariant Lyapunov vectors’, ‘Lyapunov vectors’, or ‘stationary
Lyapunov basis’ [5] even though they are not the eigenvectors that correspond to the Lya-
punov exponents. That’s just confusing, for no good reason. The Lyapunov paper [15] is
not about the linear stability Jacobian matrix J; it is about J'J and the associated princi-
pal axes. However, Trevisan [26] refers to covariant vectors as ‘Lyapunov vectors’, and
Radons [29] calls them ‘Lyapunov modes’, motivated by thinking of these eigenvectors
as a generalization of ‘normal modes’ of mechanical systems; whereas, Takeuchi and
Chaté [24] define the ith ‘Lyapunov mode’ as {1;, €'/}, the set of the ith stability exponent
and the associated covariant vector. Kunihiro et al. [12] call the eigenvalues of stability
matrix (4.3), evaluated at a given instant in time, the ‘local Lyapunov exponents’, and
they refer to the set of stability exponents (4.8) for a finite time Jacobian matrix as the
‘intermediate Lyapunov exponent’, “averaged” over a finite time period. Then there is
the unrelated, but correctly attributed ‘Lyapunov equation’ of control theory, which is the
linearization of the ‘Lyapunov function’. Additionally, the term ‘Lyapunov orbit’ is often
used in celestial mechanics and is entirely unrelated to any of objects discussed above.
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In short, we do not recommend that you evaluate Lyapunov exponents. Instead, com-
pute stability exponents and the associated covariant vectors. This approach will cost
less and offer you more insight. Whatever you call your exponents, please state clearly
how they are being computed. While the Lyapunov exponents are a diagnostic tool for
chaos, we doubt their ability to predict observables with any physical significance. This
is a minority position - in the literature one encounters many provocative speculations,
especially in the context of foundations of statistical mechanics (‘hydrodynamic’ modes)
and the existence of a Lyapunov spectrum in the thermodynamic limit of spatiotemporal
chaotic systems.

Remark 6.2. Matrix decompositions of the Jacobian matrix. The ‘Cartesian decom-
position’ separates stability matrix A into a symmetric stretching matrix and an antisym-
metric spin matrix,

D=A+AT)2, Q=(A-AT))2. (6.13)

The stretching matrix describes the infinitesimal volume and shape changes, while the
spin matrix describes the infinitesimal rigid body rotations. The decomposition into these
two non-commuting matrices suggests that one could compute the stretching rates (Lya-
punov exponents) of the Jacobian matrix, and the total rotation of the orbit neighborhood
by integrating the stability matrix A in the rotating frame (we have not seen this approach
implemented in the Lyapunov exponents literature). ‘Polar decomposition’ of a matrix or
linear operator is similar to factoring a complex number into its polar form, z = r exp(¢),
and is explained in refs. [9, 11, 19, 27]. One can go a step further than polar decomposi-
tion (6.2) by diagonalizing the symmetric matrix by a second rotation, which is equivalent
to the product of a rotation and a symmetric matrix. Thus, any matrix with real elements
can be expressed in singular value decomposition (SVD) form

J=RDR,", (6.14)
where D is diagonal and real, and R;, R, are orthogonal matrices, unique up to permu-
tations of rows and columns. The diagonal elements {0, 0,...,04} of D are singular
values of J.

Though singular values decomposition provides geometrical insights into how tan-
gent dynamics acts, many popular algorithms for asymptotic stability analysis (computing
Lyapunov spectrum) employ another standard matrix decomposition, the QR scheme [17],
through which a nonsingular matrix J is (uniquely) written as a product of an orthogonal
and an upper triangular matrix J/ = QR. This can be thought of as a Gram-Schmidt de-
composition of the column vectors of J. The geometric meaning of QR decomposition is
that the volume of the d-dimensional parallelepiped spanned by the column vectors of J
has a volume coinciding with the product of the diagonal elements of the triangular matrix
R, whose role is thus pivotal in algorithms computing Lyapunov spectra [23].

Remark 6.3. Numerical evaluation of Lyapunov exponents.  There are volumes of lit-
erature on numerical computation of the Lyapunov exponents, see for example refs. [3, 4,

, 28]. For early numerical methods to compute Lyapunov vectors, see refs. [1, 22]. The
drawback of the Gram-Schmidt method is that the vectors so constructed are orthogonal
by fiat; whereas, the stable / unstable eigenvectors of the Jacobian matrix are in general
not orthogonal. Hence the Gram-Schmidt vectors are not covariant, i.e., the linearized
dynamics does not transport them into the eigenvectors of the Jacobian matrix computed
further downstream. For computation of covariant vectors, see refs. [6, 20].
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6.3 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.

Example 6.1. Lyapunov exponent. Given a 1-dimensional map, consider observable
A(x) = In|f (x)| and integrated observable

n—1 n
1—[ £ ()
k=0

f (x0)

=1
n ox

n—1
Axo,) = ) In|f ()] = In
k=0
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The Lyapunov exponent is the average rate of the expansion

n—1

] :
Alxo) = lim = " In|f (vl
n—oo =0

Example 6.2. Singular values and geometry of deformations. Suppose we are
in three dimensions, and the Jacobian matrix J is not singular (yet another confusing
usage of word ‘singular’), so that the diagonal elements of D in (6.14) satisfy oy > 0 >
o3 > 0. Consider how J maps the unit ball § = {x € R¥|x2 = 1}). Vis orthogonal
(rotation/reflection), so VTS is still the unit sphere. Then D maps S onto ellipsoid S =
{y € R?|yi/o7 + y3/05 + y3/03 = 1}, whose principal axes directions - y coordinates -
are determined by V. Finally the ellipsoid is further rotated by the orthogonal matrix U.
The local directions of stretching and their images under J are called the right-hand and
left-hand singular vectors for J and are given by the columns in V and U respectively; it
is easy to check that Jv; = oyuy, if v, u; are the k-th columns of V and U.
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Exercises

6.1.

6.2.

6.3.

Principal stretches. Consider dx = f(xg + dxg) —
f(x0), and show that dx = Mdxp+ higher order terms
when ||dxp|| < 1. (Hint: use Taylor expansion for
a vector function.) Here, ||dxol| = Vdxo - dxy is the
norm induced by the usual Euclidean dot (inner) prod-
uct. Then let dxg = (d€)e; and show that ||dxy|| = df and
lldx|| = o;d¢. (Christov et al. [2])

Eigenvalues of the Cauchy-Green strain tensor.
Show that «; = o-i2 using the definition of C, the polar
decomposition theorem, and the properties of eigenval-
ues. (Christov et al. [2])

How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent A by
iterating some 100,000 times or so the Hénon map

X | | 1—ax*+y
y | 7| bx

fora=14,b=0.3.

(b) Would you describe the result as a ’strange attrac-
tor’? Why?

(c) How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a = 1.39945219, b = 0.3. How much do you now
trust your result for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor

exerLyapunov - 18mar2013

vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of a typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such
as the one made for part (b) of this exercise?

6.4. Rossler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponent A, of the Rossler attractor (2.30).

(b) Plot your own version of figure 6.3. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure 4.3.)

(c) Give your best estimate of A,. The literature gives
surprisingly inaccurate estimates - see whether
you can do better.

(d) Estimate the contracting Lyapunov exponent A..
Even though it is much smaller than 4., a glance
at the stability matrix (4.31) suggests that you can
probably get it by integrating the infinitesimal vol-
ume along a long-time trajectory, as in (4.29).
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Chapter 7

Fixed points

dynamics in two ways: (a) their existence and inter-relations are a topologi-

cal, coordinate-independent property of the dynamics, and (b) their Floquet
multipliers form an infinite set of metric invariants. Typically they are unstable
and hard to find. But do we really need them? By chapter 21 you will understand
that the answer is a resounding yes.

S 0 FAR WE HAVE LEARNED that periodic orbits offer invariant characterization of

Sadly, searching for periodic orbits will never become as popular as a week
on Céte d’ Azur, or publishing yet another log-log plot in Phys. Rev. Letters. This
chapter is one of four hands-on chapters on extraction of periodic orbits, and can
be skipped on first reading - you can return to it whenever the need for finding
actual cycles arises.

fast track:
chapter 8, p. 143

A serious cyclist will ask “Where are the cycles? And what if they are long?”
and read chapter 16. She will want to also learn about the variational methods
which will enable her to find arbitrarily long, arbitrarily unstable cycles, and read
chapter 34. So here is the key and unavoidable numerical task we must face up
to: find “all(?)" solutions (x,T), x € R4, T € R, satisfying the periodic orbit
condition

J))
f"(x)

X, T>0, (flow)
X, n>1, (map) (7.1)

for a given flow or map.

A prime cycle p of period T, is a single traversal of the periodic orbit, so our
task will be to find a periodic point x € M, and the shortest time 7, for which
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Figure 7.1: (a) The inverse time transient to the
0_1—cycle of the Ulam logistic map f(x) = 4x(1—x)
from an initial guess x = 0.2. (b) The same dy-
namics, but now plotted as the forward iteration of
the doubly-valued inverse map f~!(x). At each it-
eration we chose the 0 (respectively 1) branch. For
f(x), the 01-cycle is an unstable cycle; for £~'(x)
it is a stable, attracting cycle.
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(7.1) has a solution. A periodic point of a flow f’ crossing a Poincaré section
n times is a fixed point of P", the nth iterate of the return map P (3.1); hence,
we shall refer to all cycles as “fixed points” in this chapter. By cyclic invariance,
Floquet multipliers and the period of the cycle are independent of the choice of
the initial point, so it will suffice to solve (7.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basin of attraction, it
can be found by integrating the flow for a sufficiently long time. If the cycle is
unstable, simple integration forward in time will not reveal it, and the methods
to be described here need to be deployed. In essence, any method for finding
a cycle is based on devising a new dynamical system which possesses the same
cycle, but for which this cycle is attractive. Beyond that, there is great freedom in
constructing such systems, and many different methods are used in practice.

7.1 One-dimensional maps

(F. Christiansen)

So far we have given some qualitative hints for how to set out on a periodic
orbit hunt. In what follows, we teach you how to nail down periodic orbits numer-
ically.

7.1.1 Inverse iteration

Let us first consider a very simple method to find the unstable cycles of a 1-
dimensional map such as the logistic map. Unstable cycles of 1-dimensional maps
are attracting cycles of the inverse map. The inverse map is not single-valued, so
at each backward iteration we have a choice of branch to make. By choosing the
branch according to the symbolic dynamics of the cycle we are trying to find, we
will automatically converge to the desired cycle. Figure 7.1 shows such a path to
the O1-cycle of the logistic map. The rate of convergence is given by the stability
of the cycle, i.e., the convergence is exponentially fast, see figure 7.2.

The method of inverse iteration is fine for finding cycles for 1-d maps and

some 2-dimensional systems such as the repeller of exercise 16.11. It is not par-
ticularly fast, however, especially if the inverse map is not known analytically. It
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0 T T T T T T T T
Figure 7.2: Convergence of Newton’s method (¢) | T . i
vs. inverse iteration (+). The error after n itera- 10 *******
tions searching for the Ol-cycle of the logistic map Tl
.15 + 4

f(x) = 4x(1 — x) with an initial starting guess of
x; = 0.2,x, = 0.8. The y-axis is log,, of the error. -20 -
The difference between the exponential convergence of .25 |-
the inverse iteration method and the super-exponential 5
convergence of Newton’s method is dramatic.

-35

also completely fails for higher dimensional systems when one encounters both
stable and unstable directions. Inverse iteration will exchange them, but we will
still be left with both stable and unstable directions. The best strategy is to directly
attack the problem of finding solutions of the periodic orbit condition f7(x) = x.

7.1.2 Newton method

John Keats has written, “Beauty is truth, truth beauty ...."
He has also written “A thing of beauty is a joy forever." I
wish to add, beauty is simple and it is profound. I hope that
my few words will convince you that Newton’s Method is
a concept of great beauty.

—Stephen Smale, The Concinnitas Project

Newton’s method for determining a zero x* of a function F(x) of one variable is
based on a linearization around a starting guess xo:

F(x) ~ F(X9) + F/ (X)) (x — xO). (7.2)
An approximate solution x() of F(x) = 0 is
A = O — FOy F (O, (7.3)

The approximate solution can then be used as a new starting guess in an iterative
process. A fixed point of a map f is a solution to F(x) = x — f(x) = 0. We
determine x by iterating

x(m) — g(x(m—l)) — x(m—l) _F(x(m—l))/F/(x(m—l))

1
= m-1_ _ - o (m-1) _ (m-1)
-7 1= f/(x(m—l))(x JxT)). (7.4)

Provided that the fixed point is not marginally stable, f'(x) # 1 at the fixed point
x, a fixed point of f is a super-stable fixed point of the Newton-Raphson map
g, &' (x) = 0. Also, with a sufficiently good initial guess, the Newton-Raphson
iteration will converge super-exponentially fast.

To illustrate the efficiency of Newton’s method we compare it to the inverse
iteration method in figure 7.2. Newton’s method wins hands down; the number
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Figure 7.3: Newton’s method for finding zeros of
functions, f(x..,) = 0, an idealized sketch.

Figure 7.4: Newton’s method of figure 7.3 in real life:
bad initial guess x®) leads to the Newton estimate x*V
far away from the desired zero of F(x). Sequence
oo, x ] xmD L starting with a good guess con-
verges super-exponentially to x*. The method diverges
if it iterates into the basin of attraction of a local mini-

mum x°.

of significant digits of the accuracy of the x estimate typically doubles with each
iteration.

In order to avoid jumping too far from the desired x* (see figure 7.4), one often
initiates the search by the damped Newton method,

_F™)

A = (D) _ L m) _
F7(x(m)

AT, O0<AT<I.

This method takes small At steps at the beginning, reinstating to the full At =1
jumps only when sufficiently close to the desired x*.

example 7.1
p. 140

7.2 Flows

(R. Paskauskas and P. Cvitanovi¢)

For a continuous time flow, the periodic orbit the Floquet multiplier (5.14) along
the flow direction always equals unity; the separation of any two points along
a cycle remains unchanged after a completion of the cycle. More unit Floquet
multipliers arise if the flow satisfies conservation laws, such as the symplectic in-
variance for Hamiltonian flows, or the dynamics is equivariant under a continuous
symmetry transformation.

Let us apply Newton’s method of (7.3) to search for periodic orbits with unit
Floquet multipliers, starting with the case of a continuous time flow. Assume
that the periodic orbit condition (7.1) holds for x + Ax and T + At, with the initial
guesses x and 7T close to the desired solution, i.e., with |Ax|, At small. The Newton
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setup (7.3)

0 = x+Ax— T x + Ax)
x— T (x) + (1= J(x) - Ax —v(fT (x)At (7.5)

X

suffers from two shortcomings. First, we now need to solve not only for the pe-
riodic point x, but for the period T as well. Second, the marginal, unit Floquet
multiplier (5.14) along the flow direction (arising from the time-translation invari-
ance of a periodic orbit) renders the factor (1 — J) in (7.4) non-invertible. If x is
close to the solution, f7(x) = x, then J(x)-v(x) = v(fT (x)) ~ v(x). If Ax s parallel
to the velocity vector, the derivative term (1 — J) - Ax =~ 0, and it becomes harder
to invert (1 — J) as the iterations approach the solution.

As aperiodic orbit p is a 1-dimensional set of points invariant under dynamics,
a guess using Newton’s method is not improved by picking Ax such that the new
point lies on the orbit of the initial one. Hence, we need to constrain the variation
Ax to directions transverse to the flow, by requiring, for example, that

v(x)-Ax=0. (7.6)

Combining this constraint with the variational condition (7.5) we obtain a Newton
setup for flows, best displayed in the matrix form:

1-Jx) -v(x) Ax | x— f(x)
v(x) 0 ]( At ) B _( 0 ) 7.7)

This illustrates the general strategy for determining periodic orbits in the pres-
ence of continuous symmetries. For each symmetry, pick a point on the orbit by
imposing a constraint, and compute the value of the corresponding continuous pa-
rameter (here the period T') by iterating the enlarged set of Newton’s equations.
Constraining the variations to transverse ones, thus fixes both of Newton’s short-
comings; it breaks the time-translation invariance, and the period T can be read
off once the fixed point has been found (hence we omit the superscript in f7 for
the remainder of this discussion).

More generally, the Poincaré section technique of sect. 3.1 turns the periodic
orbit search into a fixed point search on a suitably defined surface of section, with
a neighboring point variation Ax with respect to a reference point x constrained to
stay on the surface manifold (3.2),

Ux+Ax)=U(x)=0. (7.8)

The price to pay is constraints imposed by the section. In order to stay on the
surface, arbitrary variation Ax is not allowed.

example 7.2
p. 141
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Résumé

There is no general computational algorithm that is guaranteed to find all solutions
(up to a given period T},,;) to the periodic orbit condition

= fx, T>0

for a general flow or mapping. Due to the exponential divergence of nearby trajec-
tories in chaotic dynamical systems, direct solution of the periodic orbit condition
can be numerically very unstable. With a sufficiently good initial guess for a point
x on the cycle, however, the Newton-Raphson formula

1-J —v(x) ox \ [ f(»)—-x
a 0 oT |~ 0
yields an improved estimate x" = x + 6x, T’ = T + 6T. Newton-Raphson iteration

then yields the period T and the location of a periodic point x,, in the Poincaré
section (x, — xp) - a = 0, where a is a vector normal to the Poincaré section at xj.

Commentary

Remark 7.1. Piecewise linear maps.  The Lozi map (3.20) is linear, and hundred of
thousands of cycles can easily be computed by [2x2] matrix multiplication and inversion.

Remark 7.2. Newton gone wild.  Skowronek and Gora [2] offer an interesting discus-
sion of Newton iterations gone wild while searching for roots of polynomials as simple as
¥ +1=0.
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the fixed point y;, = y together with the fixed S 0 3
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two 3-cycles: (d) the 001 cycle, and (e) the 011 ’ 5 S S
cycle. (A. Basu) : SR R IO SO SR 0 5 0 0 5
O i ) yo 70 0y (e) yo 70 oy
7.3 Examples
Example 7.1. Réssler attractor. We run a long simulation of the Rossler flow

f*, plot a Poincaré section, as in figure 3.3, and extract the corresponding return map P,
as in figure 3.4. Luck is with us, since figure 7.5 (a) return map y — P;(y,2) is quite
reminiscent of a parabola, we take the unimodal map symbolic dynamics, sect. 14.3, as
our guess for the covering dynamics. Strictly speaking, the attractor is “fractal,” but for
all practical purposes the return map is 1-dimensional; your printer will need a resolution
better than 10'* dots per inch to even begin resolving its structure.

Periodic points of a prime cycle p of cycle length n, for the x = 0, y > 0 Poincaré
section of the Rossler flow figure 2.6 are fixed points (y,z) = P"(y,z) of the nth return
map.

Using the fixed point y;.; = y, in figure 7.5 (a) together with the simultaneous fixed
point of the z — P;(y,z) return map (not shown) as a starting guess (0, y?, z(?) for the
Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find the cycle
figure 7.5 (b) with the Poincaré section point (0, y,, z,), period T, expanding, marginal,
contracting Floquet multipliers (A, ., Ap ., A, ), and the corresponding Lyapunov expo-

nents (dp.e, Apm Ap.c): exercise 7.1

T-cycle: (x,y,2) = (0,6.09176832,1.2997319)
T, = 5.88108845586
(Ares A Are) = (=2.40395353,1+ 107", -1.29 x 10714
Mo Aimr A1) = (0.149141556,107', -5.44) . (7.9)

The Newton-Raphson method that we used is described in sect. 7.2.

As an example of a search for longer cycles, we use y3 = P? (Vk» 2x), the third iterate
of the return map (3.1) plotted in figure 7.5 (c), together with a corresponding plot for
Zj43 = P%(yk,zk), to pick starting guesses for the Newton-Raphson searches for the two
3-cycles plotted in figure 7.5 (d), (e). For a listing of the short cycles of the Rossler flow,
consult exercise 7.1.

The numerical evidence suggests (though a proof is lacking) that all cycles that com-
prise the strange attractor of the Rossler flow are hyperbolic, each with an expanding
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eigenvalue |A,| > 1, a contracting eigenvalue |A.| < 1, and a marginal eigenvalue |A,,| = 1
corresponding to displacements along the direction of flow.

For the Rossler flow the contracting eigenvalues turn out to be insanely contracting, a
factor of =32 per one par-course of the attractor, so their numerical determination is quite
difficult. Fortunately, they are irrelevant; for all practical purposes the strange attractor of
the Rossler flow is 1-dimensional, a very good realization of a horseshoe template.

Much of this example is also worked out in Dong [1].

(G. Simon and P. Cvitanovi¢)

Example 7.2. A hyperplane Poincaré section. Let us for the sake of simplicity
assume that the Poincaré section is a (hyper)-plane, i.e., it is given by the linear condition
(3.5)

(x = x0) -7 =0, (7.10)

where 7 is a vector normal to the Poincaré section and x( is any point in the Poincaré
section. The Newton setup is then (derived as (7.7))

1-J —v(x) X=-x\_( -Fx)
()

The last row in this equation ensures that x will be in the surface of section, and the
addition of v(x)At, a small vector along the direction of flow, ensures that such an x can
be found, at least if x is sufficiently close to a fixed point of f. Alternatively, this can be
solved as a least squares problem.

To illustrate that the addition of this extra constraint resolves the problem of (1 — J)
non-invertability, we consider a simple, particular example of a 3-d flow with the (x, y, 0)-
plane as the Poincaré section, a = (0,0, 1). Let all trajectories cross the Poincaré section
perpendicularly, so that v = (0,0, v,), which means that the marginally stable direction
is also perpendicular to the Poincaré section. Furthermore, let the unstable direction be
parallel to the x-axis and the stable direction be parallel to the y-axis. The Newton setup
is now

1A, 0 0 0 \/6 _F,
0o 1-A, 0 0 |6 | |-F
0 o o0 - l|ls |T|-F (7.12)
0 o 1 0o Nor 0

If one considers only the upper-left [3 x 3] matrix (which we started out with, prior to
adding the constraint (7.10)) then this matrix is not invertible and the equation does not
have a unique solution. However, the full [4Xx4] matrix is invertible, as det (-) = —v,det (1—
M), where M, is the [2X2] monodromy matrix for a surface of section transverse to the
orbit (see sect. 5.5). (F. Christiansen)
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Exercises

7.1.

7.2

Rossler flow cycles. (continuation of exer-
cise 4.4) Determine all cycles for the Rossler flow
(2.30), as well as their stabilities, up to 3 Poincaré sec-
tion returns. Hint: study the video, and use online
Python code for Homework 3 of the online course.
Table: The Rossler flow (2.30): The itinerary p, a peri-
odic point x, = (0,y,, z,) and the expanding eigenvalue
A, for cycles up to topological length 3.

( J. Mathiesen, G. Simon, A. Basu)

ny )4 y% z% A,

2 01 3915804 3.692833 -3.512007
3001 2278281 7.416481 -2.341923
011 2932877 5.670806  5.344908

Inverse iteration method for a Hénon repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Hénon map (7.13) with a = 6. Listed are the cy-
cle itinerary, its expanding eigenvalue A, and its “cen-
ter of mass.” The “center of mass” is listed because it
turns out that it is often a simple rational or a quadratic
irrational.

)4 Ap 2 Xp,i
0 0.715168x10"  -0.607625
1 -0.295285x10!  0.274292
10 -0.989898x10!  0.333333
100 -0.131907x10°>  -0.206011
110 0.558970x10%  0.539345
1000 -0.104430x10*  -0.816497
1100 0.577998x10*  0.000000
1110 -0.103688x10°  0.816497
10000 -0.760653x10*  -1.426032
11000 0.444552x10*  -0.606654
10100 0.770202x10°  0.151375
11100 -0.710688x10°  0.248463
11010 -0.589499x10°  0.870695
11110 0.390994x10°  1.095485
100000 -0.545745x10° -2.034134
110000  0.322221x10° -1.215250
101000  0.513762x10*  -0.450662
111000 -0.478461x10* -0.366025
110100  -0.639400x10*  0.333333
101100 -0.639400x10*  0.333333
111100  0.390194x10*  0.548583
111010  0.109491x10*  1.151463
111110 -0.104338x10*  1.366025

exerFixed - 260ct2014

7.3.

7.4.

Consider the Hénon map (3.18) for the area-preserving
(“Hamiltonian”) parameter value b = —1. The coordi-
nates of a periodic orbit of length n,, satisfy the equation

Xpirl + Xpit =1 —axs,, i=1,.. (7.13)

p,i’ ,nps

with the periodic boundary condition x, o = x,,,. Verify
that the itineraries and the stabilities of the short periodic
orbits for the Hénon repeller (7.13) at a = 6 are as listed
above.

Hint: you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by in-
verse iteration, using the inverse of (7.13)

P

Here §,; are the signs of the corresponding periodic
point coordinates, S ; = x,;/|x,l. (G. Vattay)

“Center of mass” puzzle. d Why is the “cen-
ter of mass,” tabulated in exercise 7.2, often a rational
number?

Cycle stability, helium. Add to the helium integrator
of exercise 2.11 a routine that evaluates the expanding
eigenvalue for a given cycle.
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Chapter 8

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite different from those within
the class of all smooth vector fields: the system always
has a first integral (“energy”’) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

flow of figure 2.6, only concerns chemists, biomedical engineers or weath-

ercasters; physicists do Hamiltonian dynamics, right? Now, that’s full of
chaos, too! The whole story started with Poincaré’s restricted 3-body problem, a
realization that chaos rules also in general (non-Hamiltonian) flows came much
later. While it is easier to visualize aperiodic dynamics when a flow is contracting
onto a lower-dimensional attracting set, there are plenty of examples of chaotic
flows that do preserve the full symplectic invariance of Hamiltonian dynamics.

‘- 7 ou MIGHT THINK that the strangeness of contracting flows, such as the Rossler

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamilto-
nian flows. If your eventual destination are applications such as chaos in quan-
tum and/or semiconductor systems, read this chapter. The message: Euclidean
distance is meaningless for symplectic flows. Instead, the distance between two
states is measured by the difference of their phase-state actions. If you work in
neuroscience or fluid dynamics, skip this chapter and continue by reading about
billiard dynamics in chapter 9, which requires no incantations of symplectic pairs
or loxodromic quartets.

fast track:
chapter 9, p. 163
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8.1 Hamiltonian flows

“... to do this business right is a thing of far greater diffi-
culty than I was aware of.”

— Sir Isaac Newton, in a letter to Edmund Halley
(P. Cvitanovi¢ and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamiltonian
H(q, p) together with the Hamilton’s equations of motion

OH OH
i = —, )= ——, 8.1
q s p aa; (8.1)

with the d = 2D phase-space coordinates x split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system with D degrees
of freedom:

x=(q,p), 49=(q1,92,---,9p),  P=(p1,p2,---,PD)- (8.2)

The equations of motion (8.1) for a time-independent, D-degrees of freedom
Hamiltonian can be written compactly as

0
X = win,j(X) , H,j(x) = 6_XJH(X) > (8.3)

where x = (q,p) € M is a phase-space point, and the a derivative of (-) with
respect to x; is denoted by comma-index notation (-) j,

0 I
w= [ 10 ] , (8.4)
is an antisymmetric [dXd] matrix, and I is the [DXx D] unit matrix.

The energy, or the value of the time-independent Hamiltonian function at the
state space point x = (q, p) is constant along the trajectory x(¢),

d OH OH
-1@0.p®) = 8—%6110) + a—pl_pl(t)
OH 0H 0H 0H

so the trajectories lie on surfaces of constant energy, or level sets of the Hamilto-
nian {(¢q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems, this is basically the
whole story.

example 8.1
p. 157

Thus all 1-dof systems are integrable, in the sense that the entire phase plane
is stratified by curves of constant energy, either periodic, as is the case for the
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Figure 8.1: Phase plane of the unforced, undamped
Duffing oscillator. The trajectories lie on level sets of
the Hamiltonian (8.25).

1k

Figure 8.2: A typical collinear helium trajectory in
the [r, r,] plane; the trajectory enters along the r;-axis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case along the r,-
axis. In this example the energy is setto H = E = -1,
and the trajectory is bounded by the kinetic energy = 0
line.

harmonic oscillator (a ‘bound state’), or open (a ‘scattering trajectory’). Add one
more degree of freedom, and chaos breaks loose.

example 8.2
p. 157

Note an important property of Hamiltonian flows: if the Hamilton equations
(8.1) are rewritten in the 2D phase-space form x; = v;(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible, V-v = v, = w;H ;; =
0. The symplectic invariance requirements are actually more stringent than just
the phase-space volume conservation, as we shall see in sect. 8.3.

Throughout ChaosBook we reserve the term ‘phase space’ to Hamiltonian
flows. A ‘state space’ is the stage on which any flow takes place. ’Phase space’
is a special but important case, a state space with symplectic structure, preserved
by the flow. For us the distinction is necessary, as ChaosBook covers dissipative,
mechanical, stochastic and quantum systems, all as one happy family.

example 8.8 example 8.9
p. 160 p. 161

8.2 Symplectic group

Either you’re used to this stuff... or you have to get used
to it.
—NMaciej Zworski
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A matrix transformation g is called symplectic,
glwg=w, (8.6)

if it preserves the symplectic bilinear form (%|x) = %" wx, where g' denotes the
transpose of g, and w is a non-singular [2D X 2D] antisymmetric matrix which
satisfies

W =-w, w?=-1. (8.7)

While these are defining requirements for any symplectic bilinear form, w is often
conventionally taken to be of form (8.4).

example 8.3
p. 157

If g is symplectic, so is its inverse g~!. Likewise, if g; and g, are symplectic,
so is their product g>g;. Symplectic matrices form a Lie group called the symplec-
tic group Sp(d). Use of the symplectic group necessitates a few remarks about Lie
groups in general, a topic that we study in more depth in chapter 12. A Lie group
is a group whose elements g(¢) depend smoothly on a finite number N of param-
eters ¢,. In calculations one has to write these matrices in a specific basis, and
for infinitesimal transformations they take the following form (repeated indices
are summed throughout this chapter, and the dot product refers to a sum over Lie
algebra generators):

g6d) ~1+6¢-T, 6peRY, |og <1, (8.8)

where {T|, T, --- , Ty}, the generators of infinitesimal transformations, are a set
of N linearly independent [dXd] matrices, which act linearly on the d-dimensional
phase space M. The infinitesimal statement of symplectic invariance follows by
substituting (8.8) into (8.6) and keeping the terms linear in ¢,

T,"w+wT, =0. (8.9

This is the defining property for infinitesimal generators of symplectic transfor-
mations. Matrices that satisfy (8.9) are sometimes called Hamiltonian matrices.
A linear combination of Hamiltonian matrices is a Hamiltonian matrix, so Hamil-
tonian matrices form a linear vector space, the symplectic Lie algebra sp(d). By
the antisymmetry of w,

(WT)T = wT,. (8.10)

is a symmetric matrix. Its number of independent elements gives the dimen-
sion (the number of independent continuous parameters) of the symplectic group

Sp(d),
N=dd+1)/2=D2D+1). (8.11)

The lowest-dimensional symplectic group Sp(2), of dimension N = 3, is isomor-
phic to SU(2) and SO(3). The first interesting case is Sp(3) whose dimension is
N =10.
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It is easily checked that the exponential of a Hamiltonian matrix
g=eT (8.12)

is a symplectic matrix; Lie group elements are related to the Lie algebra elements
by exponentiation.

8.3 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of equa-
tions of motion can affect the dynamics. In the case at hand, the symplectic in-
variance will reduce the number of independent Floquet multipliers by a factor of
2 or 4.

8.3.1 Canonical transformations

The evolution of J' (4.5) is determined by the stability matrix A, (4.10):
d 1 1
d_tJ (x) = A()J (%), A;ij(x) = wix H g j(x), (8.13)

where the symmetric matrix of second derivatives of the Hamiltonian, Hy, =
0k0,H, is called the Hessian matrix. From (8.13) and the symmetry of Hy, it
follows that for Hamiltonian flows (8.3)

ATw+wA=0. (8.14)

This is the defining property (8.9) for infinitesimal generators of symplectic (or
canonical) transformations.

Consider now a smooth nonlinear coordinate change form y; = h;(x) (see
sect. 2.3 for a discussion), and define a ‘Kamiltonian’ function K(x) = H(h(x)).
Under which conditions does K generate a Hamiltonian flow? In what follows we
will use the notation d; = 8/dy;, si,; = 0h;/0x;. By employing the chain rule we
have that

K ;= Hjsp; (8.15)

(Here, as elsewhere in this book, a repeated index implies summation.) By virtue
of (8.1), &;H = —WimYm, SO that, again by employing the chain rule, we obtain

w;j0;K = —w;js Wi Smpin (8.16)
The right hand side simplifies to x; (yielding Hamiltonian structure) only if

—W;jSL, jWimSmp = Oin (8.17)
or, in compact notation,
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—w(0h)Tw(dh) = 1 (8.18)

which is equivalent to the requirement (8.6) that 0k is symplectic. The transfor-
mation h is then called a canonical transformation. ~We care about canonical
transformations for two reasons. First (and this is a dark art), if the canonical
transformation # is very cleverly chosen, the flow in new coordinates might be
considerably simpler than the original flow. Second, Hamiltonian flows them-
selves are a prime example of canonical transformations.

example 8.4
p. 158

8.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium point x,, the stability matrix A is constant. Its eigenvalues
describe the linear stability of the equilibrium point. A is the matrix (8.14) with
real matrix elements, so its eigenvalues (the Floquet exponents of (5.1)) are either
real or come in complex pairs. In the case of Hamiltonian flows, it follows from
(8.14) that the characteristic polynomial of A for an equilibrium x, satisfies

det(A—A1) = det(w (A - Aw) = det (~wAw — A1)
det (AT + A1) = det(A + A1). (8.19)

That is, the symplectic invariance implies in addition that if A is an eigenvalue,
then —A4, 4* and —A* are also eigenvalues. Distinct symmetry classes of the Floquet
exponents of an equilibrium point in a 2-dof system are displayed in figure 8.4.
It is worth noting that while the linear stability of equilibria in a Hamiltonian
system always respects this symmetry, the nonlinear stability can be completely
different.

8.4 Symplectic maps

So far we have considered only continuous time Hamiltonian flows. For finite
time evolution mappings, as discussed in sect. 4.4 and sect. 4.5, the stability of
maps is characterized by eigenvalues of their Jacobian matrices, or ‘multipliers.’
A multiplier A = A(xop, ) associated with a trajectory is an eigenvalue of the
Jacobian matrix J. As J is symplectic, (8.6) implies that

J ' =0l w, (8.20)

so the characteristic polynomial is reflexive, namely it satisfies

det (J — A1) det(JT = Al) = det(-wJ w — Al)
det(J™' = A1) = det(J~")det(1 - AJ)

= APdet(J-A'1). (8.21)
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SOMRSF,

m

complex saddle saddle—center
@)@ ( >
degenerate saddle real saddle
i 1
Figure 8.3: Stability of a symplectic map in R*. \'\/'/ K/'é’
generic center degenerate center

Hence if A is an eigenvalue of J, so are 1/A, A* and 1/A”*. Real eigenvalues al-
ways come paired as A, 1/A. The Liouville conservation theorem of phase-space
volumes (8.30) is an immediate consequence of this pairing up of eigenvalues.
The complex eigenvalues come in pairs A, A*, |A| = 1, or in loxodromic quartets
A, 1/A, A" and 1/A*. These possibilities are illustrated in figure 8.3.

example 8.5 example 8.6 example 8.7
p. 158 p. 158 p. 159

8.5 Poincaré invariants

Let C be a region in phase space and V(0) its volume. Denoting the flow of the
Hamiltonian system by f’(x), the volume of C after a time ¢ is V(¢) = f'(C), and
using (8.30) we derive the Liouville theorem:

V@) = f dxzf
f1(C) c

fdet(])dx’ = fdx’ =V(0), (8.22)
C C

det dx’

of'(x)
Ox

Here we see that Hamiltonian flows preserve phase-space volumes.

The symplectic structure of Hamilton’s equations buys us more than ‘incom-
pressibility’, or the conservation of phase-space volume. Consider the symplectic
product of two infinitesimal vectors

(Ox|6%) = Ox"wdx = 6pidg; — 6q;0p;
D
= Z {oriented area in the (g;, p;) plane} . (8.23)
i=1
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Time ¢ later we have
OX16%") = 6x" T T wJ6k = 6xT Wik .

This has the following geometrical meaning. Imagine that there is a reference
phase-space point. Take two other points infinitesimally close, with the vectors 6x
and 6% describing their displacements relative to the reference point. Under these
dynamics, the three points are mapped to three new points which are still infinites-
imally close to one another. The meaning of the above expression is that the area
of the parallelepiped spanned by the three final points is the same as that spanned
by the initial points. The integral (Stokes theorem) version of this infinitesimal
area invariance states that for Hamiltonian flows the sum of D oriented areas V;
bounded by D loops QV;, one per each (g;, p;) plane, is conserved:

f dp Ndg = é p - dg = invariant . (8.24)
Vv QV

One can show that also the 4, 6, - - - , 2D phase-space volumes are preserved. The
phase space is 2D-dimensional, but as there are D coordinate combinations con-
served by the flow, Hamiltonian flow is D-dimensional. Hence for Hamiltonian
flows, the key notion of dimensionality is the number of the degrees of freedom-
rather than phase-space dimensionality d = 2D.

- in depth:
” appendix A8.1, p. 924
Résumé

Physicists do Lagrangians and Hamiltonians. Many know of no world other than
the perfect world of quantum mechanics and quantum field theory in which the
energy and much else is conserved. From a dynamical point of view, Hamilto-
nian flow is just a flow with symmetry. The stability matrix A;; = wi H;(x) of
a Hamiltonian flow %; = w;;H j(x) satisfies ATw + wA = 0. Its integral along
the trajectory is also the linearization of the flow J that we call the ‘Jacobian ma-
trix’, which is symplectic. Thus, a Hamiltonian flow is a canonical transformation
in the sense that the Hamiltonian time evolution x’ = f’(x) is a transformation
whose linearization (Jacobian matrix) J = dx’/dx preserves the symplectic form,
JTwJ = w . This implies that A is in the symplectic algebra sp(2D) and that the
2D-dimensional Hamiltonian phase-space flow preserves D oriented infinitesimal
volumes, or Poincaré invariants. Hence, the Liouville theorem, which states that
phase-space volume is conserved, is one consequence of this invariance.

Symplectic invariance enforces |A| = 1 for complex eigenvalue pairs and pre-
cludes the existence of attracting equilibria and limit cycles typical of dissipative
flows. However, for hyperbolic equilibria and periodic orbits |[A| > 1, and this pair-
ing requirement only enforces a particular value on the 1/A contracting direction.
Hence the description of chaotic dynamics as a sequence of saddle visitations is
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the same for the Hamiltonian and dissipative systems. You might find symplectic-
ity beautiful. Once you understand that every time you identify symmetry means
using it, you might curse the day [33] you learned to say ‘symplectic’.

Commentary

In theory there is no difference between theory and prac-
tice. In practice there is.

—Anonymous

Remark 8.1. Hamiltonian dynamics, sources. If you are reading this book, in theory
you already know everything that is in this chapter. In practice you do not. Try this:
Put your right hand on your heart and say: “I understand why nature prefers symplectic
geometry.” Honest?

Where does the skew-symmetric w come from? Newton f = ma law for a motion in
a potential is mg = —AdV . Rewrite this as a pair of first order ODEs, ¢ = p/m,p = -0V,
define the total energy H(q, p) = p*/2m+ V(q), and voila, the equation of motion take on
the symplectic form (8.3). What makes this important is the fact that the evolution in time
(and more generally any canonical transformation) preserves this symplectic structure, as
shown in sect. 8.3.1. Another way to put it: a gradient flow x = —0V(x) contracts a state
space volume into a fixed point. When that happens, V(x) is a ’Lyapunov function’, and
the equilibrium x = 0 is ‘Lyapunov asymptotically stable’. In contrast, the ‘-’ sign in
the symplectic action on (g, p) coordinates, p = —dV induces a rotation and conserves
phase-space areas. For a symplectic flow, there can be no volume contraction.

Out there there are centuries of accumulated literature on Hamilton, Lagrange, Ja-
cobi etc. formulation of mechanics, some of it excellent. In context of what we will
need here, we make a very subjective recommendation—we enjoyed reading Percival and
Richards [39] and Ozorio de Almeida [37]. In a fine overview, Gotay and Isenberg [24]
go as far as to claim that all of science will be symplectized, and with continuing math-
ematicians’ deep dive into symplectic geometry, they might well be right. Exposition of
sect. 8.2 follows Dragt [16]. There are two conventions in literature for what the integer
argument of Sp(---) stands for: either Sp(D) or Sp(d) (used, for example, in refs. [14,

1), where D = number of degrees of freedom, and d = 2D. As explained in Chapter 13
of ref. [14], symplectic groups are the ‘negative dimensional’, d — —d sisters of the or-
thogonal groups, so only the second notation makes sense in the grander scheme of things.
Mathematicians can even make sense of the d =odd-dimensional case, see Proctor [22,

], by dropping the requirement that w is non-degenerate, and defining a symplectic
group Sp(M, w) acting on a vector space M as a subgroup of GI(M) which preserves a
skew-symmetric bilinear form w of maximal possible rank. The odd symplectic groups
Sp(2D + 1) are not semisimple. If you care about group theory for its own sake (the dy-
namical systems symmetry reduction techniques of chapter 12 are still too primitive to be
applicable to Quantum Field Theory), chapter 14 of ref. [14] is fun, too.

Referring to the Sp(d) Lie algebra elements as ‘Hamiltonian matrices’, as one some-
times does [16, 49], conflicts with what is meant by a ‘Hamiltonian matrix’ in quantum
mechanics. In this context, the quantum Hamiltonian is sandwiched between vectors
taken from any complete set of quantum states. We are not sure where this name comes
from; Dragt cites refs. [20, 23], and chapter 17 of his own book [17]. Fulton and Har-
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ris [20] use it. Certainly Van Loan [38] uses in 1981, and Taussky in 1972. Might go all
the way back to Sylvester?

Question 8.1. Dream student Henriette Roux wants to know

Q Dynamics equals a Hamiltonian plus a bracket. Why don’t you just say it?

A It is true that in the tunnel vision of atomic mechanicians the world is Hamiltonian.
But it is more wondrous than that. This chapter starts with Newton 1687: force equals
acceleration, and we always replace a higher order time derivative with a set of first or-
der equations. If there are constraints, or fully relativistic Quantum Field Theory is your
thing, the tool of choice is to recast Newton equations as a Lagrangian 1788 variational
principle. If you still live in material but non-relativistic world and have not gotten beyond
Heisenberg 1925, you will find Hamilton’s 1827 principal function handy. The question
is not whether the world is Hamiltonian - it is not - but why is it so often profitably formu-
lated this way. For Maupertuis 1744 variational principle was a proof of God’s existence;
for Lagrange who made it mathematics, it was just a trick. Our sect. 38.1.1 “Semiclassical
evolution” is an attempt to get inside 17 year old Hamilton’s head, but it is quite certain
that he did not get to it the way we think about it today. He got to the ‘Hamiltonian’
by studying optics, where the symplectic structure emerges as the leading WKB approx-
imation to wave optics; higher order corrections destroy it again. In dynamical systems
theory, the densities of trajectories are transported by Liouville evolution operators, as ex-
plained here in sect. 19.6. Evolution in time is a one-parameter Lie group, and Lie groups
act on functions infinitesimally by derivatives. If the evolution preserves additional sym-
metries, these derivatives have to respect them, and so ‘brackets’ emerge as a statement of
symplectic invariance of the flow. Dynamics with a symplectic structure are just a special
case of how dynamics moves densities of trajectories around. Newton is deep, Poisson
brackets are technology and thus they appear naturally only by the time we get to chap-
ter 19. Any narrative is of necessity linear, and putting Poisson ahead of Newton [47]
would be a disservice to you, the student. But if you insist: Dragt and Habib [ 16, 18] offer
a concise discussion of symplectic Lie operators and their relation to Poisson brackets.

Remark 8.2. Symplectic. The term symplectic —Greek for twining or plaiting
together— was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is
church-doctrinal: Greek ‘kanon’, referring to a reed used for measurement, came to mean
in Latin a rule or a standard.

Remark 8.3. The sign convention of w. The overall sign of w, the symplectic invariant
in (8.3), is set by the convention that Hamilton’s principal function (for energy conserving
flows) is given by R(q,q’,t) = fq * pidg; — Et. With this sign convention, the action
along a classical path is minimal, and the kinetic energy of a free particle is positive.
Any finite-dimensional symplectic vector space has a Darboux basis such that w takes
form (8.6). Dragt [16] convention for phase-space variables is as in (8.2). He calls the
dynamical trajectory xo — x(xg, #) the ‘transfer map’, something that we will avoid here,
as it conflicts with the well established use of ‘transfer matrices’ in statistical mechanics.

Question 8.2. Henriette Roux, frustrated
Q I hate these s,,, in (8.17). Can’t you use a more sensible notation?
A Be my guest.

Remark 8.4. Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired as A, 1/A, and complex eigenvalues come either in A, A* pairs, |A| = 1, or
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A, 1/A, A¥, 1/A* loxodromic quartets. As most maps studied in introductory nonlinear
dynamics are 2d, you have perhaps never seen a loxodromic quartet. How likely are
we to run into such things in higher dimensions? According to a very extensive study of
periodic orbits of a driven billiard with a four dimensional phase space, carried in ref. [31],
the three kinds of eigenvalues occur with about the same likelihood.

Question 8.3. Henriette Roux, frustrated

Q Would it kill you to draw some figures in this chapter? It is supposed to be all about
geometry?

A OK, isn’t figure 8.5 pretty?

Question 8.4. Dream student Henriette Roux

Q Something is amiss here... The group orbit of x € M is embedded into M, so it
cannot be of a higher dimension than d, but the dimension of the tangent space of the
most general action of the group is N « d> (I'm thinking of U(d), SO(d) and Sp(d) now),
so I cannot fit all of it in a d-dimensional phase space. What gives?

A

Remark 8.5. Standard map. Standard maps model free rotors under the influence
of short periodic pulses, as can be physically implemented, for instance, by pulsed optical
lattices in cold atoms physics. On the theoretical side, standard maps illustrate a number
of important features: small k values provide an example of KAM perturbative regime
(see ref. [28]), while larger k’s illustrate deterministic chaotic transport [ 1, 34], and the
transition to global chaos presents remarkable universality features [25, 26, 44]. The
quantum counterpart of this model has been widely investigated, as the first example
where phenomena like quantum dynamical localization have been observed [9]. Stability
residue was introduced by Greene [25]. For some hands-on experience of the standard
map, download Meiss simulation code [35].

Remark 8.6. Cat map. Area-preserving maps that describe kicked rotors subject to
a discrete time sequence of angle-dependent impulses (8.43) play an important role in the
theory of chaos in Hamiltonian systems, from the Taylor, Chirikov and Greene standard
map [ 1, 32], to the cat maps. There is a whole strain of mathematical literature that refers
to the cat map as the “Thom’s toral automorphism’, or ‘Thom-Anosov diffeomorphism’.
We refer here to (8.47), with s = 3 the least unstable of the cat maps, as the “Arnol’d”,
or “Thom-Arnol’d-Sinai cat map” [2, |5], and to general maps with integer s > 3 as “cat
maps”.

Anosov maps, and in particular cat maps, have been extensively analyzed as exam-
ples of genuine Hamiltonian chaotic evolution. Cat maps exhibit ergodicity, mixing, ex-
ponential sensitivity to variation of the initial conditions (the positivity of the Lyapunov
exponent), and the positivity of the Kolmogorov-Sinai entropy [48]. They admit simple
Markov partitions [2, 15], which lead to a simple analytic expression (14.29) for topo-
logical zeta functions [27]. An extensive analysis of the periodic orbits of the cat map,
following Percival and Vivaldi [40] has been carried out by Keating [29]. The fact that
even Dyson [19] counts cat map periods should give you pause - clearly, some nontrivial
number theory is afoot. Problems with the discretization of Arnol’d cat map were pointed
out in refs. [7, 8]. Ref. [8] discusses two partitions of the cat map unit square. There are
many good expositions - in particular we enjoyed Robinson [43] and Anosov, Klimenko
and Kolutsky [1]. Behrends [4, 5] The ghosts of the cat is fun - he uncovers various reg-
ular patterns in the iterates of the cat map. Barash and Shchur [3] give an algorithm for
determining certain sets periodic orbits in the context of using cat maps as pseudorandom
number generators. Jim Crutchfield [13] online course lect. 13 illustrates nicely the ac-
tion of Thom-Arnol’d cat map. The course is thoughtfully put together, with notes and
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videos, a valuable resource. Detailed understanding of dynamics of cat maps is important
also for the much richer world of nonlinear hyperbolic toral automorphisms, see refs. [12,
21, 46] for examples.

The “linear code” [6, 40] for temporal evolution of a single cat map was introduced
in the beautiful 1987 paper by Percival and Vivaldi. Percival and Vivaldi give a clear
discussion of the “two-configuration cat map representation” in Sect. 4. Geometry of
the linear code of their paper [40], well worth reading. Their alphabet is different, as
their map acts on the centered unit interval [-1/2, 1/2). However, digesting Percival and
Vivaldi [41] will require some pencil and paper. (continued in remark 15.4)

Remark 8.7. Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its orbits are locally unstable (positive Lyapunov exponent) and
globally mixing (positive entropy). In sect. 6.2 we shall define Lyapunov exponents and
discuss their evaluation, but already at this point it would be handy to have a few quick nu-
merical methods to diagnose chaotic dynamics. Laskar’s frequency analysis method [30]
is useful for extracting quasi-periodic and weakly chaotic regions of state space in Hamil-
tonian dynamics with many degrees of freedom. For pointers to other numerical methods,
see ref. [45].
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8.6 Examples

Example 8.1. Unforced undamped Duffing oscillator. When the damping term
is removed from the Duffing oscillator (2.24), the system can be written in Hamiltonian
form,

2 2 4
P9 q
H ===+ . 2
@.p=Z-5+7 (8.25)
This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (g, p).

The Hamilton’s equations (8.1) are
q4=r; pP=q-q. (8.26)

For 1-dof systems, the ‘surfaces’ of constant energy (8.5) are curves that stratify the phase
plane (g, p), and the dynamics is very simple: the curves of constant energy are the tra-
jectories, as shown in figure 8.1.

Example 8.2. Collinear helium. In the quantum chaos part of ChaosBook.org we
shall apply the periodic orbit theory to the quantization of helium. In particular, we will
study collinear helium, a doubly charged nucleus with two electrons arranged on a line,
an electron on each side of the nucleus. The Hamiltonian for this system is

a1, 1, 2 2 1
TPt rnoor r+rn

(8.27)

Collinear helium has 2 degrees of freedom, and thus a 4-dimensional phase space M,
which energy conservation stratified by 3-dimensional constant energy hypersurfaces. In
order to visualize it, we often project the dynamics onto the 2-dimensional configuration
plane, the (7, r2), r; = 0 quadrant, figure 8.2. It looks messy, and, indeed, it will turn out
to be no less chaotic than a pinball bouncing between three disks. As always, a Poincaré
section will be more informative than this rather arbitrary projection of the flow. The
difference is that in such projection we see the flow from an arbitrary perspective, with
trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic
coordinates, a pair along the marginal stability time and energy directions, and the rest
transverse, revealing the phase-space structure of the flow.

Example 8.3. Symplectic form for D = 2.  For two degrees of freedom, the phase
space is 4-dimensional, x = (g1, g2, p1, p2) , and the symplectic 2-form is

0 0 1 0
0 0 01

o=l 2 0 0 ol (8.28)
0 -1 0 0

The symplectic bilinear form (x("|x®) is the sum over the areas of the parallelepipeds
spanned pairwise by components of the two vectors,

GOy = () Twx@ = @V p? - ¢Pp) + @ PP - ¢ ). (8.29)

It is this sum over oriented areas (not the Euclidean distance between the two vectors,
|x® — x(D]) that is preserved by the symplectic transformations.
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Example 8.4. Hamiltonian flows are canonical. For Hamiltonian flows it follows
from (8.14) that % (JTwJ) = 0, and since at the initial time J°(xo) = 1, Jacobian matrix
is a symplectic transformation (8.6). This equality is valid for all times, so a Hamiltonian
flow f'(x) is a canonical transformation, with the linearization d, f*(x) a symplectic trans-
formation (8.6). For notational brevity, we have suppressed the dependence on time and
the initial point, J = J'(xy). By elementary properties of determinants, it follows from
(8.6) that Hamiltonian flows are phase-space volume preserving, |detJ| = 1. The initial
condition (4.10) for J is J° = 1, so one always has

detJ = +1. (8.30)
Example 8.5. Hamiltonian Hénon map. By (4.45) the Hénon map (3.18) for
b = —1 value is the simplest 2-dimensional orientation preserving area-preserving map,

often studied to better understand topology and symmetries of Poincaré sections of 2-
degrees of freedom Hamiltonian flows. We find it convenient to multiply (3.19) by a and
absorb the a factor into x in order to bring the Hénon map for the b = —1 parameter value
into the form

Xpt+ Xy =a-x, i=1,..,n,. (8.31)

The 2-dimensional Hénon map for b = —1 parameter value

Xn+l = a_xi_yn
Yurl = X (8.32)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.

In the following examples of numerical calculations, we shall fix (arbitrarily) the
stretching parameter value to a = 6, a value large enough to guarantee that all roots of
0 = f"(x) — x (periodic points) are real.

Example 8.6. 2-dimensional symplectic maps. In the 2-dimensional case, the eigen-
values (5.6) depend only on tr M*

A = %(u M+ @M =2 M 1) (8.33)

Greene’s residue criterion states that the orbit is elliptic if the stability residue |tr M'| -2 <
0, with complex eigenvalues A; = €, Ay = A} = ™. If [r M'| = 2 > 0 and A is real,

newton - 1feb2022 ChaosBook.org edition17.5.5, Feb 3 2022

148

exercise 9.7
149



CHAPTER 8. HAMILTONIAN DYNAMICS 159

Figure 8.5: Phase portrait for the standard map for
(a) k = 0. Symbols denote periodic orbits, and full
lines represent quasiperiodic orbits. (b) k = 0.3,
k = 0.85 and k = 1.4. Each plot consists of 20
random initial conditions, each iterated 400 times.

(@)
then the trajectory is either
hyperbolic Ar=e, Ay=e, or (8.34)
inverse hyperbolic A==, Ay=—eM. (8.35)

149

Example 8.7. Standard map. Given a smooth function g(x), the map

Xn+l = Xpt Yt
Yn+1 = Ynt g(-xn) (836)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.21) is

1

M"(xo,30) = | |
k=n

1+g' () 1
o1 } (8.37)

The map preserves areas, det M = 1, and one can easily check that M is symplectic. In
particular, one can consider x on the unit circle, and y as the conjugate angular momentum,
with a function g periodic with period 1. The phase space of the map is thus the cylinder
S1 X R (S stands for the 1-torus, which is a fancy way to say “circle"). By taking (8.36)
mod 1, the map can be reduced on the 2-torus S ;.

The standard map corresponds to the choice
g(x) = k/2msin(2nx) . (8.38)

When k = 0, y,+1 = Y» = Yo, so that angular momentum is conserved, and the angle x
rotates with uniform velocity

Xntl = X +Yo = X0+ (n+ 1)y mod 1.

The choice of y, determines the nature of the motion (in the sense of sect. 2.1.1). For
yo = 0, we have that every point on the yy = 0 line is stationary; for yg = p/q, the motion
is periodic; and for irrational y(, any choice of x( leads to a quasiperiodic motion (see
figure 8.5 (a)).

Despite the simple structure of the standard map, a complete description of its dy-
namics for arbitrary values of the nonlinear parameter k is fairly complex. This can be
appreciated by looking at phase portraits of the map for different k values. When k is very
small, the phase space looks very much like a slightly distorted version of figure 8.5 (a);
whereas, when £ is sufficiently large, single trajectories wander erratically on a large frac-
tion of the phase space, as in figure 8.5 (b).
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This gives a glimpse of the typical scenario of transition to chaos for Hamiltonian
systems.

Note that the map (8.36) provides a stroboscopic view of the flow generated by a
(time-dependent) Hamiltonian

H(x,y;1) = %yz + G(x)61 (1), (8.39)

where 0| denotes the periodic delta function

00

sty = Y oe—m, (8.40)
and
G'(x) = —g(x). (8.41)

Important features of this map, including transition to global chaos (destruction of the
last invariant torus), may be tackled by detailed investigation of the stability of periodic
orbits. A family of periodic orbits of period Q already present in the k = O rotation maps
can be labeled by its winding number P/Q. The Greene residue describes the stability of
a P/Q-cycle as

1
Reig = (2 -t Mpyg) - (8.42)

If Rp/o € (0, 1), the orbit is elliptic; for Rp;p > 1 the orbit is hyperbolic; and for Rp;p < 0
it is inverse hyperbolic.

For k = 0, all points on the yg = P/Q line are periodic with period Q, and the winding
value P/Q and marginal stability value Rp/p both equal zero. As soon as k > 0, only a 20
of such orbits survive, according to Poincaré-Birkhoff theorem. Half of them are elliptic,
and the other half are hyperbolic. If we further vary & in such a way that the residue of
the elliptic Q-cycle goes through 1, a bifurcation takes place, and two or more periodic
orbits of higher period are generated. (continued in example 8.8)

Example 8.8. Kicked rotor action. (Continued from example 8.7) Area-preserving
maps that describe kicked rotors subject to a discrete time sequence of angle-dependent
impulses P(x,), t € Z,

Xpel = X+ Pai mod 1, (8.43)
Pn+ P(x,), (3.44)

Pn+l1

play an important role in the theory of chaos in Hamiltonian systems, from the Taylor,
Chirikov and Greene standard map [ 1, 32] (8.38), to the cat map (8.46). Here 2nx is
the angle of the rotor, p is the momentum conjugate to the configuration coordinate x,
P(x) = P(x + 1) is periodic pulse with period 1, and the time step has been set to At = 1.
Area-preserving maps that describe kicked rotors subject to a discrete time sequence of
angle-dependent impulses P(x,) of form (8.43), (8.44) have a generating function

dv(q)

1
LGn @) = 5(an = 1)’ = Vg,  P(g) = g (8.45)
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This generating function is the discrete time Lagrangian for a particle moving in potential
V(x). Eq. (8.43) says that in one time step Af the configuration trajectory starting at x,
reaches x,.1 = X, + pu+1At, and (8.44) says that at each kick the angular momentum
pn is accelerated to p,,; by the force pulse P(x,)Ar. As the values of x differing by
integers are identified, and the momentum p is unbounded, the phase space is a cylinder.
However, to analyse the dynamics, one can just as well compactify the state space by
folding the momentum dynamics onto a circle, by adding “mod 1” to (8.44). This reduces
the dynamics to a toral automorphism acting on a (0, 1] X (0, 1] square of unit area, with
the opposite sides identified (continued in example 8.9).

Example 8.9. Cat map. (Continued from example 8.8) The simplest example of
(8.43,8.44) is a rotor subject to a force F(x) = Kx linear in the displacement x. The
mod 1 added to (8.44) makes this a discontinuous “sawtooth,” unless K is an integer.
In that case, the map (8.43,8.44) is a continuous automorphism of the torus, or a “cat
map” [2], a linear symplectic map on the unit 2-torus state space, (x — Ax|x € T?> =
R2/Z?; A € SLy(Z)), with coordinates x = (x,, p,) interpreted as the angular position
variable and its conjugate momentum at time instant 7. Explicitly,

Xn+1 _ Xn _ a ¢
(1711+1)_A(Pn) mod 1, A_(d b)’ (8.46)

where a, b, ¢, d are integers whose precise values do not matter, as long as detA = 1, so
that the map is symplectic (area preserving). In that case, the map is characterized by only
one invariant parameter, s = tr A, so consider a linear, phase space (area) preserving map
of a 2-torus onto itself

Xn+1 _ Xn _ s—1 1
(pm)_A(pn) mod 1, A_(S_Zl), (8.47)

where both x,, and p, belong to the unit interval. For integer s = trA > 2, the map is
referred to as a cat map [2]. It is a fully chaotic Hamiltonian dynamical system, which
can be rewritten as a 2-step difference equation in (x,_, x,,) that takes a particularly simple
form [40]

Xn+l — S Xp + Xp—1 = —My, (8.48)

with the unique integer “winding number” m, at every time step n ensuring that x,.
lands in the unit interval. While the dynamics is linear, the nonlinearity comes through
the mod 1 operation, encoded in m, € A, where A is finite alphabet of possible values
for m,,.

A cat map is a fully chaotic Hamiltonian dynamical system, if its stability multipliers
(A", A7) = (A, AT

N =3GEVD), A=+ G- DGR =, (8.49)

are real, where s = trA = A+ A™', YD = A — A7!, discriminant D = s*> — 4, with
a positive Lyapunov exponent 4 > 0. The eigenvalues are functions of the “stretching”
parameter s, and the map is chaotic if and only if |s| > 2.

‘We refer here to the least unstable of the cat maps (8.46), with s = 3, as the “Arnol’d”,
or “Thom-Arnol’d-Sinai cat map” [2, 15], and to general maps with integer s > 3 as
“cat maps”. Cat maps have been extensively analyzed as particularly simple examples of
chaotic Hamiltonian dynamics. They exhibit ergodicity, mixing, and exponential sensi-
tivity to a variation of the initial conditions, such as the positivity of both the Lyapunov
exponent and Kolmogorov-Sinai entropy [48]. A detailed understanding of dynamics of
cat maps is important also for the much richer world of nonlinear hyperbolic toral auto-

morphisms, see refs. [12, 21, 46] for examples. (continued in example 14.12)
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Exercises

8.1. Complex nonlinear Schrodinger equation. Con-
sider the complex nonlinear Schrddinger equation in one
spatial dimension [33]:

la_(ﬁ + 62_¢

o Ox?

(a) Show that the function ¢ : R — C defining the

traveling wave solution ¢(x, t) = Y(x—ct) forc > 0

satisfies a second-order complex differential equa-

tion equivalent to a Hamiltonian system in R* rel-

ative to the noncanonical symplectic form whose
matrix is given by

+Bglel* =0, B#0.

0 0 1 0
1o o0 o0 1
We=1_1 0 0 -c
0 -1 ¢ O

(b) Analyze the equilibria of the resulting Ha-
miltonian system in R* and determine their linear

stability properties.

Let y(s) = €*/%a(s) for a real function a(s) and
determine a second order equation for a(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits for 8 < 0. Find them.

()

(d)

Find ‘soliton’ solutions for the complex nonlinear
Schrddinger equation.

(Luz V. Vela-Arevalo)

8.2. Symplectic vs. Hamiltonian matrices. In the
language of group theory, symplectic matrices form the
symplectic Lie group Sp(d), while the Hamiltonian ma-
trices form the symplectic Lie algebra sp(d), or the al-
gebra of generators of infinitesimal symplectic transfor-
mations. This exercise illustrates the relation between
the two:

(a) Show that if a constant matrix A satisfy the Hamil-
tonian matrix condition (8.9), then J(¢) = exp(tA),
t € R, satisfies the symplectic condition (8.6), i.e.,
J(¢) is a symplectic matrix.

(b) Show that if matrices T, satisfy the Hamiltonian
matrix condition (8.9), then g(¢) exp(¢ - T),
¢ € RV, satisfies the symplectic condition (8.6),
i.e., g(¢) is a symplectic matrix.

(A few hints: (i) expand exp(A), A = ¢ - T, as a power
series in A. Or, (ii) use the linearized evolution equation

(8.13).)

8.3. When is a linear transformation canonical?

exerNewton - 13jun2008

(a) Let A be a [n X n] invertible matrix. Show that
the map ¢ : R* — R given by (q,p) +~
(Aq, (A"")Tp) is a canonical transformation.

(b) If Risarotation in R?, show that the map (q, p) —
(R q,Rp) is a canonical transformation.

(Luz V. Vela-Arevalo)

8.4. Determinants of symplectic matrices. Show that
the determinant of a symplectic matrix is +1, by going
through the following steps:

(a) use (8.21) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds

for quartet members),
(b)
(©

prove that the joint multiplicity of 4 = =1 is even,

show that the multiplicities of 1 = 1 and 1 = —1
cannot be both odd. Hint: write

P() = (A- DA+ 1" o)
and show that Q(1) = 0.

8.5. Cherry’s example. What follows refs. [10, 36] is
mostly a reading exercise, about a Hamiltonian system
that is linearly stable but nonlinearly unstable. Consider
the Hamiltonian system on R* given by

1 |
H= E(cﬁ +pD) = (g5 +p3) + zpz(p% -a) - qQ1q2p1-

(a) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of

solutions parameterize by a constant 7:

cos(t — 1) cos 2(t — 1)

¢ =-V2 -t > PT T

in(r - in2(t - 7)

ﬁ51n(t T) _ sin .
t—T

P1

’ -1
These solutions clearly blow up in a finite time;
however they start at r = 0 at a distance V3/7
from the origin, so by choosing 7 large, we can
find solutions starting arbitrarily close to the ori-
gin, yet going to infinity in a finite time, so the
origin is nonlinearly unstable.

(Luz V. Vela-Arevalo)
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Chapter 9

Billiards

ple with both numerically and conceptually, is the dynamics of billiards.

For billiards, discrete time is altogether natural; a particle moving through
a billiard suffers a sequence of instantaneous kicks, and executes simple motion in
between, so there is no need to contrive a Poincaré section. We have already used
this system in sect. 1.3 as the intuitively most accessible example of chaos. Here
we define billiard dynamics more precisely, anticipating the applications to come.
As billiards lend themselvs naturally to visualization, this chapter —for once— is
better grasped by following the video links on the margins, then by decoding the
notation by reading this text.

THE pyYNAMICS that we have the best intuitive grasp on, and find easiest to grap-

9.1 Billiard dynamics

A billiard is defined by a connected region Q ¢ R”, with boundary Q ¢ RP-!
separating Q from its complement R? \ Q. The region Q can consist of one com-
pact, finite volume component (in which case the billiard phase space is bounded,
as for the stadium billiard of figure 9.1), or can be infinite in extent, with its
complement R? \ Q consisting of one or several finite or infinite volume compo-
nents (in which case the phase space is open, as for the 3-disk pinball game in
figure 1.1). In what follows we shall most often restrict our attention to planar
billiards.

A point particle of mass m and momentum p = mv moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), with no change in the tangential component of
momentum, and instantaneous reversal of the incoming momentum p~ component
normal to the boundary,

p=p —-2p -mn, 9.1)
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Figure 9.1: The stadium billiard is a 2-dimension-
al domain bounded by two semi-circles of radius
d = 1 connected by two straight walls of length
2a. At the points where the straight walls meet the
semi-circles, the curvature of the border changes
discontinuously; these are the only singular points
of the flow. The length a is the only parameter.

Figure 9.2: (a) A planar billiard trajectory
is fixed by specifying the perimeter arclength
parametrized by s and the outgoing trajectory an-
gle ¢, both measured counterclockwise with re-
spect to the outward normal 7. (b) The Birkhoff
phase-space coordinate pair (s, p) fully specifies
the trajectory, where p = |p|sin¢ is the momen-
tum component tangential to the boundary. As
the pinball kinetic energy is conserved in elas-
tic scattering, the pinball mass and the magnitude
of the pinball momentum are customarily set to
m=|p| =1.

(@)

with 71 the unit vector normal to the boundary dQ at the collision point. The angle
of incidence equals the angle of reflection, as illustrated in figure 9.2. A billiard is
a Hamiltonian system with a 2D-dimensional phase space x = (g, p) and potential
V(g) =0forg € Q, V(q) = o for g € dQ. As the energy is conserved, we can set
m = |[v| = |p| = 1 without loss of generality. Bark 51

A billiard flow has a natural Poincaré section defined by Birkhoff coordinates
Sy, the arc length position of the nth bounce measured along the billiard boundary,
and p, = |p|sin¢,, the momentum component parallel to the boundary, where
¢, is the angle between the outgoing trajectory and the normal to the boundary.
We measure both the arc length s, and the parallel momentum p counterclockwise
relative to the outward normal (see figure 9.2 as well as figure 15.16 (a)). In D =
2, the Poincaré section is a cylinder (an annulus), figure 9.3, where the parallel
momentum p ranges from —|p| to |p|, and the s coordinate is cyclic along each
connected component of dQ. The volume in the full phase space is preserved
by the Liouville theorem (8.22). The Birkhoff coordinates x = (s,p) € P, are

the natural choice, because with them the return map preserves the phase-space exercise 9.7
volume of the (s, p) parameterized Poincaré section (a perfectly good, often used
coordinate set (s, ¢) does not do that). exercise 9.7
section 9.2
Poincaré section condition eliminates one dimension, and the energy conser-
vation |p| = 1 eliminates another, so the Poincaré section return map P is (2D —2)-
dimensional. [ > ]
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Figure 9.3: In D = 2 the billiard Poincaré section 1

is a cylinder, with the parallel momentum p ranging T

over p € {-1,1}, and with the s coordinate is cyclic pg

along each connected component of dQ. The rectangle

figure 9.2 (b) is such cylinder unfolded, with periodic

boundary conditions gluing together the left and the e
right edge of the rectangle.

The dynamics is given by the return map

P : (sn, pn) = (Sptts Pust) 9.2)

from the nth collision to the (n+ 1)st collision. The discrete time dynamics map P
is equivalent to the Hamiltonian flow (8.1) in the sense that both describe the same
full trajectory. Let ¢, denote the instant of nth collision. Then the position of the
pinball € Q at time ¢, + 7 < t,,41 is given by 2D — 2 Poincaré section coordinates
(80, pn) € P together with 7, the distance reached by the pinball along the nth
section of its trajectory (as we have set the pinball speed to 1, the time of flight
equals the distance traversed).

example 9.1
p. 170

9.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems. In-
finitesimal equations of variations (4.2) do not apply, but the multiplicative struc-
ture (4.20) of the finite-time Jacobian matrices does. As they are more physical
than most maps studied by dynamicists, let us work out the billiard stability in
some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However,
one dimension can be eliminated by energy conservation, and the other by cutting
trajectories by a Poincaré section. We shall now show how going to a local frame
of motion leads to a [2X2] Jacobian matrix.

Consider a planar billiard with phase-space coordinates x = (q1, g2, p1, P2)-
Let t, be the instant of the nth collision of the pinball with the billiard boundary,
and £ = 1, + €, € positive and infinitesimal. With the mass and the speed equal to
1, the momentum direction can be specified by angle 9: x = (g1, g2, sin 6, cos ).
Now parametrize the 2-dimensional neighborhood of a trajectory segment by 6x =
(6z, 08), where

0z = 6q1 cos B — dq, sin b, 9.3)

00 is the variation in the direction of the pinball motion. Due to energy conserva-
tion, there is no need to keep track of dgj|, variation along the flow, as that remains
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constant. (dq1, dq>) is the coordinate variation transverse to the nth segment of the
flow. From the Hamilton’s equations of motion for a free particle, dg;/dt = p;,
dp;/dt = 0, we obtain the equations of motion (4.1) for the linearized neighbor-
hood

d d

d—t(SH =0, E& =06. 9.4)
Let

(62, 66,,) = (2(1), 660(1;))) , (6z,,,060,) = (6z(t,), 60(t,,)) 9.5)

be the local coordinates immediately after, respectively immediately before the
nth collision. Integrating the free flight from ¢, to #, we obtain

0z,

n

o0,

n

(5Zn—1 + Tnéen—l s Tn =1In — In—1
06u-1, 9.6)

and the Jacobian matrix (4.19) for the nth free flight segment is

Mr(x,) = [ o ] . ©.7)

To compute the reflection Jacobian matrix, think of the incoming rays as a
flashlight shining on the billiard boundary at an angle; its footprint, of arclength
0s, is wider then the incoming beam of width dz,. At incidence angle ¢, (the
angle between the outgoing particle and the outgoing normal to the billiard edge),
the incoming transverse variation 6z, projects onto an arc on the billiard boundary
of arclength 65, = 0z, /cos ¢,. Approximating locally a smooth boundary by a
circle of radius p,,, the angle of incidence corresponding to this arc is ds, = p0¢,,
$0 0¢p, = 62, /pn cos ¢,,. The specular law of reflection (9.1) doubles this angle and
changes its orientation, increasing the angular spread of the beam to

0Zn -0z,

2
06, = —-00, ———3z,, p, = local radius of curvature, 9.8)

" pncosdn

so the Jacobian matrix associated with the reflection is

1 0 2
Mpg(x,) = —[ o1 ], 'n = m- 9.9

The full Jacobian matrix for n, consecutive bounces describes a beam of tra-
jectories defocused by M7 along the free flight (the 7, terms below) and defo-
cused/refocused at reflections by My (the r, terms below)

1
meco 1[5 74 2

n=n,
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Figure 9.4: Defocusing of a beam of nearby trajecto-
ries at a billiard collision. (A. Wirzba)

where 7, is the flight time of the nth free-flight segment of the orbit, r, = 2/p,, cos ¢,
is the defocusing due to the nth reflection, and p,, is the radius of curvature of
the billiard boundary at the nth scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase-space volume preserving, det M = 1,
and the eigenvalues are given by (8.33).

This is an example of the Jacobian matrix chain rule (4.22) for discrete time
systems (the Hénon map stability (4.44) is another example). Stability of every
flight segment or reflection taken alone is a shear with two unit eigenvalues,

1 7,

det My = det [ 0 1

] , detMR=det[ o ] , 9.11)
rn, 1
but acting in concert in the interwoven sequence (9.10) they can lead to a hyper-

bolic deformation of the infinitesimal neighborhood of a billiard trajectory. exercise 16.6

As a concrete application, consider the 3-disk pinball system of sect. 1.3. An- [ > ]
alytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles follow
from elementary geometrical considerations. Longer cycles require numerical

. . . exercise 16.7
evaluation by methods such as those described in chapter 16.

exercise 9.4
chapter 16

Résume

A particulary natural application of the Poincaré section method is the reduction of
a billiard flow to a boundary-to-boundary return map. The 3-disk game of pinball
is to chaotic dynamics what a pendulum is to integrable systems; the simplest
physical example that captures the essence of chaos. What next? For an overview
of where are we now, and how are billiards going to help us, click on the video

link. o

Commentary

Remark 9.1. Billiards. Birkhoff coordinates [1] were introduced by -well- G.D.
Birkhoff in 1927. That the 3-disk game of pinball is a quintessential example of de-
terministic chaos appears to have been first noted by B. Eckhardt [6]. The model was
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studied in depth classically, semiclassically and quantum mechanically by P. Gaspard and
S.A. Rice [9], and used by P. Cvitanovi¢ and B. Eckhardt [4] to demonstrate applicabil-
ity of cycle expansions to quantum mechanical problems. It has been used to study the
higher order 7 corrections to the Gutzwiller quantization by P. Gaspard and D. Alonso
Ramirez [8], construct semiclassical evolution operators and entire spectral determinants
by P. Cvitanovi¢ and G. Vattay [5], and incorporate the diffraction effects into the periodic
orbit theory by G. Vattay, A. Wirzba and P.E. Rosenqvist [16]. The full quantum me-
chanics and semiclassics of scattering systems is developed here in the 3-disk scattering
context in chapter 40. Gaspard’s monograph [7], which we warmly recommend, utilizes
the 3-disk system in much more depth than will be attained here. The stadium billiard
was introduced by Bunimovich [2, 3] to demonstrate that full ergodicity is possible even
for billiards with focusing wall segments. Lansel, Porter and Bunimovich [10], Rankovié
and Porter [14], and Sawada and Taniguchi [15] discuss 2-particle billiards. For further
links check ChaosBook.org/extras.

A pinball game does miss a number of important aspects of chaotic dynamics: generic
bifurcations in smooth flows, the interplay between regions of stability and regions of
chaos, intermittency phenomena, and the renormalization theory of the ‘border of order’
between these regions. To study these we shall have to face up to much harder challenge,
dynamics of smooth flows. Nevertheless, pinball scattering is relevant to smooth poten-
tials. The game of pinball may be thought of as the infinite potential wall limit of a smooth
potential, and pinball symbolic dynamics can serve as a covering symbolic dynamics in
smooth potentials. One may start with the infinite wall limit and adiabatically relax an
unstable cycle onto the corresponding one for the potential under investigation. If things
go well, the cycle will remain unstable and isolated, no new orbits (unaccounted for by
the pinball symbolic dynamics) will be born, and the lost orbits will be accounted for by a
set of pruning rules. The validity of this adiabatic approach has to be checked carefully in
each application, as things can easily go wrong; for example, near a bifurcation the same
naive symbol string assignments can refer to a whole island of distinct periodic orbits.

Another contender for the title of the ‘harmonic oscillator of chaos’ is the baker’s

map which is used as the red thread through Ott’s introduction to chaotic dynamics [13].
The baker’s map is the simplest reversible dynamical system which is hyperbolic and
has positive entropy. We will not have much use for the baker’s map here, as due to its
piecewise linearity it is so nongeneric that it misses all of the subtleties of cycle expansion
curvature corrections that will be central to this treatise.
Remark 9.2. Stability analysis. The chapter 1 of Gaspard monograph [7] is rec-
ommended reading if you are interested in Hamiltonian flows, and billiards in particular.
A. Wirzba has generalized the stability analysis of sect. 9.2 to scattering off 3-dimensional
spheres (follow the links in ChaosBook.org/extras). A clear discussion of linear stability
for the general d-dimensional case is given in Gaspard [7], sect. 1.4.
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9.3 Examples

Example 9.1. 3-disk game of pinball.  In the case of bounces off a circular disk, the
position coordinate s = r6 is given by angle 6 € [0, 2rr]. For example, for the 3-disk game
of pinball of figure 1.6 and figure 15.16 (a) we have two types of collisions:

exercise 9.1
! = —¢ + 2 arcsin .
Py : ¢ - ¢ — P back-reflection 9.12)
p'=-p+psm¢’
' = ¢ —2arcsin p + 2n/3 .
P ¢/ ¢ — P / reflect to 3rd disk . (9.13)
p'=p-— zsmng’
Here a = radius of a disk, and R = center-to-center separation. Actually, as in this example
we are computing intersections of circles and straight lines, nothing more than high-school
geometry is required. There is no need to compute arcsin - one only needs to compute
one square root per each reflection, and the simulations can be very fast. exercise 9.2

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py’s and P;’s.
At each step one has to check whether the trajectory intersects the desired disk (and no
disk in-between). With minor modifications, the above formulas are valid for any smooth
billiard as long as we replace a by the local curvature of the boundary at the point of

collision.
return to p. 165

Example 9.2. Duhem’s bull. From Jos Leys, Etienne Ghys and Aurélien Alvarez [ 1]
comes Chaos—A Mathematical Adventure, amath movie. Chapter V Billiards - Duhem’s

bull goes beyond the billiards discussed here, and motivates much of the symbolic dynam- ([Z
ics to be developed bellow. The movie is mathematically sophisticated, and breathtakingly

beautiful.

Exercises

9.1. A pinball simulator. Implement the disk — disk trigonometric functions. Provide a graphic display of

maps to compute a trajectory of a pinball for a given
starting point, and a given R:a = (center-to-center dis-
tance):(disk radius) ratio for a 3-disk system. As this
requires only computation of intersections of lines and
circles together with specular reflections, implementa-
tion should be within reach of a high-school student.
Please start working on this program now; it will be con-
tinually expanded in chapters to come, incorporating the
Jacobian calculations, Newton root—finding, and so on.

Fast code will use elementary geometry (only one
y - per iteration, rest are multiplications) and eschew

exerBilliards - 4feb2012

9.2.

the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work with R:a = 6 and/or 2.5 values. Draw the
correct versions of figure 1.9 or figure 15.4 for R:a = 2.5
and/or 6.

Trapped orbits. Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure 1.9 for vari-
ous R:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their es-
cape. Try also R:a = 6:1, though that might be too thin
and require some magnification. The initial conditions

ChaosBook.org edition17.5.5, Feb 3 2022


http://www.chaos-math.org/en/film
http://www.chaos-math.org/en/chaos-v-billiards
http://www.chaos-math.org/en/chaos-v-billiards
https://youtube.com/embed/3u2SJKxJhh8

EXERCISES

9.3.

9.4. Pinball stability.

9.5.

can be randomly chosen, but need not - actually a clearer
picture is obtained by systematic scan through regions of
interest.

Stability of billiard cycles. Compute the Floquet
multipliers {A,, A} for a few simple cycles:

oo |

a 3 R-2a

(a) A simple scattering billiard is the two-disk bil-
liard. It consists of a disk of radius one centered
at the origin and another disk of unit radius lo-
cated at distance L + 2. Find all periodic orbits
for this system and compute their stabilities. (You
might have done this already in exercise 1.2; at
least now you will be able to see where you went
wrong when you knew nothing about cycles and
their extraction.)

R

(b) Find all periodic orbits and their stabilities for
a billiard ball bouncing between the diagonal
y = x and one of the hyperbola branches y =
—1/x. (continued as exercise 16.4)

Add to your exercise 9.1 pinball
simulator a routine that computes the [2x2] Jacobian
matrix. To be able to compare with the numerical re-
sults of coming chapters, work with R:a = 6 and/or 2.5
values.

A test of your pinball simulator. Test your exer-
cise 9.4 pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.

exerBilliards - 4feb2012

9.6.

9.7.

171

Compare your result with the exact analytic formulas of
exercise 16.6 and 16.7.

Stadium billiard. Consider the Bunimovich sta-
dium defined in figure 9.1. The Jacobian matrix associ-
ated with the reflection is given by (9.9). Here we take
pr = —1 for the semicircle sections of the boundary,
and cos ¢, remains constant for all bounces in a rota-
tion sequence. The time of flight between two semicir-
cle bounces is 7, = 2 cos ¢. The Jacobian matrix of one
semicircle reflection folowed by the flight to the next

bounce is
1 2cos¢ 1 0
(‘1)[ o 1 H “2/cosdy 1 ]

_ -3 2cos ¢,
- (_1)[ 2/ cos ¢y 1 ¢ ]

A free flight must always be followed by k = 1,2,3,---
bounces along a semicircle, hence the natural symbolic
dynamics for this problem is nary, with the correspond-
ing Jacobian matrix given by shear (ie. the eigenvalues
remain equal to 1 throughout the whole rotation), and k
bounces inside a circle lead to

-2k—-1
Y= (_1)k[ 2k/ cos ¢

The Jacobian matrix of a cycle p of length n, is given
by

J

9.14)

2k cos ¢
2k-1 |-

1
N

I, =(—1>Z"k]_[[ o ]

k=1

(1) } . (9.15)

Adopt your pinball simulator to the stadium billiard.

Birkhoff coordinates.  Prove that the Birkhoff coor-
dinates are phase-space volume preserving.
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Chapter 10

Flips, slides and turns

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

tion and rotation symmetries of various potentials. This chapter assumes
familiarity with basic group theory, as discussed in appendix A10.1. We
find the abstract notions easier to motivate by working out the examples; links to
these examples are interspersed throughout the chapter. Working through them is
essential and will facilitate your understanding of the necessity various definitions.

D YNAMICAL SYSTEMS often come equipped with symmetries, such as the reflec-

Question 10.1. Henriette Roux asks

Q I am not familiar with group theory. As fascinating as this is, it is akin to drinking
out of a fire hose, so what you would suggest I take should I take away from chapters 10
to 13, chapters 25 and 26 that will help me understand subsequent topics?

A In ChaosBook we invoke only those bits of group theory that are used in the book, but
no matter how one tries, the definitions and the jargon pile up into a wall impenetrable
to intuition. Do what we all do - skim through chapters 10 to 13, then when you start
working through exercises, backtrack to find the bits that you need. Much of data science
is running computers without thinking, but in order to make headway on hard problems
(turbulence, QFT, brain) one must use all symmetries of the problem. Chaos is no easier
than quantum mechanics. ChaosBook approaches both with the same set of tools, some
of them group-theoretical.

The erudite reader might prefer to skip the lengthy group-theoretic overture

and go directly to D; example 11.3, Lorenz flow example 11.8, and D3 exam-
ple 11.5, backtrack as needed.

10.1 Discrete symmetries

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the
state space into equivalence classes, each class a ‘group orbit’. We start by defin-

172

A1.6



https://youtube.com/embed/Bq0sTGf3PaI

CHAPTER 10. FLIPS, SLIDES AND TURNS 173

ing a finite (discrete) group, its state space representations, and what we mean by
a symmetry (invariance or equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A1.6) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then return to it later as needed.

Definition: A group consists of a set of elements

G=1{e,82,---,8n>---} (10.1)

and a group multiplication rule g; o g; (often abbreviated as g;g;), satisfying

1. Closure: If g;,gj € G,theng;jog; € G
2. Associativity: gy o (gjogi) = (gk o gj) o &
3. Identity e: goe=eog=gforallge G

4. Inverse g~': For every g € G, there exists a unique element h = ¢! € G
suchthathog=goh=c.

If the group is finite, the number of elements, |G| = n, is called the order of the
group.

The theory of finite groups is developed on two levels. There is a beautiful
theory of groups as abstract entities which yields the classification of their struc-
tures and their irreducible, orthogonal representations in terms of characters. Then
there is the considerably messier matter of group representations, in our case the
ways in which a given symmetry group acts on and stratifies the particular state
space of a problem at hand, the most familiar being the ways in which symme-
tries reduce and block-diagonalize quantum-mechanical problems. What helps us
here is that the symmetries ‘commute’ with dynamics, i.e., we can first reduce a
given state space to its irreducible components, using the symmetry alone, and
then study the action of dynamics on these subspaces. As our intuition is based
on physical manifestations of group actions, in this brief review we shall freely
switch gears between the abstract and the representation levels whenever peda-
gogically convenient.

Whatever else you must do, do work through example 11.5. Once you under-
stand how this works out for the symmetries of an equilateral triangle, or, equiv-
alently, for the three disk billiard of figure 10.1, you know almost everything you
need to know about the general, non-abelian finite groups.

example 10.1 example 10.2
p. 182 p. 182
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Figure 10.1: Dihedral group D; of symmetries of
three disks on an equilateral triangle. A funda-
mental domain M indicated by the shaded wedge.
Work through example 11.5.

’
’
’
’
’
’
’
’
Q/
’

Definition: Coordinate transformations. Consider a map x’ = f(x), x,x" €
M. An active coordinate transformation Mx corresponds to a non-singular [d X
d] matrix M that maps the initial vector x € M onto another vector Mx € M.
The corresponding passive coordinate transformation x* — M~'x’ changes the
coordinate system with respect to which the final vector x’ € M is measured.
Together, a passive and active coordinate transformations yield the map in the
transformed coordinates:

fx)=M" f(Mx). (10.2)

(For general nonlinear coordinate transformations, see Appendix A2.)

Definition: Matrix group. The set of [dXd]-dimensional real non-singular ma-
trices A, B,C,--- € GL(d) acting in a d-dimensional vector space V € R¢ forms
the general linear group GL(d) under matrix multiplication. The product of matri-
ces A and B gives the matrix C, Cx = B(Ax) = (BA)x € V, for all x € V. The unit
matrix 1 is the identity element which leaves all vectors in V unchanged. Every
matrix in the group has a unique inverse.

Definition: Matrix representation. Linear action of a group element g on
states x € M is given by a finite non-singular [d X d] matrix D(g), the matrix
representation of element g € G. For brevity we shall often denote by ‘g’ both the
abstract group element and its matrix representation, D(g)x — gx.

However, when dealing simultaneously with several representations of the
same group action, the notation D%)(g) is preferable, where u is a representa-
tion label (see appendix A10.1). A linear or matrix representation D(G) of the
abstract group G acting on a representation space V is a group of matrices D(G)
such that

1. Any g € G is mapped to a matrix D(g) € D(G).

2. The group product g o g; is mapped onto the matrix product D(gs o g1) =
D(g2)D(g1).
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3. The associativity follows from the associativity of matrix multiplication,
D(g3 © (g2 0 81)) = D(g3)(D(g2)D(g1)) = (D(g3)(D(82))D(81).

4. The identity element e € G is mapped onto the unit matrix D(e) = 1 and
the inverse element g~' € G is mapped onto the inverse matrix D(g™!) =

D(g)™".

Several 3D representations of the group of order 2 are given in example 10.4.

example 10.3 example 10.4
p. 182 p. 182

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g € G there exists a number
m < |G| such that

nggogo---og:e - |detD(g)|=1 (103)
——

m times

As the modulus of its determinant is unity, det g is an mth root of 1. This is the
reason why all finite groups have unitary representations.

Definition: Symmetry of a dynamical system. This is so important that we
will define it three times:

1. A group G is a symmetry of the dynamics if for every solution f(x) € M
and g € G, gf(x) is also a solution.

2. Another way to state this: A dynamical system (M, f) is invariant (or G-
equivariant) under a symmetry group G if the time evolution f : M - M
(a discrete time map f, or the continuous flow f’ map from the d-dimens-
ional manifold M into itself) commutes with all actions of G,

flgx) = gf(x). (10.4)

3. In the language of physicists: The ‘law of motion’ is invariant, i.e., retains
its form in any symmetry-group related coordinate frame (10.2),

) =g f(g), (10.5)

for x € M and any finite non-singular [d X d] matrix representation g of
element g € G. As this are true for any state x, one can state this more

compactlyasfogngf,Orf=g_lOfog-

Why ‘equivariant?” A scalar function A(x) is said to be G-invariant if h(x) =
h(gx) for all g € G. The group actions map the solution f : M — M into different
(but equivalent) solutions g f(x), hence the invariance condition f(x) = g fgx)
appropriate to vectors (and, more generally, tensors). The full set of such solu-
tions is G-invariant, but the flow that generates them is said to be G-equivariant.
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It is obvious from the context, but for verbal emphasis applied mathematicians
like to distinguish the two cases by infequi-variant. The distinction is helpful in
distinguishing the dynamics written in the original, equivariant coordinates from
the dynamics rewritten in terms of invariant coordinates, see sects. 11.5 and 13.2.

example 10.5 example 10.6 example 10.10
p. 182 p. 183 p. 184

10.2 Subgroups, cosets, classes

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

Inspection of figure 11.1 indicates that various 3-disk orbits are the same up to
a symmetry transformation. Here we set up some group-theoretic notions needed
to describe such relations. The reader might prefer to skip to sect. 11.1, backtrack
as needed.

Definition: Subgroup. A set of group elements G, = {e,b2,b3,...,b;} € G
closed under group multiplication forms a subgroup of order & = |G,,|.

Definition: Coset. The set of & elements {c, cb;, cbs, ..., cby}, ¢ € G but not in
G, is called left coset cG,. A subgroup G, thus partitions the G group elements
into G, its m,, — 1 cosets.

Definition: Index. For a finite discrete group, the number of left cosets
mp = GI/IG,| (10.6)

is called the index of subgroup G,,. For reasons explained in remark 11.3, here we
shall refer to index m,, as multiplicity.

Lagrange’s Theorem. A coset cannot form a subgroup, since it does not include
the identity element. A nontrival subgroup G, can exist only if |G|, the order of
the group, is divisible by |G,,|.

example 10.8
p. 183

‘Class’ is a notion that says the three 3-disk 2-cycles in figure 11.1 are one
and the same solution, up to a coordinate change:
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Definition: Class. An element b € G is conjugate to a if b = cac™' where c is
some other group element. If b and ¢ are both conjugate to a, they are conjugate
to each other. Application of all conjugations separates the set of group elements
into mutually not-conjugate subsets called classes, types or conjugacy classes.
The identity e is always in the class {e} of its own. This is the only class which is
a subgroup, all other classes lack the identity element.

example 10.9
p. 184

The geometrical significance of classes is clear from (10.5); it is the way co-
ordinate transformations act on mappings. The action, such as a reflection or
rotation, of an element is equivalent to redefining the coordinate frame.

Definition: Conjugate symmetry subgroups. The splitting of a group G into
a symmetry group G, of orbit M, and m,, — 1 cosets cG,, relates the orbit M,, to
mp,—1 other distinct orbits ¢ M,,. All of them have equivalent symmetry subgroups,
or, more precisely, the points on the same group orbit have conjugate symmetry
subgroups (or conjugate stabilizers):

Gep=cGych, (10.7)

ie., if G, is the symmetry of orbit M, elements of the coset space ¢ € G/G),
generate the m,, — 1 distinct copies of M,,.

Definition: Invariant subgroup. A subgroup G, € G is an invariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no conju-
gation takes an element of the class out of G,.

Think of action of G, within each coset as identifying its |G,| elements as
equivalent. This leads to the notion of the factor group or quotient group G/G,
of G, with respect to the invariant subgroup G,. G, thus divides G into G, and
m — 1 cosets, each of order |G,|. The order of G/G, is m = |G|/|G,|, and its
multiplication table can be worked out from the G multiplication table class by
class, with the subgroup G, playing the role of identity. G/G is homeomorphic
to G, with |G, | elements in a class of G represented by a single element in G/G,,.

10.3 Orbits, quotient space

Definition: Orbit. The subset M,, C M traversed by the infinite-time trajec-
tory of a given point xy is called the orbit (or time orbit, or solution) x(t) = f'(x).
An orbit is a time-invariant notion: it refers to the set of all states that can be
reached in time from xg, thus as a set it is invariant under time evolution. The full
state space M is a union of such orbits. We label a generic orbit M, by any point
belonging to it, xo = x(0) for example.
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A generic orbit might be ergodic, unstable and essentially uncontrollable. The
ChaosBook strategy is to populate the state space by a hierarchy of orbits which
are compact invariant sets (equilibria, periodic orbits, invariant tori, ...), each
computable in a finite time. They are a set of zero Lebesgue measure, but dense
on the non—-wandering set, and are to a generic orbit what fractions are to normal
numbers on the unit interval. We label orbits confined to compact invariant sets by
whatever alphabet we find convenient in a given context: point EQ = xgg = Mgg
for an equilibrium, 1-dimensional loop p = M, for a prime periodic orbit p, etc.
(note also discussion on page 217, and the distinction between trajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit or the G-orbit of the point x € M is the set
M, ={gx|geG} (10.8)

of all state space points into which x is mapped under the action of G. If G is a
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues) or
a cycle p (period, Floquet multipliers) evaluated anywhere along its G-orbit are
the same.

A symmetry thus reduces the number of inequivalent solutions M,. So we
also need to describe the symmetry of a solution, as opposed to (10.5), the sym-
metry of the system.

Definition: Reduced state space. The action of group G partitions the state
space M into a union of group orbits. This set of group orbits, denoted M/G, has
many names: reduced state space, quotient space or any of the names listed on
page 229.

Definition: Fundamental domain. The images of a single point x under all
actions of a discrete group G form a G-orbit M,. A fundamental domain M =
M|/G is a subset of the state space M which contains exactly one point from each
G-orbit. Itis an explicit state space realization of the abstract notion of the reduced
state space M/G in the case that G is a discrete group.

A fundamental domain can be defined in different ways, here exemplified by
figures 10.1, 11.1, 11.5, 11.3, 11.2(b) and 24.3. Ideally it is a connected subset
with restrictions on its boundary that ensure the no points are double-counted. The
set of images of a fundamental domain under the group action then tiles the entire
state space.

Reduction of the dynamical state space is discussed in sect. 11.3 for discrete
symmetries, and in sect. 13.2 for continuous symmetries.
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Definition: Fixed-point subspace. Mg, is the set of all state space points left
G p-fixed, point-wise invariant under subgroup or ‘centralizer’ G, C G action

Mg, =Fix(G,) = (xe M| hx = xforallh € G,}. (10.9)

Points in state space subspace Mg which are fixed points of the full group action
are called invariant points,

Mg =Fix(G) ={xe M| gx=xforall g € G}. (10.10)

Definition: Flow invariant subspace. A typical point in fixed-point subspace
MGP moves with time, but, due to equivariance (10.4), its trajectory x(r) = f'(x)
remains within f(Mg,) € Mg, for all times,

hf'(x) = fi(hx) = f'(x), heGp, (10.11)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach
to seeking compact invariant solutions. The larger the symmetry subgroup, the
smaller Mg, easing the numerical searches, so start with the largest subgroups
G first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. M, C M is an invariant subspace if
{Mylgxe M, forall g € Gand x € M,}. (10.12)

{0} and M are always invariant subspaces. So is any Fix (Gp) which is point-wise
invariant under action of G.

Definition: Irreducible subspace. A space M, whose only invariant subspaces
under the action of G are {0} and M, is called irreducible.

Definition: Reducibility. If state space M on which G acts can be written as
a direct sum of irreducible subspaces, then the representation of G on state space
M is completely reducible.

This being group theory, definitions could go on forever. But we stop here,
hopefully having defined everything that we need at the moment, and we pile on
a few more definitions in sect. 11.1, chapter 12, chapter 25 and chapter 26. There
are also chapter 30, appendix A10, and beyond that the n — oo group theory
textbooks, if you thirst for more.
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Résumé

A group G is a symmetry of the dynamical system (M, f) if its ‘law of motion’
retains its form under all symmetry-group actions, f(x) = g~! f(gx). A mapping f
is said to be invariant if gf = f, where g is any element of G. If the mapping and
the group actions commute, gf = fg, f is said to be equivariant. The governing
dynamical equations are equivariant with respect to the symmetry group G.

Commentary

Remark 10.1. Literature. We found Tinkham [16] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic concepts. Slightly longer, but perhaps student-
friendlier is Part I Basic Mathematics of Dresselhaus et al. [5]. Byron and Fuller [1], the
last chapter of volume two, offers an introduction even more compact than Tinkham’s.
For a summary of the theory of discrete groups see, for example, Johnson [10]. Chapter 3
of Rebecca Hoyle [9] is a very student-friendly overview of the group theory a nonlinear
dynamicist might need, with exception of the quotienting, reduction of dynamics to a
fundamental domain, which is not discussed at all. For that, Fundamental domain wiki
is very clear. We also found Quotient group wiki helpful. Curiously, we have not read
any of the group theory books that Hoyle recommends as background reading, which just
confirms that there are way too many group theory books out there. For example, one that
you will not find useful at all is ref. [3]. The reason is presumably that in the 20th century
physics (which motivated much of the work on the modern group theory) the focus was on
the linear representations used in quantum mechanics, crystallography and quantum field
theory. We shall need these techniques in Chapter 25, where we reduce the linear action
of evolution operators to irreducible subspaces. However, in ChaosBook we are looking
at nonlinear dynamics, and the emphasis is on the symmetries of orbits, their reduced state
space sisters, and the isotypic decomposition of their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations, the
landscape between the boredom of regular motions and the thrills of chaos. Landau [1 1]
was the first to discuss the role symmetries play in constraining types of possible bifurca-
tions, in the context to weak nonlinear theory of the instabilities in fluid flows. Chapter
4 of Rebecca Hoyle [9] is a student-friendly introduction to the treatment of bifurca-
tions in presence of symmetries, worked out in full detail and generality in monographs
by Golubitsky, Stewart and Schaeffer [7], Golubitsky and Stewart [6] and Chossat and
Lauterbach [2]. Sartori [14] Sect. 1.3 offers a concise summary of group-theoretical def-
initions. Chap. 8 of Govaerts [8] reviews numerical methods that employ equivariance
with respect to compact, and mostly discrete groups. (continued in remark 12.1)
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10.4 Examples

Example 10.1. Finite groups. Some finite groups that frequently arise in applications:

e C,: the cyclic group of order n.

o D,: the dihedral group of order 2n, rotations and reflections in plane that preserve
aregular n-gon.

o S,: the symmetric group of all permutations of n symbols, order n!.

Example 10.2. Cyclic and dihedral groups.  The cyclic group C, ¢ SO(2) of order
n is generated by one element. For example, this element can be rotation through 27/n.
The dihedral group D, ¢ O(2), n > 2, can be generated by two elements one at least

of which must reverse orientation. For example, take o corresponding to reflection in the

2

x-axis. 0~ = e; such operation o is called an involution. r to rotation through 27/n, then

2

D, = (o, C), and the defining relations are 0~ = r,, = e, (ro)? =e.

Example 10.3. Discrete groups of order 2 on R*>.  Three types of discrete group of
order 2 can arise by linear action on our 3-dimensional Euclidean space R3:

reflections: s(x,y,z) = (x,y,-2)
rotations: r(x,y,z) = (-=x,-y,2) (10.13)
inversions: P(x,y,z) = (=x,—y,-2).

s is a reflection (or an inversion) through the [x,y] plane. r is [x,y]-plane, constant z
rotation by r about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0,0, 0). Singly, each operation generates a group of
order 2: D; = {e, s}, C; = {e, r}, and D; = {e, P}. Together, they form the dihedral group
D, ={e, s, r, P} of order 4. (continued in example 10.4)

Example 10.4. Discrete operations on R3. (Continued from example 10.3) The matrix
representation of reflections, rotations and inversions defined by (10.13) is

0 -1 0 0 -1 0 0
0 -1 0 ] D(P):[ 0 -1 0 ]
0

1 0
01 O
00

D(s) = ., D(r)=

0 1 0 0 -1
(10.14)

with det D(r) = 1, det D(s) = det D(P) = —1; that is why we refer to r as a rotation, and
s, P as inversions. As g2 = e in all three cases, these are groups of order 2. (continued
in example 10.6)

Example 10.5. A reflection symmetric 1d map. Consider a 1d map f with reflection
symmetry f(—x) = —f(x), such as the bimodal ‘sawtooth’ map of figure 10.2, piecewise-
linear on the state space M = [—1, 1], a compact 1-dimensional line interval, split into
three regions M = M; U M¢c U Mg. Denote the reflection operation by sx = —x. The
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f(x) f(x)
X /7
0 ,
,,,,,,,,,,, e GXZ:,
Figure 10.2: The bimodal Ulam sawtooth map : X 6X3
with the D; symmetry f(—x) = —f(x). If the tra- X : 1 5
jectory (a) xo — x; — x — --- is a solution, so is 3 X 1
its reflection (b) sxy — sx; — sx, — ---. (work . 3 /
through example 10.5; continued in figure 11.4). S 1P X, GX
(a) £ (b) £
Table 10.1: D; group and class operator multiplication tables.
D; |1 |r m|s s
1 1 rornl| s s 5
r rlrmn 1 |s s 8
r r 1 r S1 A\l N
N s | st sy | 1 ron
1 st | s2 s | 1 or
$2 28 s r rn 1
2-element group G = {e, s} goes by many names, such as Z, or C,. Here we shall refer
to it as Dy, dihedral group generated by a single reflection. The G-equivariance of the
map implies that if {x,} is a trajectory, than also {sx,} is a symmetry-equivalent trajectory
because sx,+1 = sf(x,) = f(sx,) (continued in example 11.3) 176

Example 10.6. Equivariance of the Lorenz flow. (Continued from example 10.4) The
velocity field in Lorenz equations (2.25)

X oy —x)
[ V| =] px-y—xz ] (10.15)
Z xy — bz

is equivariant under the action of cyclic group C, = {e, r} acting on R3 by a x rotation
about the z axis,

”(xsy,Z) = (—)C, _y’Z)- (1016)

(continued in example 11.8)

Example 10.7. The group multiplication table for D;:  See table 10.1.

Example 10.8. Subgroups, cosets of D;. (Continued from example 11.6)
The 3-disks symmetry group, the D3 dihedral group (11.8) has six subgroups

{e}, e, s}, {e,s1}, {e, 82}, {e,r,r}, Ds3. (10.17)

The left cosets of subgroup D = {e, s} are {r, 51}, {r2, s2}. The coset of subgroup C; =
{e,r,rp} s {s, 51, s2}. The significance of the coset is that if a solution has a symmetry H,
for example the symmetry of a 3-cycle 123 is C3, then all elements in a coset act on it the
same way, for example {s, sy, sz}m =132.
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The nontrivial subgroups of D3 are D = {e, o}, consisting of the identity and any one
of the reflections, of order 2, and C3 = {e, r, 11}, of order 3, so possible cycle multiplicities
are |G|/IGpl = 1, 2, 3 or 6. Only the fixed point at the origin has full symmetry G, = G.
Such equilibria exist for smooth potentials, but not for the 3-disk billiard. Examples of
other multiplicities are given in figure 11.1 and figure 11.6. (continued in example 10.9)

Example 10.9. Classes of D;.  (Continued from example 10.8)
The three classes of the 3-disk symmetry group D3 = {e, r, 12, s, 51, 52}, are the identity,
any one of the reflections, and the two rotations,

S
fey, { st {r} (10.18)

In other words, the group actions either flip or rotate. (continued in example 11.7)

Example 10.10. Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in streamwise
and spanwise directions. The Navier-Stokes equations for the plane Couette flow have
two discrete symmetries: reflection through the (streamwise , wall-normal) plane, and
rotation by r in the (streamwise , wall-normal) plane. That is why the system has equi-
librium and periodic orbit solutions, as well as relative equilibrium and relative periodic
orbit solutions discussed in chapter 12). They belong to discrete symmetry subspaces.
(continued in example 12.2)
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Exercises
10.1. Transitivity of conjugation. Assume that g, g, g3 € (b) Verify that the Burke-Shaw equations are equiv-

G and both g, and g, are conjugate to g3. Prove that g; ariant under the action of the cyclic group C, =

is conjugate to g». {e, r} acting on R? by a r rotation about the z axis,
10.2. Isotropy subgroup of gx. Prove that for g € G, x and :

gx have conjugate isotropy subgroups: "(x.y,2) = (=%, =y 2).

_ -1
Gex =gGrg 10.5. Dj3: symmetries of an equilateral triangle. Consider

the group D3, the symmetry group of an equilateral tri-

angle:
10.3. C,-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (10.15)
X oy —x) 1
x=vix)=|y |[=] px—-y—xz (10.19)
Z xy — bz
is equivariant under the action of cyclic group Z, = {e, r}
acting on R? by a 7 rotation about the z axis,
r(x7y,z)=(_X,—y,Z), 2 3 .
as claimed in example 10.6. (continued in exer-
cise 11.4) (a) List the group elements and the corresponding ge-
ometric operations
10.4. C,-equivariance of Burke-Shaw system. The .
Burke-Shaw system [4, 12, 13, 15] is a close relative of (b) Find the subgroups of the group D;.

the Lorenz system:

X —s(x+Yy)
x=v(x)=[ y }:{ -y — §XZ

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
(10.20) group elements. Verify your answer using the def-

z SXy + v inition of a class.
(a) Plot a long-time simulation [4, 12] for (s,v) = (d) List the conjugacy classes of subgroups of Dj.
(10.5,4.272). (continued as exercise 12.2 and exercise 25.3)
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Chapter 11

World in a mirror

Even the butterfly that started the hurricane flapped its
wings for a reason.

— Louis Menand, Thinking Sideways, New Yorker,
30 March 2015

we switch gears and describe the action of the group on the state space. This

is the key step; if a set of solutions is equivalent by symmetry (let’s say they
live on a circle), we would like to represent it by a single solution (cut the circle at
a point, or rewrite the dynamics in a ‘ symmetry reduced state space’, where the
circle of equivalent solutions is represented by a single state space point). In this
chapter we study quotienting of discrete symmetries, and in chapter 12 we study
symmetry reduction for continuous symmetries. We look at individual orbits, and
the ways they are interrelated by symmetries. This sets the stage for a discussion
of how symmetries affect global densities of trajectories, and the factorization of
spectral determinants to be undertaken in chapter 25.

S 0 FAR WE HAVE discussed the structure of a group as an abstract entity. Now

As we shall show here and in chapter 25, discrete symmetries simplify the dy-
namics in quite a beautiful way: If dynamics is invariant under a set of discrete
symmetries G, the state space M is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one such tile, the fundamental
domain M/G. In presence of a symmetry the notion of a prime periodic orbit
has to be reexamined: a set of symmetry-related full state space cycles is replaced
by often much shorter relative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle and all of its copies under the action of the group.
Furthermore, the group operations that relate distinct tiles do double duty as letters
of an alphabet which assigns symbolic itineraries to trajectories.

186
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11.1 Symmetries of solutions

Solutions of an equivariant system can satisfy all of system’s symmetries, a sub-
group of them, or have no symmetry at all. For a generic ergodic orbit f7(x) the
trajectory and any of its images under action of g € G are distinct with probability
one, f'(x) N gf*(x) = 0 for all ¢, '. For example, a typical turbulent trajectory of
pipe flow has no symmetry beyond the identity, so its symmetry group is the trivial
subgroup {e}. For compact invariant sets, such as fixed points and periodic orbits
the situation is very different. For example, the symmetry of the laminar solution
of the plane Couette flow is the full symmetry of its Navier-Stokes equations. In
between we find solutions whose symmetries are subgroups of the full symmetry
of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space point x into itself,

G,={geG:gx=x}, (11.1)

is called the isotropy group (or stability subgroup or little group) of x. Think of a
point (0,0, z), z # 0 on z axis in 3 dimensions. Its isotropy group is the O(2) group
of rotations in the {x, y} plane.

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics. We
thus also need a notion of sef-wise invariance, as opposed to the above point-wise
invariance under G,.

Definition: Symmetry of a solution. We shall refer to the maximal subgroup
G, € G of actions on state space points within a compact set M, which leave no
point fixed but leave the set invariant, as the symmetry G, of the solution labelled

1
G,={g€G,lgxeM,, gx+# xforg # e}, (11.2)

and reserve the notion of ‘isotropy’ of a set M,, for the subgroup G, that leaves
each point in it fixed.

A cycle p is G,-symmetric (set-wise symmetric, self-dual) if the action of
elements of G, on the set of periodic points M,, reproduces the set. g € G, acts
as a shift in time, mapping the periodic point x € M, into another periodic point.

example 11.1

p. 198

Definition: Multiplicity. For a finite group, the index (10.6) m, = |G|/|G,|
of orbit p’s symmetry group G, is its multiplicity, the number of p’s equivalent
copies.
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Definition: Stratum. A stratum is the union of group orbits of the same type:
two orbits p, p” belong to the same stratum if and only if their symmetries G, Gy
are conjugate. In other words, a stratum is to state space what a class is to the set
of all group elements in G.

Definition: G,-fixed orbits: An equilibrium x, or a compact solution p is point-
wise or G-fixed if it lies in the invariant points subspace Fix (G,,), gx = x for all
g € Gp,and x = x, or x € M,,. A solution that is G-invariant under all group G
operations has multiplicity 1. Stability of such solutions will have to be examined
with care, as they lie on the boundaries of domains related by the action of the
symmetry group.

In the literature the symmetry group of a solution is often called stabilizer
or isotropy subgroup. Saying that G, is the symmetry of the solution p, or that
the orbit M,, is ‘G ,-invariant’, accomplishes as much without confusing you with
all these names (see remark 10.1). In what follows we say “the symmetry of the
periodic orbit p is Z, = {e, R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbits is their symmetry.
We note three types of solutions: (i) fully asymmetric solutions a, (ii) subgroup
G5 set-wise invariant cycles s built by repeats of relative cycle segments §, and
(iii) isotropy subgroup Ggp-invariant equilibria or point-wise G,-fixed cycles b.
These are illustrated in figures of examples 11.1 to 11.3.

example 11.2
p. 198

Definition: Asymmetric (or fully asymmetric) orbits. An orbit (in particular,
an equilibrium or periodic orbit) has no symmetry if {x,} N {gx,} = 0 for any
g € G, where {x,} is the set of periodic points belonging to the cycle a. Thus
g € G generate |G| distinct orbits with the same number of points and the same
stability properties.

example 11.3 example 11.5 example 11.6
p. 198 p. 199 p. 199

In example 11.7, we illustrate the non-abelian, noncommutative group struc-
ture of the 3-disk game of pinball of sect. 1.3, which has symmetry group elements
that do not commute.

example 11.7
p. 200

Consider next perhaps the simplest 3-dimensional flow with a symmetry, the
iconic flow of Lorenz of figure 11.2 (a). The example is long but worth work-
ing through: the symmetry-reduced dynamics is much simpler than the original
Lorenz flow.
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Figure 11.1: The 3-disk pinball cycles: (a) 12,
E, ﬁ, @; the clockwise 132 not drawn. (b)
Cycle 1232; the symmetry related 1213 and 1323
not drawn. (c) Cycle 12323; cycles 12123, 12132,
12313, 13131 and 13232 not drawn. (d) The
fundamental domain, i.e., the light-shaded 1/6th
wedge in (a), consisting of a section of a disk, two
segments of symmetry axes acting as straight mir-
ror walls, and the escape gap to the left. The above
14 full-space cycles restricted to the fundamental
domain and recoded in binary reduce to the two
fixed points 0, 1, 2-cycle 10, and 5-cycle 00111
(not drawn). See figure 11.3 for the 001 cycle.
Work through example 11.6.

(d)
example 11.8 example 11.9
p. 200 p. 201

Note: nonlinear coordinate transformations such as the doubled-polar an-
gle representation (11.13) and figure 11.2 (b) are not required to implement the
symmetry quotienting M/G. We deploy them only as a visualization aid that
might help the reader disentangle 2-dimensional projections of higher-dimension-
al flows. All numerical calculations can still be carried in the initial, full state
space formulation of a flow, with symmetry-related points identified by linear
symmetry transformations.

P in depth:
” appendix A25, p. 1011

11.2 Relative periodic orbits

So far we have demonstrated that symmetry relates classes of orbits. Now we
show that a symmetry reduces computation of periodic orbits to repeats of shorter,
‘relative periodic orbit’ segments.

Equivariance of a flow under a symmetry means that the symmetry image of
a cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to the multiplicity (10.6) of the
cycle) or it may be the same cycle.

A cycle p is G,-symmetric under symmetry operation g € G, if the operation
acts on it as a shift in time, advancing a cycle point to a cycle point on the sym-
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(3)

EQ EQ EQ

EQ,

Re e(l)

(2)
EQo ol

(a) y (b) EQ o (C) Im e®

Figure 11.2: (a) Lorenz attractor of figure 3.5, the full state space coordinates [x, y, z], with the un-
stable manifold orbits W*(EQy). (Green) is a continuation of the unstable eV of EQ,, and (brown)
is its mr-rotated symmetric partner. (b) Lorenz attractor plotted in [X, §, z], the doubled-polar angle
coordinates (11.13), with points related by n-rotation in the [x,y] plane identified. Stable eigen-
vectors of EQy: € and e®, along the z axis (11.12). Unstable manifold orbit W*(EQy) (green)
is a continuation of the unstable e of EQ,. (c) Blow-up of the region near EQ,: The unstable
eigenplane of EQ; defined by Re e® and Im e®, the stable eigenvector . The descent of the EQ,
unstable manifold (green) defines the innermost edge of the strange attractor. As it is clear from (a),
it also defines its outermost edge. Work through examples 11.8 and 11.9. (E. Siminos)

metry related segment. The cycle p can thus be subdivided into m,, repeats of a
relative periodic orbit segment, ‘prime’ in the sense that the full state space cycle
is built from its repeats: see figure 11.1 for examples. Thus, in the presence of a
discrete symmetry, the notion of a periodic orbit is replaced by the notion of the
shortest segment of the full state space cycle which tiles the cycle under the action
of the group. In what follows we refer to this segment as a relative periodic orbit.
In the literature this is sometimes referred to as a short periodic orbit, or, for finite
symmetry groups, as a pre-periodic orbit.

The relative periodic orbit p (or its equivariant periodic orbit) is the orbit x(¢)
in state space M which exactly recurs

x() = gpx(t+T)p) (11.3)

for the shortest fixed relative period T, and a fixed group action g € G,. These
group actions are referred to as ‘shifts’ or, in the case of continuous symmetries,
as ‘phases.” For a discrete group g” = e and finite m (10.3), the period of the
corresponding full state space orbit is given by the m, X (period of the relati-
ve periodic orbit), T, = |G,|T, and the ith Floquet multiplier A, ; is given by
AZ,/; of the relative periodic orbit. The elements of the quotient space b € G/G,,
generate the copies bp, so the multiplicity (10.6) of the full state space cycle p is
mp = |GI/IG, .

example 11.10
p. 201

11.3 Dynamics reduced to fundamental domain

[ ]
I submit my total lack of apprehension of fundamental N
concepts.

—John F. Gibson

R
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So far we have used symmetry to effect a reduction in the number of independent
cycles, by separating them into classes, and slicing them into ‘prime’ relative orbit
segments. The next step achieves much more: it replaces each class by a single
(typically shorter) prime cycle segment.

1. Discrete symmetry tessellates the state space into dynamically equivalent
domains, and thus induces a natural partition of state space: If the dynamics
is invariant under a discrete symmetry, the state space M can be completely
tiled by a fundamental domain M and its symmetry images M, = aM,
Mb = bM, ... under the action of the symmetry group G = {e,a, b, ...},

M=MUMUM,---UMg,. (11.4)

See figure 10.1 for an example: the tiling of the 3-disk with 6 copies of the
fundamental domain.

2. Discrete symmetry can be used to restrict all computations to the funda-
mental domain M = M/G, the reduced state space quotient of the full
state space M by the group actions of G. Several examples are given in
figures 11.1, 11.5 and 11.3.

We can use the invariance condition (10.4) to move the starting point x
into the fundamental domain x = aX, and then use the relation a~'b =
h~! to also relate the endpoint y € M, to its image in the fundamental
domain M. While the global trajectory runs over the full space M, the
restricted trajectory is brought back into the fundamental domain M any
time it exits into an adjoining tile; the two trajectories are related by the
symmetry operation 2 which maps the global endpoint into its fundamental
domain image.

3. Cycle multiplicities induced by the symmetry are removed by reduction
of the full dynamics to the dynamics on a fundamental domain. Each
symmetry-related set of global cycles p corresponds to precisely one fun-
damental domain (or relative) cycle p.

4. Conversely, each fundamental domain cycle p traces out a segment of the
global cycle p, with the end point of the cycle p mapped into the irreducible
segment of p with the group element 4. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundamental domain.

5. The group elements G = {e, g2, ..., &g} which map the fundamental do-
main M into its copies gM, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symmetries, see sect. 13.2.

example 11.4 example 11.11
p. 198 p. 201
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Figure 11.3: (a) The pair of full-space 9-cycles,
the counter-clockwise 121232313 and the clock-
wise 131323212 correspond to (b) one fundamen-
tal domain 3-cycle 001.

(a) (b)

11.4 Life on the border

Q3

In what follows, we shall have to worry also about the boundaries that define
the fundamental domain M. Here we by definition include boundaries into the
fundamental tile. The state space transformation g € G leaves invariant the set of
boundary points (see (11.4))

Mp=M0M,NM,--0 Mg. (11.5)

Peculiar effects, however, arise for orbits that run along symmetry lines that border
a fundamental domain. For example, under reflection o~ across a symmetry axis,
the axis itself remains invariant. The properties of boundary orbits that belong
to G-fixed (point-wise invariant) boundary sets will require a bit of thinking. In
our 3-disk example, no such orbits are possible, but they exist in other systems,
such as in the bounded region of the Hénon-Heiles potential (remark 11.2), in 1d
maps of example 11.3, and in Lorenz flow of example 11.8, where the z axis is
a G-invariant border. While boundary orbits are invariant under some symmetry
operations, their neighborhoods are not.

That’s is why one sometimes surgically removes boundaries, and defines

Definition: Free action. An group action on a state space submanifold M is
free if all of the isotropy subgroups G, x € M are trivial.

The fact that open neighborhoods of the border are in part outside of it com-
plicates analysis (linear stability of orbits within the boundary has eigenvectors
is the full state space). This affects the Jacobian matrix M), of the orbit and its
Floquet multipliers.

While for low-dimensional state spaces there are typically relatively few bound-
ary orbits, they tend to be among the shortest orbits, and thus play a key role in

dynamics. 0543
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11.5 Invariant polynomials

All invariants are expressible in terms of a finite number
among them. We cannot claim its validity for every group
G; rather, it will be our chief task to investigate for each
particular group whether a finite integrity basis exists or
not; the answer, to be sure, will turn out affirmative in the
most important cases.

—Hermann Weyl, a motivational quote on the “so-
called first main theorem of invariant theory”

Physical laws should have the same form in symmetry-equivalent coordinate frames,

so they are often formulated in terms of functions (Hamiltonians, Lagrangians,
-+ ) invariant under a given set of symmetries.

Definition: G-invariant function. A function is said to be G-invariant if

f(gx) = f(x),xe M. (11.6)

A G-invariant function is constant along the group orbit of x.

Invariant polynomial functions play a particularly important role in invariant
theory. The set of all G-invariant polynomial functions of x which is finitely gener-
ated, according to the key result of the representation theory of invariant functions
is:

Hilbert-Weyl theorem. For a compact group G there exists a finite G-invariant
homogenous polynomial basis {u;,us,...,u,}, m > d, such that any G-invariant
polynomial can be written as a multinomial

h(x) = p(ui(x), ur(x), ..., un(x)), xe M. (11.7)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations called syzygies.

In practice, explicit construction of G-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimensional
cases, such as ‘doubled-polar angle representation’ (11.13) and the 5-dimensional
example of sect. 13.6. We prefer to apply the symmetry to the system as given,
rather than undertake a series of nonlinear coordinate transformations that the the-
orem suggests. (What ‘compact’ in the above refers to will become clearer after
we have discussed continuous symmetries. For now, it suffices to know that any
finite discrete group is compact.)

example 11.12
p. 202
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Résumé

If a dynamical system (M, f) has a symmetry G, the symmetry should be de-
ployed to ‘quotient’ the state space to fundamental domain M= M/G, ie., iden-
tify all symmetry-equivalent x € M on each group orbit, thus replacing the full
state space dynamical system (M, f) by the symmetry-reduced M, f). The main
result of this chapter can be stated as follows:

In presence of a discrete symmetry G, associated with each full state space
solution p is the group of its symmetries G, € G of order 1 < |G,| < |G|, whose
elements leave the orbit M), invariant. The elements of G, act on M, as shifts,
tiling it with |G| copies of its shortest invariant segment, the relative periodic
orbit p. The elements of the coset b € G/G,, generate m, = |G|/|G,| equivalent
copies of p.

Once you grasp the relation between the full state space M and the desym-
metrized, G-quotiented reduced state space (fundamental domain) M/G, you will
find the life as a fundamentalist so much simpler that you will never return to your
full state space ways of yesteryear. The reduction to the fundamental domain
M = M/G simplifies symbolic dynamics and eliminates symmetry-induced de-
generacies. For the short orbits the labor saving is dramatic. For example, for the
3-disk game of pinball there are 256 periodic points of length 8, but reduction to
the fundamental domain non-degenerate prime cycles reduces this number to 30.
By chapter 24, the savings will be even more dramatic: relative periodic orbits
will tile the infinite periodic state space, and replace a numerical simulation of
diffusion in the infinite domain by an exact calculation of the diffusion constant,
on a compact torus.

Commentary

Remark 11.1. Symmetries of the Lorenz equation.  (Continued from remark 2.3)

After having studied example 11.8 you will appreciate why ChaosBook.org starts out
with the symmetry-less Rossler flow (2.30), instead of the better known Lorenz flow
(2.25). Indeed, getting rid of symmetry was one of Rossler’s motivations. He threw the
baby out with the water; for Lorenz flow dimensionalities of stable/unstable manifolds
make possible a robust heteroclinic connection absent from Rossler flow, with unstable
manifold of an equilibrium flowing into the stable manifold of another equilibrium. How
such connections are forced upon us is best grasped by perusing the chapter 13 ‘Hetero-
clinic tangles’ of the inimitable Abraham and Shaw Classics Illustrated [!]. Their beau-
tiful hand-drawn sketches elucidate the origin of heteroclinic connections in the Lorenz
flow (and its high-dimensional Navier-Stokes relatives) better than any computer simula-
tion. Miranda and Stone [21] were the first to quotient the C, symmetry and explicitly
construct the desymmetrized, ‘proto-Lorenz system’, by a nonlinear coordinate transfor-
mation into the Hilbert-Weyl polynomial basis invariant under the action of the symme-
try group [6]. For in-depth discussion of symmetry-reduced (‘images’) and symmetry-
extended (‘covers’) topology, symbolic dynamics, periodic orbits, invariant polynomial
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bases etc., of Lorenz, Rossler and many other low-dimensional systems there is no better
reference than the Gilmore and Letellier monograph [11]. They interpret [18] the proto-
Lorenz and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘amplitudes’,
and call quotiented flows such as (Lorenz)/C, ‘images.” Our ‘doubled-polar angle’ visu-
alization of figure 14.14 is a proto-Lorenz in disguise; we, however, integrate the flow and
construct Poincaré sections and return maps in the original Lorenz [x,y, z] coordinates,
without any nonlinear coordinate transformations. The return map figure 14.15 is remi-
niscent in shape both of the one given by Lorenz in his original paper, and the one plotted
in a radial coordinate by Gilmore and Letellier. Nevertheless, it is profoundly different:
our return maps are from unstable manifold — itself, and thus intrinsic and coordinate
independent. In this we follow Christiansen et al. [5]. This construction is necessary
for high-dimensional flows in order to avoid problems such as double-valuedness of re-
turn map projections on arbitrary 1-dimensional coordinates, encountered already in the
Rossler example of figure 3.4. More importantly, as we know the embedding of the un-
stable manifold into the full state space, a periodic point of our return map is - regardless
of the length of the cycle - the periodic point in the full state space, so no additional New-
ton searches are needed. In homage to Lorenz, we note that his return map was already
symmetry-reduced: as z belongs to the symmetry invariant Fix (G) subspace, one can re-
place dynamics in the full space by £, Z, - --. That is G-invariant by construction [! 1].

Remark 11.2. Examples of systems with discrete symmetries.  Almost any flow
of interest is symmetric in some way or other: the list of examples is endless, we list
here a handful that we found interesting. One has a C, symmetry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler potential [4,

, 23], a D4 symmetry in quartic oscillators [8, 19], in the pure x%y? potential [3, 20] and
in hydrogen in a magnetic field [©], and a D, symmetry in the stadium billiard [22]. A
number of nontrivial desymmetrizations are carried out in the Balasz and Voros review [2].
An example of a system with D3 symmetry is provided by the motion of a particle in the
Hénon-Heiles potential [13—16], as well as in the Chernoff-Barrow-Lifshitz-Khalatnikov-
Sinai-Khanin-Shchur cosmology [17].

1 1
V(r,0) = §r2 + §r3 sin(30) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axis cannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require
the special treatment. A partial classification of the 67 possible symmetries of solutions
of the plane Couette flow of example 10.10, and their reduction to 5 conjugate classes is
given in ref. [10].

Remark 11.3. Index. For a finite group G,the index (10.6) is the number |G|/|G |
of left cosets of a subgroup G,,. In our applications the time orbit p is invariant under all
actions of its symmetry group G,, and each coset corresponds to a conjugate symmetry
subgroup (10.7), so we refer to the index m, = |G|/|G,| as the ‘multiplicity’ of orbit p.
For infinite discrete groups, such as the space groups of chapter 24, the index is finite,
even though both a subgroup and the number of its cosets are infinite, see Wikipedia [24]
Index of a subgroup and p. 90 of Dummit and Foote [7].
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Figure 11.4: The D;-equivariant bimodal sawtooth map of figure 10.2 has three types of periodic
orbits: (a) Dl-ﬁxed_ﬁxed point C, asymmetric fixed points pair {L, R}. (b) D;-symmetric (setwise
invariant) 2-cycle LR, composed of the relative cycle segment from L to R and its repeat from R to

L. (¢) Asymmetric 2-cycles pair {LC, CR}. (study example 11.3; continued in figure 11.5)

Lan)

11.6 Examples

Example 11.1. D;-symmetric cycles. (Continued from example 10.5) For D; the
period of a set-wise symmetric cycle is even (n; = 2n;3), and the mirror image of the x;
periodic point is reached by traversing the relative periodic orbit segment § of length n;,
[ (x5) = sx;, see figure 11.4 (b).

Example 11.2. D,-invariant cycles. In the example at hand there is only one G-
invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 11.4 (a).
As reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 1 1.4, and work out the symbolic dynamics of
such reflection symmetric systems in example 15.6.

Example 11.3. Group D, - a reflection symmetric 14 map. Consider the bi-
modal ‘sawtooth’ map of figure 11.4, with the state space M = [—1, 1] split into three
regions M = {M,, Mc, Mg} which we label with a 3-letter alphabet L(eft), C(enter),
and R(ight). The symbolic dynamics is complete ternary dynamics, with any sequence
of letters A = {L, C, R} corresponding to an admissible trajectory (‘complete’ means no
additional grammar rules required, see example 14.7 below). The D;-equivariance of the
map, D; = {e, s}, implies that if {x,} is a trajectory, so is {sx,}.

Fix (G), the set of points invariant under group action of D;, M N sM, is just this
fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, s maps it
into the reflected cycle sa, with the same period and the same stability properties, see the
fixed points pair {Z, I_Q} and the 2-cycles pair {E, ﬁ} in figure 11.4 (c).

Example 11.4. Group D, and reduction to the fundamental domain. Consider again
the reflection-symmetric bimodal Ulam sawtooth map f(—x) = —f(x) of example 11.3,
with symmetry group D; = {e, s}. The state space M = [—1, 1] can be tiled by half-line
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Figure 11.5: The bimodal Ulam sawtooth map of
figure 11.4 with the D; symmetry f(—x) = —f(x),
restricted to the fundamental domain. f(x) is in-
dicated by the thin line, and fundamental domain
map f(%) by the thick line. (a) Boundary fixed
point C is the fixed point 0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point 2,
and the full state space symmetric 2-cycle LR is
reduced to the fixed point 1. (b) The asymmetric
2-cycle pair { LC,CR} is reduced to 2-cycle 01. (¢
All fundamental domain fixed points and 2-cycles.

f(x)

199

<l
R

(work through example 11.4 ) (Y. Lan)

(@) (b)

M = [0,1], and sM = [-1,0], its image under a reflection across x = 0 point. The
dynamics can then be restricted to the fundamental domain %, € M = [0, 1]; every time a
trajectory leaves this interval, it is mapped back using s.

In figure 11.5 the fundamental domain map f(%) is obtained by reflecting x < 0
segments of the global map f(x) into the upper right quadrant. f is also bimodal and
piecewise-linear, with M= [0, 1] split into three regions M = {/\7(0, /\7(1,/\7(2} which we
label with a 3-letter alphabet A = {0, 1,2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different - the
multiplicity of every periodic orbit is now 1, and relative periodic segments of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 11.5:

In (a) the boundary fixed point C is also the fixed point 0. The asymmetric fixed point
pair {L,R} is reduced to the fixed point 2, and the full state space symmetric 2-cycle LR
is reduced to the fixed point 1. (b) The asymmetric 2-cycle pair {LC,CR} is reduced to
the 2-cycle O1. Finally, the symmetric 4-cycle LCRC is reduced to the 2-cycle 02. This
completes the conversion from the full state space for all fundamental domain fixed points
and 2-cycles, frame (c).

Example 11.5. D; symmetry of the 3-disk game of pinball.  If the three unit-radius
disks in figure 10.1 are equidistantly spaced, our game of pinball has a sixfold symmetry.
The symmetry group of relabeling the 3 disks is the permutation group S3; however, it is
more instructive to think of this group geometrically, as the dihedral group D3

D3 = {e,r, 1,5, 51, 52}, (11.8)

the group of order |G| = 6 consisting of the identity element e, three reflections across
symmetry axes {s, 1, s2}, and two rotations by 27r/3 and 47/3 denoted {r, ,}. (continued
in example 11.6)

Example 11.6. 3-disk game of pinball - symmetry-related orbits. (Continued
from example 11.5) Applying an element (identity, rotation by +2x/3, or one of the
three possible reflections) of this symmetry group to a trajectory yields another trajectory.
For instance, s;, the flip across the symmetry axis going through disk 1 interchanges the
symbols 2 and 3; it maps the cycle 12123 into 13132, figure 11.1(c). Cycles 12, 23, and
13 in figure 11.1 (a) are related to each other by rotation by +27/3, or, equivalently, by a
relabeling of the disks. (continued in example 10.8)
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Figure 11.6: Cycle 121212313 has multiplicity 6;
shown here is 121313132 = 5,121212313. How-
ever, 121231313 which has the same stability and
period is related to 121313132 by time reversal,
but not by any spatial D3 symmetry.

121212313

200

121313132

Example 11.7. 3-disk game of pinball - cycle symmetries. (Continued from
example 10.9) The C; subgroup G, = {e,r,r,} invariance is exemplified by the two
cycles 123 and 132 which are invariant under rotations by 27/3 and 47/3, but are mapped
into each other by any reflection, figure 11.6 (a), and have multiplicity (10.6) |G|/|G,| = 2.

The D; type of a subgroup is exemplified by the symmetries of p = 1213. This
cycle is invariant under reflection s,{1213} = 1312 = 1213, so the invariant subgroup is
Gp = {e, 52}, with multiplicity mp = |G|/|G,| = 3; the cycles in this class, 1213, 1232 and
1323, are related by 2x/3 rotations, figure 11.6 (b).

A cycle of no symmetry, such as 12323, has G, = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),
figure 11.6 (c).

Besides the spatial symmetries, for Hamiltonian systems cycles may be related by

time reversal symmetry. An example are the cycles 121212313 and 313212121 = 121213132

which have the same periods and stabilities, but are related by no space symmetry, see fig-
ure 11.6. (continued in example 11.11)

Example 11.8. Desymmetrization of Lorenz flow. (Continuation of exam-
ple 10.6) Lorenz equation (10.15) is equivariant under (10.16), the action of order-2
group C, = {e, r}, where r is [x, y]-plane, half-cycle rotation by 7 about the z-axis:

x,y,2) > r(x,y,2) = (=x,-y,2) . (11.9)

(r)? = 1 condition decomposes the state space into two linearly irreducible subspaces
M= MY & M, the z-axis M* and the [x, y] plane M~, with projection operators onto
the two subspaces given by

X 00 0 . 100
pt = E(1 +r) =10 0 O , P = 5(1 —r‘) =10 1 O . (1110)
0 0 1 0 0 O

As the flow is C,-invariant, so is its linearization x = Ax. Evaluated at EQ(y, A commutes
with r, and, as we have already seen in example 4.6, the EQ, stability matrix decomposes
into [x, y] and z blocks.

The 1-dimensional M™* subspace is the fixed-point subspace, with the z-axis points
left point-wise invariant under the group action

M =Fix (Cy) ={xe M| gx = xfor g € {e, r}} (11.11)

(here x = (x,y,7) is a 3-dimensional vector, not the coordinate x). A C,-fixed point x(¢) in
Fix (C,) moves with time, but according to (10.11) remains within x(#) € Fix (C,) for all
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times; the subspace M* = Fix (C,) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x,y,z) = (0,0, z) the full state space Lorenz equation (10.15) is
reduced to the exponential contraction to the EQy equilibrium,

z=-bz. (11.12)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dimens-
ional, with interesting dynamics of their own. Even in this simple case this subspace plays
an important role as a topological obstruction: the orbits can neither enter it nor exit it, so
the number of windings of a trajectory around it provides a natural, topological symbolic
dynamics.

The M subspace is, however, not flow-invariant, as the nonlinear terms z = xy — bz
in the Lorenz equation (10.15) send all initial conditions within M~ = (x(0), y(0), 0) into
the full, z(7) # O state space M/M*. (continued in example 11.9)

(E. Siminos and J. Halcrow)

Example 11.9. Lorenz flow in doubled-polar angle representation. By taking
as a Poincaré section any r-equivariant, non-self-intersecting surface that contains the z
axis, the state space is divided into a half-space fundamental domain M= M]/C, and its
180° rotation rM. An example is afforded by the ® plane section of the Lorenz flow in
figure 3.5. Take the fundamental domain M to be the half-space between the viewer and
#. Then the full Lorenz flow is captured by re-injecting back into M any trajectory that
exits it, by a rotation of 7 around the z axis.

As any such r-invariant section does the job, a choice of a ‘fundamental domain’
is here largely mater of taste. For purposes of visualization it is convenient to make
the double-cover nature of the full state space by M explicit, through any state space
redefinition that maps a pair of points related by symmetry into a single point. In case at
hand, this can be easily accomplished by expressing (x,y) in polar coordinates (x,y) =
(R cos 6, R sin 6), and then plotting the flow in the ‘doubled-polar angle representation:’

(£ 9,2) = (Rcos26,Rsin26,z) = (x> —y»)/r,2xy/r,2), (11.13)

as in figure 11.2(b). In contrast to the original G-equivariant coordinates [x,y, z], the
Lorenz flow expressed in the new coordinates [X, , z] is G-invariant, see example 11.12.
In this representation the M = M/C, fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [, §] plane. (continued in example 14.4)

(E. Siminos and J. Halcrow)

Example 11.10. Relative periodic orbits of Lorenz flow. (Continuation of exam-
ple 11.8) The relation between the full state space periodic orbits, and the fundamental
domain (11.13) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, rp maps into a single cycle p in the fundamental domain, and any
self-dual cycle p = rp = prp is a repeat of a relative periodic orbit p.

Example 11.11. 3-disk game of pinball in the fundamental domain.
If the dynamics is equivariant under interchanges of disks, the absolute disk labels

€ =1,2,---, N can be replaced by the symmetry-invariant relative disk—disk increments
gi, where g; is the discrete group element that maps disk i—1 into disk i. For 3-disk system
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gi is either reflection o~ back to initial disk (symbol ‘0’) or 27r/3 rotation by C to the next
disk (symbol ‘1’). An immediate gain arising from symmetry invariant relabeling is that
N-disk symbolic dynamics becomes (N —1)-nary, with no restrictions on the admissible
sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain, a
one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting mir-
rors (see figure 11.1(d)). A set of orbits (10.6) related in the full space by discrete sym-
metries maps onto a single fundamental domain orbit. The reduction to the fundamental
domain desymmetrizes the dynamics and removes all global discrete symmetry-induced
degeneracies: rotationally symmetric global orbits (such as the 3-cycles 123 and 132)
have multiplicity 2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23) have
multiplicity 3, and global orbits with no symmetry are 6-fold degenerate. Table 15.2 lists
some of the shortest binary symbols strings, together with the corresponding full 3-disk
symbol sequences and orbit symmetries. Some examples of such orbits are shown in
figures 11.6 and 11.3.  (continued in example 15.7)

Example 11.12. Polynomials invariant under discrete operations on R3. (Continued
from example 10.3) s is a reflection through the [x, y] plane. Any {e, s}-invariant function
can be expressed in the polynomial basis {u, up, u3} = {x,y, 2.

r is a [x, y]-plane rotation by m about the z-axis. Any {e, r}-invariant function can be
expressed in the polynomial basis {u;, us, u3, us} = {x%, xy, y?, z}, with one syzygy between
the basis polynomials, (x*)(y?) — (xy)? = 0.

P is an inversion through the point (0,0,0). Any {e, P}-invariant function can be

expressed in the polynomial basis {u;, - - - , us} = {x%,y%, 22, Xy, Xz, yz}, with three syzygies

between the basis polynomials, (x?)(y*) — (xy)? = 0, and its 2 permutations.

For the D, dihedral group G = {e, s, r, P} the G-invariant polynomial basis is {uy, uy, u3, us} =

{x2,¥%, 7%, xy}, with one syzygy, (x*)(y*) — (xy)> = 0.
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Exercises

11.1.

11.3.

11.4.

G, ¢ G. The maximal set of group actions which maps
a state space point x into itself,

Gy,={geG:gx=x}, (11.14)

is called the isotropy group (or stability subgroup or
little group) of x. Prove that the set G, as defined in
(11.14) is a subgroup of G.

. Polynomials invariant under discrete operations on

R3.  Prove that the {e, s}, {e, }, {e, P} and {e, s, r, P}-
invariant polynomial basis and syzygies are those listed
in example 11.12.

Reduction of 3-disk symbolic dynamics to binary.
(continued from exercise 1.1)

(a) Verify that the 3-disk cycles

{12,13,23}, {123,132}, {1213 + 2 perms.},
{121232313 + 5 perms.}, {121323+ 2 perms.},

SN

correspond to the fundamental domain cycles 6, T,

0_1, W, m, -+ respectively.

Check the reduction for short cycles in table 15.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 11.3.

(b)

(c) Optional: Can you see how the group elements
listed in table 15.2 relate irreducible segments to

the fundamental domain periodic orbits?
(continued in exercise 15.7)

Lorenz system in polar coordinates: group theory.

Use (A2.13), (A2.14) to rewrite the Lorenz equa-
tion (10.19) in polar coordinates (r, 6, z), where (x,y) =
(rcos,rsiné).

1. Show that in the polar coordinates Lorenz flow

takes form
P %(_0—_1+(0-+p—z)sin29
+(1 — o) cos 26)
0 = %(_o—+p—z+(o'—l)sin29
+(o + p — 7) cos 26)
5 = —bz+§sin29. (11.15)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically spe-
cial about the subspace on which the inverse not
exist?

exerDiscrete - 26sep2017

11.5.

3. Show that this is the (Lorenz)/Z, quotient map for
the Lorenz flow, i.e., that it identifies points related
by the x rotation in the [x, y] plane.

4. Rewrite (10.19) in the invariant polynomial basis
of example 11.12 and exercise 11.15.

5. Show that a periodic orbit of the Lorenz flow in
polar representation (11.15) is either a periodic or-
bit or a relative periodic orbit (11.3) of the Lorenz
flow in the (x, y, ) representation.

By going to polar coordinates we have quotiented out the
m-rotation (x, y, z) — (—x, —y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

Proto-Lorenz system. Here we quotient out the Z,
symmetry by constructing an explicit “intensity” repre-
sentation of the desymmetrized Lorenz flow, following
Miranda and Stone [21].

1. Rewrite the Lorenz equation (10.15) in terms of
variables

(u,v,2) = (x* = y*,2xy,2), (11.16)

show that it takes form

(r—o)u—(c+ 1w+ (@+0)N—uz—uN

—(oc+Du+(@0-rw+(1—0)N+vz
[ v/2 — bz

N = Vu? +12. (11.17)

2. Show that this is the (Lorenz)/Z, quotient map for
the Lorenz flow, i.e., that it identifies points related
by the 7 rotation (11.9).

3. Show that (11.16) is invertible. Where does the
inverse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(10.15) and in the proto-Lorenz form (11.17)
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for the Lorenz parameter values o = 10, b = 8/3,
p = 28. Topologically, does it resemble more the
Lorenz, or the Rossler attractor, or neither? (plot
by J. Halcrow)
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7. Show that a periodic orbit of the proto-Lorenz is

either a periodic orbit or a relative periodic orbit
of the Lorenz flow.

. Show that if a periodic orbit of the proto-Lorenz

is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

What does the volume contraction formula (4.42)
look like now? Interpret.

. Show that the coordinate change (11.16) is the

same as rewriting (11.15) in variables
(u,v) = (r2 cos 26, r* sin 20),

i.e., squaring a complex number 7 = x + iy, 72 =
u+iv.

. How is (11.17) related to the invariant polynomial

basis of example 11.12 and exercise 11.15?
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Chapter 12

Relativity for cyclists

Physicists like symmetry more than Nature
— Rich Kerswell

mes related by continuous symmetries? The finite groups intuition is of

‘ ” J HAT IF THE LAWS OF MOTION retain their form for a family of coordinate fra-
little use here.

example 12.1
p. 221

First of all, why worry about continuous symmetries? In physics, we usually
assume isotropy, that is the laws of nature do not depend on where we are. In
many cases (single or many body quantum mechanics, statistical physics, field
theories etc.), the system studied is defined over an infinite or periodic domain.
For linear problems of this kind, one takes care of the spatial dependence via a
Fourier expansion (2.19), and solves the problem for each mode separately. In
nonlinear theories one might start with a Fourier expansion, but the modes couple
nonlinearly, and hence one needs to solve for all of them simultaneously. The two-
modes system, which we shall introduce in sect. 12.4.3 and use for illustrations
throughout this chapter and the next, is an example of a few modes truncation of
such Fourier expansion. Figure 12.1 illustrates the effect continuous symmetry
has on dynamics of this particular system. The strange attractor is a mess, and, as
we shall demonstrate, what makes it messy is its continuous symmetry.

example 12.8
p. 223

We shall refer to the component of the dynamics along the continuous sym-
metry directions as a ‘drift’. In the presence of a continuous symmetry an orbit ex-
plores the manifold swept by combined action of the dynamics and the symmetry
induced drifts. Further problems arise when we try to determine whether an orbit
shadows another orbit (see figure 16.1 for a sketch of a close pass to a periodic
orbit), or develop symbolic dynamics (partition the state space, as in chapter 14):

205

12.4.3

12.2


https://youtube.com/embed/3NeR6RqNA6g

CHAPTER 12. RELATIVITY FOR CYCLISTS 206

Figure 12.1: Several trajectories of the 4-dim-
ensional two-modes system of example 12.8, a
3-dimensional projection: A long trajectory that
originated close to the relative equilibrium 7W; of
the two-modes flow (12.40), with the starting point
on its unstable manifold. The initial segment of
this trajectory, which follows closely the orbit of
TW, (see figure 12.5), is colored red; beyond that
the trajectory falls onto the strange attractor (col-
ored blue). Superimposed, in magenta, are four
repeats of the shortest relative periodic orbit 1 (see
figure 12.7 (b)). (N.B. Budanur)

here a 1-dimensional trajectory is replaced by a (N +1)-dimensional ‘sausage’, a
dimension for each continuous symmetry (N being the total number of parameters
specifying the continuous transformation, and ‘1’ for the time parameter f). How
are we to measure distances between such objects? In this chapter and the next one
we shall learn how to develop visualizations of such flows, quotient symmetries,
and offer computationally straightforward methods of reducing the dynamics to
lower-dimensional, reduced state spaces. The methods should also be applicable
to high-dimensional flows, such as translationally invariant fluid flows bounded

by pipes or planes.
example 12.2 example 12.3 example 12.4
p. 221 p. 221 p. 221

Instead of writing yet another tome on group theory, in what follows we
continue to serve group theoretic nuggets on need-to-know basis, through a series
of pedestrian examples (but take a slightly higher, cyclist road in the text proper).

12.1 Continuous symmetries

I’ve always hated the term ‘group orbit’
— John F. Zappatista

But first, a lightning review of the theory of Lie groups. The group-theoretical ({3
concepts of sect. 10.1 apply to compact continuous groups as well, and will not
be repeated here.

example 12.5 example 12.6
p. 222 p. 222

Let G be a group, and gM — M a group action on the state space M. The
[d x d] matrices g acting on vectors in the d-dimensional state space M form a
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linear representation of the group G. If the action of every element g of a group G
commutes with the flow

gv(x) = v(gx), 8f (x) = fT(gx), (12.1)

G is a symmetry of the dynamics, and, as in (10.4), the dynamics is said to be
G-equivariant.

In order to explore the implications of equivariance for the solutions of dyn-
amical equations, we start by examining the way a compact Lie group acts on state
space M.

Definition: Group orbit For any x € M, the group orbit M, of x is the set of
all points that x is mapped to under the groups actions,

M, =0rb(x)={gx]| geG}. (12.2)

See page 178 and figure 12.2 (a).

Definition: Fixed-point subspace My, or a ‘centralizer’ of a subgroup H C G,
is the set of all state space points that are H-fixed, point-wise invariant under action
of the subgroup

My =Fix(H)={xe M|hx=xforall h e H}. (12.3)

Points in the fixed-point subspace Mg are fixed points of the full group action,
i.e., points whose group orbit consists of only the point itself (M, = {x}). They
are called invariant points,

Mg =Fix(G) ={xe M| gx = xforall g € G}. (12.4)

If a point is an invariant point of the symmetry group, by the definition of
equivariance (12.1) the velocity at that point is also in Mg, so the trajectory
through that point will remain in Mg. Mg is disjoint from the rest of the state
space since no trajectory can ever enter or leave it.

The time evolution itself is a noncompact 1-parameter Lie group. Thus the
time evolution and the continuous symmetries can be considered on the same Lie
group footing. For a given state space point x a symmetry group of N continu-
ous transformations together with the evolution in time sweeps out, in general, a
smooth (N+1)-dimensional manifold of equivalent solutions, see figure 12.3 (if
the solution has a symmetry, the manifold may have a dimension less than N+1).
For solutions for which the group orbit of x, is periodic in time 7, the group
orbit sweeps out a compact invariant manifold M,,. The simplest example is the
N = 0, no symmetry case, where the invariant manifold M,, is the 1-torus traced
out by a periodic trajectory p. If M is a smooth C* manifold, and G is compact
and acts smoothly on M, the reduced state space can be realized as a ‘stratified
manifold’, meaning that each group orbit (a ‘stratum’) is represented by a point in
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Figure 12.2: (a) The group orbit M, of state
space point x(0), and the group orbit M., reached
by the trajectory x(7) time 7 later. As any point on
the manifold M, is physically equivalent to any
other, the state space is stratified into the union of
group orbits. (b) Symmetry reduction M — M
replaces each full state space group orbit M, by a
single point £ € M. M

() - (b)

the reduced state space, see figure 12.2 and sect. 13.2. Generalizing the descrip-
tion of a non—wandering set of sect. 2.1.1, we say that for flows with continuous
symmetries the non—wandering set 2 of dynamics (2.5) is the closure of the set
of compact invariant manifolds M,. Without symmetries, we visualize the non—
wandering set as a set of points; in presence of a continuous symmetry, each such
‘point’ is a group orbit.

12.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of angular mo-
mentum.

— Mason A. Porter’s student

Definition: A Lie group is a topological group G such that (i) G has the struc-
ture of a smooth differential manifold, and (ii) the composition map G X G — G :
(g,h) — gh~! is smooth, i.e., C* differentiable.

Do not be mystified by this definition. Mathematicians also have to make
a living. Historically, the theory of compact Lie groups that we will deploy here
emerged as a generalization of the theory of SO(2) rotations, i.e., Fourier analysis.
By a ‘smooth differential manifold’ one means objects like the circle of angles that
parameterize continuous rotations in a plane, example 12.5, or the manifold swept
by the three Euler angles that parameterize SO(3) rotations.

An element of a Lie group continuously connected to identity can be written
as

N
g@ =", ¢T=) 4T, (12.5)
a=1

where ¢ - T is a Lie algebra element, and ¢, are the parameters of the transforma-
tion. Repeated indices are summed throughout this chapter, and the dot product
refers to a sum over Lie algebra generators. We find it convenient to use bra-ket
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notation for the Euclidean product of two real vectors x,y € M, i.e., indicate
x-transpose times y by

d
aly) = xTy = ) xiyi. (12.6)
i
Unitary transformations exp(¢ - T) are generated by sequences of infinitesimal
steps of form

g6p) ~1+6¢-T, 6peRY, |ogl<1, (12.7)

where T,, the generators of infinitesimal transformations, are a set of linearly
independent [d X d] anti-hermitian matrices, (T = -T,, acting linearly on the
d-dimensional state space M. In order to streamline the exposition, we postpone
discussion of combining continuous coordinate transformations with the discrete
ones to sect. 12.2.1.

Unitary and orthogonal groups (as well as their subgroups) are defined as
groups that preserve ‘length’ norms, (gx|gx) = (x|x), and infinitesimally their
generators (12.7) induce no change in the norm, (T, x|x) + (x|T,x) = 0, hence the
Lie algebra generators T are antisymmetric for orthogonal groups, and antihermi-
tian for unitary ones,

TM = -T. (12.8)

For continuous groups the Lie algebra, i.e., the set of N generators T, of
infinitesimal transformations, takes the role that the |G| group elements play in the
theory of discrete groups. The flow field at the state space point x induced by the
action of the group is given by the set of N tangent fields (see figure 12.3)

ta(x)i = (To)ijx;, (12.9)

which span the group fangent space at state space point x. The antisymmetry
(12.8) of generators implies that the action of the group on vector x is locally
normal to it,

(xlta(x)) = 0. (12.10)

A group tangent (12.9) is labelled by a pair of indices, as it is a vector both in the
group tangent space and in the state space. We shall indicate by (#,(x)[#5(y)) the
sum over state space inner product only, and by

N
O = D (ta(Dlta3)) = (T - Ty) (12.11)
a=1

the sum over both group and spatial dimensions.

Any representation of a compact Lie group G is fully reducible, and invariant
tensors constructed by contractions of T, are useful for identifying irreps. The
simplest such invariant is

TT.T= Zc;‘” 1@, (12.12)
a
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x(7)

x(0)

Figure 12.3: (a) In the presence of an N-continuous parameter symmetry, each state space point
x owns (N + 1) tangent vectors: one v(x) along the time flow x(7), and the N group tangents
t1(x), tr(x), - -+, ty(x) along infinitesimal symmetry shifts, tangent to the N-dimensional group orbit
M.,.. (b) Each point has a unique trajectory (blue) under time evolution. (c) Each point also belongs
to a group orbit (green) of symmetry-related points. For SO(2), this is topologically a circle. Any
two points on a group orbit are physically equivalent, but may lie far from each other in state space.
(d) Together, time-evolution and group actions trace out a “wurst” of physically equivalent solu-
tions.

where C ;0‘) is a number called the quadratic Casimir for irrep labeled @, and 1@
is the identity on the a-irreducible subspace, O elsewhere. The dot product of two
tangent fields is thus a sum weighted by Casimirs,
Ol = ) Cxi 600 (12.13)
@

12 J

example 12.7 example 12.9
p. 222 p. 224

The really interesting Lie groups are the non-abelian semisimple ones -but- as
we will discuss nothing much more complicated than the abelian special orthogo-
nal group SO(2) of rotations in a plane, we shall not discuss the non-abelian case
here.

fast track:
sect. 12.2, p. 211

Question 12.1. Henriette Roux wants to know

Q Why do you devote to Lie groups only two pages, while a book-length monograph
would do it justice?

A ChaosBook tries its utmost to minimize the Gruppenpest jargon damage, which is a
total turnoff to our intended audience of working plumbers and electricians. The sufferings
of master Fabian Waleffe (see page 867) while reading chapter 10 World in a mirror are
chicken feed in comparison to the continuous symmetry reduction nightmare that we will
embark upon here.
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12.1.2 Equivariance under infinitesimal transformations

A flow x = v(x) is G-equivariant (12.1), if symmetry transformations commute
with time evolution

v(x) = g‘1 v(g x), forallge G. (12.14)

For an infinitesimal transformation (12.7) the G-equivariance condition becomes
dv
vX)=(1-¢ - Dvix+¢ -Tx)+--- =v(x)—¢-Tv(x)+d—¢-Tx+--- .
by

The v(x) cancel, and ¢, are arbitrary. Denote the group flow tangent field at x by
ta(x); = (T4)ijx;. Thus the infinitesimal, Lie algebra G-equivariance condition is

ta(v) = A(x) 1,(x) = 0, (12.15)

where A = dv/dx is the stability matrix (4.3). A learned remark: The directional
derivative along direction ¢ is lim,_,o(f(x + t£) — f(x))/t. The left-hand side of
(12.15) is the Lie derivative of the dynamical flow field v along the direction of
the infinitesimal group-rotation induced flow #,(x) = T,x,

Lv= (Ta - E(Tax)) v(y) (12.16)
dy

y=x

The equivariance condition (12.15) states that the two flows, one induced by the
dynamical vector field v, and the other by the group tangent field ¢, commute if
their Lie derivatives (or the ‘Lie brackets * or ‘Poisson brackets’) vanish.

example 12.10 example 12.11
p. 225 p. 225

Checking equivariance as a Lie algebra condition (12.15) is easier than checking
it for global, finite angle rotations (12.14).

12.2 Symmetries of solutions

Let v(x) be the dynamical flow, and f7 the trajectory or ‘time-r forward map’ of
an initial point xg,

.
% =v(x), x(t) = fT(xp) = xp + f dv’ v(x(1t")). (12.17)
0

As discussed in sect. 11.1, solutions x(7) of an equivariant system can satisfy all
of the system’s symmetries, a subgroup of them, or have no symmetry at all. For
a given solution x(7), the subgroup that contains all symmetries that fix x (that
satisfy gx = x) is called the isotropy (or stabilizer) subgroup of x. A generic
ergodic trajectory x(7) has no symmetry beyond the identity, so its isotropy group
is {e}, but recurrent solutions often do. At the other extreme is equilibrium or
steady solution (2.11), whose isotropy group is the full symmetry group G.
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Figure 12.4: A relative equilibrium orbit starts out at
some point x(0), with the dynamical flow field v(x) =
¢ - t(x) pointing along the group tangent space. For Xq
the SO(2) symmetry depicted here, the flow traces out
the group orbit of x(0) in time T = 27/c. An equilib-
rium lives either in the fixed Fix (G) subspace (x; axis
in this sketch), or on a group orbit as the one depicted
here, but with zero angular velocity c. In that case the
circle (in general, N-torus) depicts a continuous family
of fixed equilibria, related only by the group action.

v=cgt

Definition: Equilibrium xgp = Mgy is a fixed, time-invariant solution,

vixgp) = 0,

X(Xgg,T) = Xpg + f Tdr’v(x(r’))szQ. (12.18)
0

An equilibrium with full symmetry,
8 XEQ = XEQ forallg € G,

lies, by definition, in Fix (G) subspace (12.3), for example the x3 axis in fig-
ure 12.4 (a). The multiplicity of such solution is one. An equilibrium xgo with
symmetry Ggo smaller than the full group G belongs to a group orbit G/Ggyp.
If G is finite there are |G|/|GEg| equilibria in the group orbit, and if G is contin-
uous then the group orbit of x is a continuous family of equilibria of dimension
dim G — dim Ggg. For example, if the angular velocity c in figure 12.4 (b) equals
zero, the group orbit consists of a circle of (dynamically static) equivalent equi-
libria.

Definition: Relative equilibrium solution x7w(7) € Myw: the dynamical flow
field points along the group tangent field, with constant ‘angular’ velocity ¢, and
the trajectory stays on the group orbit, see figure 12.4 (a):

v(x)
x(7)

c-t(x), x € Mrw
g(=1c)x(0) = e Tx(0). (12.19)

A traveling wave
x(7) = g(—=ct) xrw = xyw —c7, c€R? (12.20)

is a special type of a relative equilibrium of equivariant evolution equations, where
the action is given by translation (12.32), g(y) x(0) = x(0) + y. A rotating wave
is another special case of relative equilibrium, with the action is given by angular
rotation. By equivariance, all points on the group orbit are equivalent, the mag-
nitude of the velocity c is same everywhere along the orbit, so a ‘traveling wave’
moves at a constant speed. For an N > 1 trajectory traces out a line within the
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x(V)= () x(0)
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Figure 12.5: {x;,y;, x2} plot of the two-modes sys-
tem with initial point on the unstable manifold of TW;.
In figure 12.1 this trajectory is integrated for a longer
time, until it falls on to the strange attractor. (N.B.
Budanur)

Figure 12.6: A periodic orbit starts out at x(0) with the dynamical v and group tangent ¢ flows
pointing in different directions, and returns after time 7 to the initial point x(0) = x(7). The group
orbit of the temporal orbit of x(0) sweeps out a (1+ N)-dimensional torus, a continuous family of
equivalent periodic orbits, two of which are sketched here. For SO(2) this is topologically a 2-torus.

group orbit. As the ¢, components are generically not in rational ratios, the tra-
jectory explores the N-dimensional group orbit (12.2) quasi-periodically. In other
words, the group orbit g(7) x(0) coincides with the dynamical orbit x(7) € Mpw
and is thus flow invariant.

Definition: Periodic orbit. Let x be a periodic point on the periodic orbit p of
period T,

fT(x) = x, xeM,.

By equivariance, g x is another periodic point, with the orbits of x and gx either
identical or disjoint.

If gx lands on the same orbit, g is an element of periodic orbit’s symmetry
group G,. If the symmetry group is the full group G, we are back to (12.19),
i.e., the periodic orbit is the group orbit traced out by a relative equilibrium. The
other option is that the isotropy group is discrete, the orbit segment {x, gx} is pre-
periodic (or eventually periodic), x(0) = g,x(T), where T, is a fraction of the
full period, T), = T'/m, and thus

x(0) = gpx(T)), xeM,, gp €Gy
x(0) gpx(mTy) = x(T) = x(0). (12.21)

If the periodic solutions are disjoint, as in figure 12.6,