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Chapter 7

Pattern Formation

Patterning is a common occurrence found in a wide variety of physical systems, including chemically
active media, fluids far from equilibrium, liquid crystals, etc. In this chapter we will touch very briefly
on the basic physics of patterning instabilities.

7.1 Reaction-Diffusion Dynamics Revisited

Let
{
φi(r, t)

}
denote a set of scalar fields satisfying

∂t φi +∇·Ji = Ri , (7.1)

where
Jα
i = −Dαβ

ij ∂β φj (7.2)

is the α component of the current density of species i. We assume that the local reaction kinetics is given
by

Ri = Ri

(
{φj}, λ

)
, (7.3)

where λ is a control parameter, or possibly a set of control parameters. Thus,

∂tφi = ∂αD
αβ
ij ∂β φj +Ri

(
{φj}, λ

)
. (7.4)

Let us expand about a homogeneous solution to the local dynamics, R
(
{φ∗i
}
, λ) = 0, writing

φi(r, t) = φ∗i + ηi(r, t) . (7.5)

We then have

∂t ηi =
∂Ri

∂φj

∣∣∣∣
φ∗

ηj + ∂αD
αβ
ij ∂β ηj . (7.6)

Assuming Dαβ
ij is constant in space, we obtain the linear equation

∂t η̂(q, t) = Lij(q ;λ) η̂j(q, t) , (7.7)

1



2 CHAPTER 7. PATTERN FORMATION

Figure 7.1: Instabilities in linear systems η̇ = Lη occur when the eigenvalue with the largest real part
crosses the line Re(ω) = 0. If L is a real operator, its eigenvalues are either real or come in complex
conjugate pairs.

where

Lij(q ;λ) =
∂Ri

∂φj

∣∣∣∣
φ∗

−Dαβ
ij qαqβ . (7.8)

Let

P (ω) = det
(
ω I− L) (7.9)

be the characteristic polynomial for L(q ;λ). The eigenvalues ωa(q ;λ) satisfy P (ωa) = 0. If we assume
that Lij(q ;λ) ∈ R is real, then P (ω∗) =

[
P (ω)

]∗
, which means that the eigenvalues ωa are either purely

real or else come in complex conjugate pairs ωa,1 ± iωa,2. The eigenvectors ψa
i (q ;λ) need not be real,

since L is not necessarily Hermitian. The general solution is then

ηi(q t) =
∑

a

Ca ψ
a
i (q ;λ) e

ωa(q ;λ) t . (7.10)

Modes with Reωa > 0 are stabilized by nonlinear terms, e.g. Ȧ = rA−A3.

Let’s assume the eigenvalues are ordered so that Re (ωa) ≥ Re (ωa+1), and that Re (ω1) ≤ 0 for λ ≤ λc.

• If ω1(q = 0 ;λc) = 0, we expect a transition between homogeneous (q = 0) states at λ = λc.

• If ω1(q = Q ;λc) = 0, we expect a transition to a spatially modulated structure with wavevector
Q.

• If Re ω1(q = 0 ;λc) = 0 but Im ω1(q = 0 ;λc) 6= 0 we expect a Hopf bifurcation and limit cycle
behavior.

• IfRe ω1(q = Q ;λc) = 0 but Im ω1(q = Q ;λc) 6= 0 we expect a Hopf bifurcation to a spatiotemporal
pattern structure.

In the vicinity of a bifurcation, space and time scales associated with the unstable mode(s) tend to infin-
ity. This indicates a critical slowing down. If the unstable modes evolve very slowly, the faster, non-critical
modes may be averaged over (i.e. ‘adiabatically eliminated’).
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For the most unstable mode ω ≡ ω1, we envisage the following possibilities:

ω = ǫ−A q2 homogeneous states ; q = 0 least stable

ω = ǫ−A
(
q2 −Q2

)2
modulated: q = Q is least stable

ω = ǫ−A
(
q2 −Q2

)2 −B q2 sin2θq θq between q and symmetry axis

ω = ǫ−A q2 ± iΩ0 Hopf, to homogeneous state

ω = ǫ−A
(
q2 −Q2

)2 ± iΩ0 Hopf, to modulated state

where

ǫ ∝ λ− λc
λc

. (7.11)

7.2 Turing and Hopf Instabilities

As an explicit example in d = 1 dimension, consider the coupled RDEs,

ut = Du uxx + f(u, v)

vt = Dv vxx + g(u, v) .
(7.12)

We linearize about the fixed point u = v = 0, obtaining

(
δût
δv̂t

)
=

L(q)︷ ︸︸ ︷(
fu −Du q

2 fv
gu gv −Dv q

2

) (
δû
δv̂

)
+ . . . (7.13)

for the Fourier transforms (
δû(q, t)
δv̂(q, t)

)
=

∞∫

−∞

dx

(
δu(x, t)
δv(x, t)

)
e−iqx . (7.14)

Please note that fu ≡ ∂f/∂u whereas Du is the self-diffusion coefficient for the u field (and does not
signify a partial derivative with respect to u). We now examine the eigenvalues of L. Clearly we have

T ≡ Tr(L) = fu + gv − (Du +Dv) q
2

D ≡ det(L) = DuDv q
4 − (Du gv +Dv fu) q

2 +∆ ,
(7.15)

where
∆ = fu gv − fv gu (7.16)

is the determinant at q = 0. The eigenvalues are

ω± = 1
2T ±

√
1
4T 2 −D . (7.17)

Recall that in the (T ,D) plane, it is the upper left quadrant, with T < 0 and D > 0, where the fixed
point is stable. There are then two instability boundary, both of which are straight lines. The first
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boundary is the positive D axis, i.e. (T = 0 ,D > 0), which separates the stable spiral from the unstable
spiral, corresponding to the onset of an oscillatory (Hopf) instability. Since the q2 term in T has a negative
coefficient1, this instability first occurs at q = 0, i.e. in the spatially homogeneous mode. The condition
for the Hopf instability is then

fu + gv = 0 , (7.18)

and ∆ > 0. The latter condition guarantees that we cross the D axis in the upper half (T ,D) plane.

The second instability boundary is the half-line (T < 0 ,D = 0), which forms the border with the saddle
point region. If the coefficient of the q2 term in D is negative, i.e. if (Du gv+Dv fu) > 0, then the minimum
of D(q) occurs at a finite value, q = ±Q, where

Q2 =
Du gv +Dv fu

2DuDv

. (7.19)

In this case, the instability is to a spatially inhomogeneous state. This is the Turing instability. This
requires that at least one of fu and gv is positive, or autocatalytic. However, if both are positive, then
the condition for the Hopf instability will already have been satisfied. So for the Turing instability we
must require fu + gv < 0, which says that only one of the species is autocatalytic. Setting D(Q) = 0, we
eliminate Q and obtain the condition

Du gv +Dv fu = 2
√

∆DuDv , (7.20)

hence, at the threshold of instability, the ordering wavevector is

Q2 =

√
∆

DuDv

. (7.21)

For the Turing instability, we may assume, without loss of generality, that gv < 0 < fu. Since ∆ >
0, we must have fv gu < fu gv < 0. The Turing instabilty preempts the Hopf instability when eqn.
7.20 is satisfied before eqn. 7.18. It is therefore a necessary (but not sufficient) condition that Dv >
Du. The Turing instability preempts the Hopf instability when only one species is autocatalytic, and
the autocatalytic species is less diffusive. This requires a slowly diffusing activator and a more rapidly
diffusing inhibitor.

7.3 The Brusselator

Consider the so-called Brusselator model of Prigogine and Lefever (1968). The Brusselator is a model
for two fictitious chemical reactions,

A −→ B

2A + B −→ 3A .

1We assume both diffusion constants are positive: Du,v > 0.
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Figure 7.2: Instability lines for the Brusselator. The thick blue line denotes a Hopf instability and the
thick red line a Turing instability. The dashed light green line is the locus of points below which the
minimum of D lies at Q = 0.

The species A is assumed to be supplied and removed from the system, in which case, after adding
diffusion, we have two coupled RDEs with

f(u, v) = a− (1 + b)u+ u2v

g(u, v) = b u− u2v .
(7.22)

The fixed point f = g = 0 occurs at (u∗ , v∗) = (a , b/a). Linearizing the local dynamics about the fixed
point, we obtain (

fu fv
gu gv

)
=

(
b− 1 a2

−b −a2
)

. (7.23)

Thus, ∆ = a2 > 0. The Hopf instability sets in when fu + gv = 0, i.e. when b = b
H

, where

b
H
= 1 + a2 . (7.24)

For the Turing instability, eqn. 7.20 gives b = b
T

, where

b
T
= (1 + c)2 , (7.25)

where we have defined

c ≡ a

√
Du

Dv

. (7.26)

Note that c < a for the Turing instability. These two curves intersect at

c∗ = −1 +
√

1 + a2 . (7.27)

Note that

Q2 =
a√
DuDv

⇒ DuQ
2 = c , DvQ

2 =
a2

c
. (7.28)
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Suppose we are close to the Turing instability, and we write b = b
T
+ ǫ with |ǫ| ≪ 1. We first expand the

coupled RDEs about the fixed point, writing

u = u∗ + δu , v = v∗ + δv , (7.29)

with u∗ = a and v∗ = b
a . Written in terms of δu and δv, the coupled RDEs take the form

δut = Du δuxx − δu+
(
b δu+ a2 δv

)
+

(
b

a
(δu)2 + 2a δu δv + (δu)2δv

)
(7.30)

δvt = Dv δvxx −
(
b δu+ a2 δv

)
−
(
b

a
(δu)2 + 2a δu δv + (δu)2δv

)
. (7.31)

If we ignore the nonlinear terms, we obtain a linear equation which has a solution

δu(x, t) = U11A(t) cos(Qx)

δv(x, t) = V11A(t) cos(Qx) ,
(7.32)

where A(t) = A0 exp(ωt) is an amplitude, and where the eigenvector (U11 V11)
t satisfies

(
b− c− 1 a2

−b −a2 − a2

c

)(
U11

V11

)
= ω

(
U11

V11

)
. (7.33)

If we set b = b
T

, and, without loss of generality, take U11 ≡ 1, we have

U11 = 1 , V11 = −c (1 + c)

a2
. (7.34)

If b > b
T

, then there exists an eigenvalue ω which is real and positive, in which case the amplitude A(t)
grows exponentially.

7.3.1 The amplitude equation

The exponential growth of the amplitude A(t) is valid only insofar as the nonlinear terms in the dynam-
ics are small. Our goal here will be to develop a nonlinear ODE governing the growth of A(t), assuming
|b− b

T
| ≪ 1. We follow the treatment of Kessler and Levine (2009, unpublished).

We assume one Fourier mode will be excited, with q = ±Q, along with its harmonics. We therefore write

δu =

∞∑

m=1

∞∑

n=0

UmnA
m cos(nQx) (7.35)

δv =
∞∑

m=1

∞∑

n=0

VmnA
m cos(nQx) . (7.36)

We shall only need the first few terms:

δu =
(
U11A+ U31A

3
)
cos(Qx) + U20A

2 + U22A
2 cos(2Qx) + . . .

δv =
(
V11A+ V31A

3
)
cos(Qx) + V20A

2 + V22A
2 cos(2Qx) + . . . .

(7.37)



7.3. THE BRUSSELATOR 7

Note that we assume U10 = V10 = 0 because the leading behavior is in the U11 and V11 terms. It is
through the quadratic nonlinearities that terms with n = 0 are generated.

Note that we also set U21 = V21 = 0, because starting with a solution proportional to A cos(Qx), the
quadratic nonlinearities produce terms with spatial wavevectors q = 0 and q = 2Q, with amplitude
proportional to A2, corresponding to (m,n) = (2, 0) and (m,n) = (2, 2), respectively. The cubic nonlin-
earities generate wavevectors q = Q and q = 3Q, with amplitude A3, corresponding to (m,n) = (3, 1)
and (3, 3), of which we require only the former. Starting from A cos(Qx), we never generate terms with
(m,n) = (2, 1). We could include such terms, assigning to them an amplitude B, and derive an ampli-
tude equation for B, but it would give a subleading contribution to the spatial patterning.

We now undertake the tedious process of working out the RHS of eqns. 7.30 and 7.31 to order A3.
Throughout our derivation, we shall include only the n = 0, n = 1 and n = 2 harmonics and drop all
other terms. We will also assume b = b

T
whenever it multiplies Am with m > 1, since ǫ = b − b

T
is

presumed small, and, as we shall see, the amplitude itself will be proportional to
√
ǫ. Let’s roll up our

sleeves and get to work!

The first terms we need are all the ones linear in δu and δv. Thus, we need

Du δuxx − δu = −(1 + c)
(
U11A+ U31A

3
)
cos(Qx)− U20A

2 − (1 + 4c)U22A
2 cos(2Qx)

Dv δvxx = −a
2

c

(
V11A+ V31A

3
)
cos(Qx)− 4a2

c
V22A

2 cos(2Qx)
(7.38)

as well as

b δu + a2 δv =

{
b
(
U11A+ U31A

3
)
+ a2

(
V11A+ V31A

3
)}

cos(Qx)

+
(
bU20 + a2 V20

)
A2 +

(
bU22 + a2 V22

)
A2 cos(2Qx) .

(7.39)

Next, we need the nonlinear terms, starting with

(δu)2 = 1
2U

2
11A

2 + 1
2U

2
11A

2 cos(2Qx) + U11

(
2U20 + U22

)
A3 cos(Qx) + . . . , (7.40)

where the remaining terms are of O(A4) or are proportional to cos(3Qx). We also require

2 δu δv = U11V11A
2 + U11V11A

2 cos(2Qx)

+
(
2U11V20 + 2V11U20 + U11V22 + V11U22

)
A3 cos(Qx) + . . . .

(7.41)

Finally, we need
(δu)2 δv = 3

4 U
2
11V11A

3 cos(Qx) + . . . . (7.42)

On the left hand side of eqns. 7.30 and 7.31, we have the time derivative terms. Again, as we shall see,
the amplitude A will be proportional to

√
ǫ, where ǫ = b − b

T
is presumed small. Its time derivative At

will be proportional to ǫ3/2. Therefore, terms such as (A2)t = 2AAt will be negligible and we shall drop
them from the outset. Thus,

δut = U11At cos(Qx) + . . .

δvt = V11At cos(Qx) + . . . .
(7.43)
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We now set to zero the coefficients of cos(nQx) for n = 0, 1, and 2 in each of eqns. 7.30 and 7.31. Setting
the n = 0 terms on the RHS of these equations to zero, we obtain

U20 = 0

b

2a
U2
11 + aU11V11 + a2 V20 = 0 .

(7.44)

Doing the same for the n = 2 terms, we get

b

2a
U2
11 + aU11V11 + bU22 + a2

(
1 + 4c−1

)
V22 = 0

(1 + 4c)U22 +
4a2

c
V22 = 0 .

(7.45)

Solving, we obtain

U20 = 0 , U22 =
2 (1 − c2)

9 ac
, V20 = −1− c2

2 a3
, V22 = −(1− c2) (1 + 4c)

18 a3
. (7.46)

Finally, we need the n = 1 terms. There are three contributions. One comes from the linear terms,
restoring the small differences proportional to ǫ = b−b

T
. These terms contribute a coefficient for cos(Qx)

of ǫA in the RHS of eqn. 7.30 and −ǫA on the RHS of eqn. 7.31. A second contribution comes from the
nonlinear terms. We invoke eqns. 7.40 and 7.41, multiplying the former by b

a and the latter by a. The
term we seek is proportional to A3 cos(Qx), with a coefficient

b

a
U22 + a

(
2V20 + V22 + V11U22

)
+ 3

4 V11 =
(1 + c) (2 + c) (8c2 − 21c + 4)

36 a2c
. (7.47)

We define

λ = −(1 + c) (2 + c) (8c2 − 21c + 4)

36 a2c
. (7.48)

Note that λ > 0 for c ∈
[
c− , c+

]
, where c± = 1

16

(
21±

√
313

)
. Numerically, c− ≈ 0.20676 and c+ ≈ 2.4182.

Finally, we have the U31 and V31 terms themselves. Thus, dividing out the common cos(Qx) factor on
both sides of both equations, we have

At = ǫA+

[
c (1 + c)U31 + a2 V31 − λ

]
A3

−c (1 + c)

a2
At = −ǫA−

[
(1 + c)2 U31 +

a2

c
(1 + c)V31 + λ

]
A3 .

(7.49)

We can rewrite these equations as a linear system for the coefficients U31 and V31, viz.

A3

M︷ ︸︸ ︷(
c (1 + c) a2

−(1 + c)2 −a2 − a2

c

) (
U31

V31

)
=

(
At − ǫA+ λA3

−a−2 c (1 + c)At + ǫA− λA3

)
. (7.50)

In order to be able to satisfy the above equation, the RHS must be orthogonal to the left eigenvector of
the matrix M corresponding to the zero eigenvalue. This is called the solvability condition. It is easy to
see that this zero left eigenvector is proportional to

φ =
(
1 + c c

)
. (7.51)
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Thus, we demand

(1 + c)
(
At − ǫA+ λA3

)
− c

(
a−2 c (1 + c)At − ǫA+ λA3

)
= 0 . (7.52)

This, at long last, yields our amplitude equation:

At = ηA− gA3 , (7.53)

where

η =
a2 (b− b

T
)

(1 + c) (a2 − c2)
, g = −a

2 (2 + c) (8c2 − 21c + 4)

36 a2 c (a2 − c2)
. (7.54)

The amplitude equation has a fixed point when At = 0, which says η = gA2. Since c < a, we have that
η is positive for b > b

T
and negative for b < b

T
. Furthermore g is positive for c ∈

[
c− , c+

]
and negative

outside this region. Thus, A has a fixed point A∗ =
√
η/g (in addition to the one at A = 0) if both η and

g are positive, or if both η and g are negative. In the former case, A = 0 is unstable and A = A∗ is stable.
In the latter case, A = 0 is stable and A = A∗ is unstable.

7.4 Rayleigh-Bénard Instability

Consider a layer of fluid between two horizontal plates, as depicted in fig. 7.3. The top plate is held
at temperature T1 and the bottom plate at temperature T2, with ∆T = T2 − T1 > 0. As the fluid near

the bottom plate is heated, it expands, and an upward buoyancy force per unit volume fbuoy = ρg α∆T

results, where α = 1
V

∂V
∂T is the thermal expansion coefficient and ρ is the fluid density. This buoyancy

force is a destabilizing effect, and is opposed by a stabilizing dissipative force per unit volume fdiss =
νκρ/d3, where ν is the kinematic viscosity, κ the thermal diffusivity, and d the distance between the
plates. The dimensionless ratio of these two force densities is known as the Rayleigh number,

R =
fbuoy
fdiss

=
g d3 α∆T

ν κ
. (7.55)

When R > Rc ≈ 1708, the destabilizing effects are sufficient to destroy the homogeneous state. Due to
mass conservation, the entire fluid cannot rise uniformly, hence the instability occurs at a finite wave-
length λ, owing to the formation of convective rolls known as Bénard cells (see fig. 7.3).

Swift and Hohenberg (1977) showed that the dynamics for this problem reduces to the following equa-
tion for the real field σ(r, t)2:

∂σ

∂t
=

[
ε−

(
Q2 +∇

2
)2
]
σ − σ3 . (7.56)

Here, ε ∝ R−Rc measures the distance from the instability, and ∇ = x̂ ∂x+ŷ ∂y is the in-plane gradient.
Distances are measured in units of d, and the maximally unstable wavevector is Q ≈ 3.12.

We assume a plane wave disturbance, and we first separate out the oscillating features of σ(r, t) so that
we may talk of a slowly varying amplitude function A(r, t):

σ(r, t) = A(r, t) eiQx +A∗(r, t) e−iQx , (7.57)

2The field σ is actually a combination of temperature and vertical velocity fields.
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Figure 7.3: Bénard convection cells in a fluid heated from below.

where n̂ is a unit vector which we henceforth assume to be n̂ = x̂. We then have

σ3 = A3 e3iQx + 3 |A|2 AeiQx + 3 |A|2 A∗ e−iQx +A∗3 e−3iQx

(
Q2 +∇

2
)
AeiQx = eiQx ·

(
2iQ ∂x + ∂2x + ∂2y

)
A .

(7.58)

Matching coefficients of eiQx, we find

∂tA =

{
ε−

(
2iQ ∂x + ∂2x + ∂2y

)2}
A− 3 |A|2 A . (7.59)

If we assume that the solution for A is such that ∂x ∝ ǫ1/2 and ∂y ∝ ǫ1/4 when acting on A, then the ∂2x
term is subleading relative to Q∂x and ∂2y , and we may drop it for |ǫ| ≪ 1 and write

∂tA =

{
ε−

(
2iQ ∂x + ∂2y

)2}
A− 3 |A|2 A . (7.60)

For ε > 0 there is a family of stationary solutions of the form

A(x, y) = Aq e
iq·r eiδ , (7.61)

where

Aq =
1√
3

(
ε−

(
2Qqx + q2y

)2)1/2
. (7.62)

The instability first occurs at q = 0, at ε = 0. As we shall see, the nonlinearity severely limits what
multimode structures may form.

The derivation of the Swift-Hohenberg equation utilizes something called the Boussinesq approximation,
in which the density variation of the fluid enters only in the buoyancy equation. For non-Boussinesq
fluids, the symmetry σ → −σ is broken, and one has

∂t σ =

[
ε−

(
Q2 +∇

2
)2
]
σ + v σ2 − σ3 , (7.63)

for which the bifurcation is subcritical. This is called the Haken model.
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Figure 7.4: Sketch showing separation of frequency scales owing to gap ∆. The fast, stable modes are
to the left, and the slow central modes all have Reωa ≈ 0.

7.5 Center Manifold Reduction

Consider a dynamical system in the vicinity of a fixed point: φ̇i = Lij φj + O(φ2). If we expand the
variables φi in terms of the eigenvectors ψa

i of L, writing φi =
∑

aAa ψ
a
i , then we can treat the Aa as

new variables. Furthermore, we assume that the eigenspectrum
{
ωa

}
exhibits a gap ∆, as shown in fig.

7.4, which allows us to classify these normal modes as either stable or central. The stable normal modes
have large (Re ωa < −∆) negative real parts to their frequencies, and hence relax rapidly. On this time
scales τ <∼∆−1, the central modes are roughly constant. We label these modes asAc

a andAs
a, respectively.

The dynamics of these modes may be written as

dAc
a

dt
= Jab A

c
b +Ma(A

c,As)

dAs
a

dt
= Kab A

s
b +Na(A

c,As) ,

(7.64)

where Ma and Na are nonlinear. If we assume that the fast, stable modes come to equilibrium, we set
Ȧs

a = 0 and solve the nonlinear equations KabA
s
b + Na(A

c,As) = 0 to obtain As
a = As

a(A
c). Inserting

this into the first of the previous sets of equations, we arrive at a new set of equations for the central
modes alone. These new equations, obtained by substituting the solution for the stable modes, which
are slaved to the slower central modes, into the function Ma(A

c,As), are of the form

dAc
a

dt
= LabA

c
b + Pa(A

c) . (7.65)

where Pa is nonlinear.

It is convenient to consider a nonlinear change of variables (Ac,As) → (Bc,Bs) so that the center
manifold is described by Bs = 0. To this end, we write B = A+F (A), or, equivalently, A = B+G(B).
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Note that to linear order the transformation is the identity A = B because we wish to preserve the
identification of the stable and central modes.

As a simple example, consider the system

dA1

dt
= 2A1A2 ,

dA2

dt
= −5A2 −A2

1 . (7.66)

We identify A1 as the central mode and A2 as the stable fast mode. We now try a nonlinear transforma-
tion of the form

A1 = B1 + αB2
1 + β B1B2 + γ B2

2

A2 = B2 + α′B2
1 + β′B1B2 + γ′B2

2 .
(7.67)

We then have

dA2

dt
=
dB2

dt
+ 2α′ B1

dB1

dt
+ β′B1

dB2

dt
+ β′B2

dB1

dt
+ 2γ′B2

dB2

dt
. (7.68)

Setting β′ = 0 we obtain the equation

(
1 + 2γ′B2

) dB2

dt
= −5B2 − (1 + 5α′)B2

1 − 5γ′B2
2 +O(B3) (7.69)

We see that B2 becomes isolated from B1 if we choose α′ = −1
5 . We are free to choose any value of γ′ we

please; for simplicity we choose γ′ = 0. The B2 equation is then

dB2

dt
= −5B2 . (7.70)

The fixed point is B2 = 0. Note that
A2 = B2 − 1

5B
2
1 (7.71)

and so at the fixed point we conclude

A2 = −1
5A

2
1 +O(A3

1) , (7.72)

which is obvious from inspection of the second of eqn. 7.66 as well.

7.6 Selection and Stability of Spatial Patterns

Consider the spatiotemporal dynamics for a real field σ(r, t) close to an instability which lies at |q| = Q.
We assume a form

σ(r, t) =

M∑

ℓ=1

(
Aℓ(t) e

iq
ℓ
·r +A∗

ℓ(t) e
−iq

ℓ
·r
)

, (7.73)

where qℓ = Q n̂ℓ and n̂2
ℓ = 1. By assuming Aℓ = Aℓ(t), i.e. with no spatial (r) dependence, we are

considering a system whose spatial structure is ‘perfect’ and whose growth rate is maximum. We now
consider the amplitude equations for the Aℓ(t). Note that the set of allowed wavevectors in the Fourier
decomposition of σ(r, t) consists of 2M elements, which we can order

{
q1 , . . . , qM , −q1 , . . . , −qM

}
.

With this ordering, we have qℓ+M = −qℓ and Aℓ+M = A∗
ℓ , where 1 ≤ ℓ ≤M . We will use indices i, j, etc.

to refer to the entire set: 1 ≤ j ≤ 2M .
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7.6.1 d = 1

For systems in one spatial dimension, the amplitude equation is quite limited, since n̂ = x̂ is the only
possibility, and consequentlyM = 1. The simplest case is the logistic type equation,

dA

dt
= εA− g |A|2A . (7.74)

Here, ε ∝ λ− λc is a measure of the system’s proximity to an instability, where λ is a control parameter.
There are fixed points at A = 0 and, for g > 0, at |A| =

√
ε/g. Fixed points at finite A are in fact fixed

rings in the Cartesian space (Re A , ImA), since the phase of A is undetermined and amplitude remains
fixed if the phase is varied globally.

With g > 0, eqn. 7.74 describes a supercritical pitchfork bifurcation. The flow is sketched in the left panel of
fig. 7.5. If g < 0, the bifurcation is subcritical, and the finite A fixed point occurs for ε < 0 and is unstable.
In such a case, we must proceed to the next order in the amplitude equation,

dA

dt
= εA− g1 |A|2A− g2 |A|4A , (7.75)

with g1 < 0 and g2 > 0. The bifurcation diagram for this equation is sketched in the right panel of fig.
7.5.

7.6.2 Remarks on the amplitude equations for d > 1

In dimensions d > 1 we have the possibility for nonlinear mixing of K different modes, provided

K∑

j=1

qj = Q
K∑

j=1

n̂j = 0 . (7.76)

Recall also that Aj is associated with eiqj ·r and A∗
j with e−iqj ·r. Under these conditions, the amplitude

equations take the following general form:

dAi

dt
= εAi + v

∑

j,k

A∗
j A

∗
k δn̂i+n̂j+n̂

k
, 0 − g |Ai|2Ai − g

∑

j

′
γij |Aj |2Ai

−
∑

j,k,l

λijkl A
∗
j A

∗
k A

∗
l δn̂i+n̂j+n̂

k
+n̂

l
, 0 +O(A4) .

(7.77)

The prime on the sum indicates that the term with j = i is excluded. Taking the complex conjugate,
we obtain the equation with index i replaced by i +M . The couplings γij and λijkl are functions of the
relative angles:

γij = γ(n̂i ·n̂j)

λijkl = λ(n̂i ·n̂j , n̂i ·n̂k , . . .) .

(7.78)

Note that if we associate Aj with eiqj ·r we can define A−j ≡ A∗
j , associated with e−iqj ·r. Also note that

v is a constant independent of j and k because the dot products in that case necessarily are all identical:
n̂i ·n̂j = n̂j ·n̂k = n̂k ·n̂i.
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Figure 7.5: Flow diagrams for one-dimensional bifurcations Ȧ = εA − g |A|2A with g > 0 (left) and
Ȧ = εA− g1 |A|2A− g2 |A|4A with g1 < 0 and g2 > 0 (right).

7.6.3 d = 2

For d = 2 systems all the allowed wavevectors lie on the circle |qj | = Q. Let’s consider the cases M = 1,
M = 2, and M = 3.

ForM = 1 we recapitulate the d = 1 case. We have q1 = Qx̂ and q2 = −Qx̂ (up to continuous rotations).
The amplitude equation is of the form Ȧ = εA − g |A|2A, and the patterned state is one with bands
(stripes). This is not the last word, however, since we must check its stability with respect to M = 2 and
M = 3 patterns.

M = 2 case

For M = 2, we write

σ(x, y, t) = A1(t) e
iQx +A∗

1(t) e
−iQx +A2(t) e

iQy +A∗
2(t) e

−iQy . (7.79)

The amplitude equations are

Ȧ1 = εA1 − g |A1|2A1 − γ g |A2|2A1

Ȧ2 = εA2 − g |A2|2A2 − γ g |A1|2A2 .

(7.80)

We assume g > 0. There are four possible fixed points (A1,A2):

(A1,A2) = (0 , 0) (I: trivial state)

(A1,A2) =
√
ε/g · (eiα1 , 0) (II: y-directed bands)

(A1,A2) =
√
ε/g · (0 , eiα2) (III: x-directed bands)

(A1,A2) =
√
ε/g (1 + γ) · (eiα1 , eiα2) (IV: squares)
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Figure 7.6: Phase diagram for the M = 2 system.

Note that A1 → A1 e
−iβ is equivalent to a translation of the pattern in the x̂-direction by ∆x = β/Q.

To assess the stability of these fixed points, we write

Aj = Aj (1 + ηj) , (7.81)

and we find



η̇1

η̇2


 =

L︷ ︸︸ ︷

ε− 3g |A1|2 − γ g |A2|2 −2γ g |A2|2

−2γ g |A1|2 ε− γ g |A1|2 − 3g |A2|2





η1

η2


+O(η2) . (7.82)

Evaluating L at the four fixed points, we find

L
I
=



ε 0

0 ε


 , L

II
=




−2ε 0

−2γ ε (1− γ) ε


 (7.83)

and

L
III

=



(1− γ) ε −2γ ε

0 −2ε


 , L

IV
= − 2ε

1 + γ



1 γ

γ 1


 . (7.84)

Computing T = Tr(L) and D = det(L), we find:

(I) In the trivial phase, we have T = 2ε and D = ε2. This fixed point is stable star if ε < 0 and an
unstable star if ε > 0.3

3The star is a nongeneric fixed point, arising here because the eigenspace is degenerate. Note that D =
1

4
T

2 for the type I case.
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(II) In the striped phase, we have T = −(1 + γ) ε and D = 2(γ − 1) ε2. Thus, if γ < 1 the stripes are
unstable as the fixed point is a saddle. Now suppose γ > 1, meaning D > 0. The fixed point is
therefore stable since ε > 0. If ε < 0, there is no solution for the fixed point at all. We next compute
D− 1

4T 2 = −1
4(γ−3)2 ε2 which is always negative, indicating that the fixed point is always a stable

node.

(III) Same as case II.

(IV) We find T = −4ε/(γ+1) and D = 4ε2 (1−γ)/(1+γ). The condition D > 0 is equivalent to |γ| < 1.
For |γ| > 1, this fixed point is a saddle, and is unstable. Note that |A1,2|2 = −T /4g at the fixed
point, so if a solution exists we must have T < 0. If |γ| < 1 then, the fixed point is stable, and we
find D − 1

4T 2 = −4ε2γ2/(1 + γ)2 < 0, indicating a stable node. Note that a fixed point solution
exists for ε < 0 if 1 + γ < 0, which means γ < −1, which is a saddle and unstable.

The phase diagram is shown in fig. 7.6.

M = 3 case

For M = 3 we write

n̂1 = x̂ , n̂2 = −1
2 x̂+

√
3
2 ŷ , n̂3 = −1

2 x̂−
√
3
2 ŷ , (7.85)

with qj = Q n̂j , with n̂r+3 = −n̂ℓ. The σ field is then given by the sum

σ(r, t) = A1 e
iq

1
·r +A2 e

iq
2
·r +A3 e

iq
3
·r +A∗

1 e
−iq

1
·r +A∗

2 e
−iq

2
·r +A∗

3 e
−iq

3
·r . (7.86)

Let’s suppose the σ → −σ symmetry is broken, leaving us with the Haken model,

∂σ

∂t
=

[
ε−

(
Q2 +∇

2
)2
]
σ + vσ2 − σ3 . (7.87)

The resulting amplitude equations are then

dAℓ

dt
= εAℓ + v A∗

ℓ−1A
∗
ℓ+1 − g |Aℓ|2Aℓ − γ g

(
|Aℓ−1|2 + |Aℓ+1|2

)
Aℓ , (7.88)

Our notation is cyclic in ℓ mod 3, so Aℓ+1 = A1 when ℓ = 3, and Aℓ−1 = A3 when ℓ = 1.

We now convert to amplitude and phase variables, writing

Aℓ = Rℓ e
iφ

ℓ . (7.89)

Plugging this into the amplitude equations and taking the real part, we obtain

dRℓ

dt
= εRℓ + vRℓ−1Rℓ+1 cosφ− gR3

ℓ − γg
(
R2

ℓ−1 +R2
ℓ+1

)
Rℓ (7.90)

where
φ = φ1 + φ2 + φ3 . (7.91)
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The imaginary part yields the equations

dφℓ
dt

= −
Rℓ−1Rℓ+1

Rℓ

· v sinφ . (7.92)

Adding these last three equations, we obtain a single equation for the total phase angle φ:

dφ

dt
= −R

2
1R

2
2 +R2

2 R
2
3 +R2

3R
2
1

R1R2R3

· v sinφ . (7.93)

Thus, sinφ = 0 is a fixed point for these dynamics, and in steady state, we have

v < 0 ⇒ φ = π

v > 0 ⇒ φ = 0 .

Thus, v cosφ > 0 in steady state, i.e. v cosφ = |v|. Assuming the phase angle has reached its steady state
value, the amplitude equations are given by

dR1

dt
= εR1 + |v|R2R3 − gR3

1 − γg
(
R2

2 +R2
3

)
R1

dR2

dt
= εR2 + |v|R3R1 − gR3

2 − γg
(
R2

3 +R2
1

)
R2

dR3

dt
= εR3 + |v|R1R2 − gR3

3 − γg
(
R2

1 +R2
2

)
R3 .

(7.94)

Subtracting the first equation from the second gives

d

dt

(
R1 −R2

)
=

[
ε− |v|R3 − g

(
R2

1 +R1R2 +R2
2

)
− γgR2

3 + γgR1R2

]
(
R1 −R2

)
. (7.95)

For sufficiently small ε, we suspect that the term in brackets is negative, indicating that the difference
R1 − R2 tends to zero. As we could have chosen any two distinct indices for R, we are motivated to
consider the symmetric case R1 = R2 = R3 = R. This results in the equation

dR

dt
= εR + |v|R2 − g (1 + 2γ)R3 . (7.96)

The fixed points Ṙ = 0 occur at R = 0 and at R = R±, where

R± =
|v| ±

√
v2 + 4ε g (1 + 2γ)

2g (1 + 2γ)
. (7.97)

This solution describes a hexagonal structure.

To assess the stability of these solutions, it is incorrect to analyze the stability of eqn. 7.96. Rather,
we must go back to the full N = 4 system (R1, R2, R3, φ). Since the partial derivatives ∂Ṙℓ/∂φ =
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−vRℓ−1Rℓ+1 sinφ all vanish at the fixed point, we only need consider the N = 3 system (R1, R2, R3) in
eqns. 7.94. We must examine the Jacobian

Jℓℓ′ =
∂Ṙℓ

∂Rℓ′
=



a b b
b a b
b b a


 = (a− b) I+ 3b |ψ〉〈ψ| , (7.98)

where ψt = 1√
3
(1, 1, 1). Thus, |ψ〉 is an eigenvector with eigenvalue λ+ = a + 2b, while the two-

dimensional subspace orthogonal to |ψ〉 has the (doubly degenerate) eigenvalue λ− = a− b. Thus,

λ+ = ε+ 2|v|R − 3(1 + 2γ)gR2

= −2ε− |v|R
(7.99)

and

λ− = ε− |v|R− 3gR2

=
2

1 + 2γ

(
(γ − 1) ε− (2 + γ) |v|R

)
.

(7.100)

We have used the fixed point equation

g(1 + 2γ)R2 − |v|R− ε = 0 (7.101)

to eliminate the quadratic terms in R in these expressions for λ±.

Consider the R = R+ fixed point. Plugging the expression for R+ into the expressions for λ±, the
stability criteria λ± < 0 can be investigated. We find that the R = R+ solution is stable for

− v2

4g(1 + 2γ)
< ε <

(2 + γ) v2

g(γ − 1)2
. (7.102)

The lower limit for ǫ is set by the condition λ+ = 0, and the upper limit by λ− = 0. The R = R− solution
and all other fixed points (such as when v cosφ < 0) are unstable. For example, there are so-called mixed
modes, where

R1 =
|v|

g (γ − 1)
, R2 = R3 =

√
ε− gR2

1

g (γ + 1)
. (7.103)

These are also unstable.

The hexagonal pattern is described by

σ(r, t) = 2R(t)
[
cos(Q n̂1 · r + φ1) + cos(Q n̂2 · r + φ2)± cos(Q n̂3 · r − φ1 − φ2)

]
. (7.104)

where the upper sign is taken when v > 0 (φ = 0), and the lower sign when v < 0 (φ = π). Let us define
the primitive reciprocal lattice vectors

b1 = Q x̂ , b2 = Q
(
1
2 x̂+

√
3
2 ŷ

)
. (7.105)



7.6. SELECTION AND STABILITY OF SPATIAL PATTERNS 19

Figure 7.7: Points of high symmetry in the honeycomb lattice. The black dots label the Γ sublattice, the
blue dots the K sublattice, and the red dots the K′ sublattice.

With this definition, we have

q1 = b1 q2 = b2 − b1 q3 = −b2

q4 = −b1 q5 = b1 − b2 q6 = b2 .

We also define the primitive direct lattice vectors

a1 =
4π√
3Q

(√
3
2 x̂− 1

2 ŷ
)

, a2 =
4π√
3Q

ŷ . (7.106)

Note that
aµ · bν = 2π δµν . (7.107)

We can expand r in the basis of primitive direct lattice vectors as

r ≡ ζ1
2π

a1 +
ζ2
2π

a2 . (7.108)

Then

σ(r, t) = 2R(t)
[
cos
(
b1 · r + φ1

)
+ cos

(
(b2 − b1) · r + φ2

)
± cos

(
b2 · r + φ1 + φ2

) ]

= 2R(t)
[
cos
(
ζ1 + φ1

)
+ cos

(
ζ2 − ζ1 + φ2

)
± cos

(
ζ2 + φ1 + φ2

)]
.

(7.109)

If we now shift the origin of coordinates, defining

ζ̃1 =

{
ζ1 + φ1 if v > 0

ζ1 + φ1 + π if v < 0
, ζ̃2 = ζ2 + φ2 , (7.110)

then we have
σ(r, t) = ±2R(t)

[
cos ζ̃1 + cos

(
ζ̃2 − ζ̃1

)
+ cos ζ̃2

]
, (7.111)
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Figure 7.8: Two-dimensional stationary Turing patterns, showing H0 (left), striped (center), and Hπ
(right) structures. White areas correspond to local maxima of the concentration field. From A. De Wit,
Adv. Chem. Phys. 109, 435 (1999).

where again the upper sign is for v > 0 and the lower sign for v < 0. Consider the case v > 0. At a
fixed time t, the function σ(r, t) achieves its maxima σmax = 6R when ζ̃1 = 0 modulo 2π and ζ̃2 = 0
modulo 2π, which is to say when r lies on a triangular lattice of points, which we call the Γ sublattice.
This pattern is known as the H0 hexagonal pattern. The minima lie on a honeycomb lattice, which can
be described as two interpenetrating triangular lattices. The K sublattice is defined by the set of points
equivalent to ζ̃1 = 4π

3 and ζ̃2 = 2π
3 , while the K′ sublattice consists of the points equivalent to ζ̃1 = 2π

3

and ζ̃2 = 4π
3 , again modulo 2π in either component. The sum of the three cosines is then −3

2 , hence
σmin = −3R. For v < 0 the roles of minima and maxima are reversed, and the maxima lie on the vertices
of a honeycomb lattice; this is the Hπ structure. See figs. 7.7 and 7.8.

Hexagons are not the only stable pattern, however. We can find stripe solutions where R1 = R and
R2 = R3 = 0. Nontrivial solutions occur for ε > 0, where R =

√
ε/g, as in the one-dimensional case.

The Jacobian at this fixed point is given by

Jℓℓ′ =




−2ε 0 0

0 (1− γ) ε |v|
√

ε
g

0 |v|
√

ε
g (1− γ) ε


 . (7.112)

The eigenvalues are λ1 = −2ε and λ2,3 = (1 − γ) ε ± |v|
√

ε
g . Since ε > 0 in order to have a nontrivial

solution, λ1 < 0 and we can focus on λ2,3. If γ < 1 then λ2 > 0, so stripes are unstable for γ < 1. If γ > 1,
we have that λ3 < 0, and the condition λ2 < 0 requires

ε >
v2

g(1 − γ)2
(7.113)

for the stripes to be stable, along with γ > 1.

It is convenient to rescale, defining

|v| ≡ u ·
√

4g(1 + 2γ) , R ≡ S · u√
g

, ε ≡ η · u2 . (7.114)

Then we find

S
HEX

(η) =
1±√

1 + η√
1 + 2γ

, S
STRIPE

(η) =
√
η . (7.115)
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Figure 7.9: Dimensionless amplitude S versus dimensionless coupling η for theM = 3 system discussed
in the text, showing stable (solid) and unstable (dashed) solutions.

The upper solution for the hexagons is stable for η− < η < η+, whereas the stripe solution is stable for
η > ηs, where

η− = −1 , ηs =
4 (1 + 2γ)

(γ − 1)2
, η+ =

4 (1 + 2γ) (2 + γ)

(γ − 1)2
. (7.116)

These results are plotted in fig. 7.9.

7.6.4 d = 3

We can extend the previous d = 2 results to d = 3 dimensions simply by assuming there is no variation
in the along z, the coordinate in the third direction. Thus, stripes in d = 2 become lamellae in d = 3.
New structures emerge as well:

M = 3 : 2M = 6 ⇒ simple cubic in reciprocal and real space

M = 4 : 2M = 8 ⇒ BCC reciprocal lattice, FCC direct lattice

M = 6 : 2M = 12 ⇒ FCC reciprocal lattice, BCC direct lattice .

For a description of the many patterned structures which can form under these periodicities, see T. K.
Callahan and E. Knobloch, Nonlinearity 10, 1179 (1997) and idem, Physica D 132, 339 (1999).

7.7 Anisotropy

Many physical systems exhibit intrinsic spatial anisotropies. To see how these might affect patterning,
consider a modification of the Brusselator with anisotropic diffusion:

ut = Du,‖ uxx +Du,⊥ uyy + a− (b+ 1)u+ u2v

vt = Dv,‖ vxx +Dv,⊥ vyy + b u− u2v .
(7.117)
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The linearized dynamics, from eqn. 7.13, are given by the matrix

L(q) =



b− 1− D̃u(φ) q2 a2

−b −a2 − D̃v(φ) q2


 . (7.118)

where
qx = q cosφ , qy = q sinφ (7.119)

and

D̃u(φ) = Du,‖ cos2φ−Du,⊥ sin2φ

D̃v(φ) = Dv,‖ cos2φ−Dv,⊥ sin2φ .
(7.120)

We identify the maximally unstable wavevector for the Turing instability det(L) = 0 as before, i.e. by
minimizing det(L) with respect to q2. We then invoke det(L) = 0, which gives us a second equation.
From these two equations we obtain the critical value of b at the transition and the critical wavevector
at the transition:

b
T
(φ) =

(
1 + a

√
D̃u(φ)

D̃v(φ)

)2

Q2(φ) =
a√

D̃u(φ) D̃v(φ)

.

(7.121)

We have thus described a one-parameter family of Turing instabilities, as a function of the angle φ. The
earliest (smallest b

T
(φ) value) of these will preempt the others. Examining b

T
(φ), we find

Du,⊥

Du,‖
>
Dv,‖

Dv,⊥
⇒ φ = 0

Du,⊥

Du,‖
<
Dv,‖

Dv,⊥
⇒ φ =

π

2
.

(7.122)

7.8 Phase Diffusion : Eckhaus and Zigzag Instabilities

Starting from the Swift-Hohenberg equation, the dynamics of a striped configuration, with σ(x, y, t) =
2Re

[
A(x, y, t) eiQx

]
are governed by the Newell-Whitehead-Segel equation,

∂A

∂T
= µA+

(
∂

∂X
+
i

2

∂2

∂Y 2

)2
A− |A|2A , (7.123)

where X, Y , and T are scaled ‘slow variables’, X = ε0Qx, Y = |ε0|1/2Qy, T = 4Q2|ε0|t, and ε =
4Q2|ε0|µ, where |ε0| ≪ 1. The amplitude has also been scaled by a factor of 2√

3
Q2|ε0|1/2.
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Figure 7.10: Zigzag, Eckhaus, and Benjamin-Feir instabilities.

The optimal pattern is given by the constant solution A =
√
µ, for µ > 0, corresponding to σ(x) =

2
√
µ cos(Qx). However, for ε > 0 an entire band of wavevectors is linearly unstable, since ε−(Q2+∇

2)2

acting on any plane wave eiq·r will yield a positive growth rate so long as |q2 − Q2| < √
ε. Thus the

Newell-Whitehead-Segel (NWS) equation admits a band of static solutions,

A(X,Y ) =
√
µ− k2 eikX , (7.124)

for |k| < √
µ. We now investigate the stability of these solutions, writing

A(X,Y, T ) =
(√

µ− k2 + ρ(X,Y, T )
)
eikX eiφ(X,Y,T ) , (7.125)

and linearizing in the amplitude and phase variations ρ and φ.

We start by defining Λ = kX + φ. Then

e−iΛ ∂

∂X
eiΛ =

∂

∂X
+ ik + i

∂φ

∂X

e−iΛ ∂

∂Y
eiΛ =

∂

∂Y
+ i

∂φ

∂Y
.

(7.126)

Thus,

e−iΛ
(
∂X − i

2∂
2
Y

)
eiΛ = ik + ∂X − i

2∂
2
Y + iφX + 1

2φY Y + φY ∂Y + i
2φ

2
Y (7.127)

We need to square the RHS and then apply it to
(√

µ− k2 + ρ
)
, and then keep only terms up to linear

order in ρ, φ, and their derivatives. Clearly we can drop the last two terms on the RHS above since
φY ∂Y will be nonzero only when acting on ρ or φ, resulting in a nonlinear contribution; the last term
φ2Y is already nonlinear. Even with the reduction from seven to five terms, squaring is a slightly tedious
process, and we skip the intermediate steps. Multiplying the NWS equation on the left by e−iΛ and then
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Figure 7.11: Boundary curves for Eckhaus and zigzag instabilities. Structures within the shaded region
are stable.

collecting real and imaginary terms, we obtain the coupled equations

ρT = −2(µ− k2) ρ− 2k
√
µ− k2 φX + ρXX + k ρY Y +

√
µ− k2 φXY Y − 1

4 ρY Y Y Y

φT =
2k√
µ− k2

ρX + φXX + k φY Y − 1

2
√
µ− k2

ρXY Y − 1
4 φY Y Y Y .

(7.128)

The terms on the RHS of these equations are ordered by increasing powers of derivatives. We assume
a long wavelength disturbance, meaning we can neglect all but the lowest nontrivial terms. From the
RHS of the first equation, we take the first two terms, which yield

ρ = − k√
µ− k2

φX . (7.129)

Note that ρ ∝ φX , which means that the LHS of the first equation is ρT ∝ φXT , which has one more
derivative. Substituting this result into the second equation, we obtain

φT =

(
µ− 3k2

µ− k2

)
φXX + k φY Y . (7.130)

This is an anisotropic diffusion equation. We identify

Dφ,X =
µ− 3k2

µ− k2
, Dφ,Y = k . (7.131)

An instability occurs when either diffusion constant is negative. Note that µ = k2 is the so-called
marginal stability boundary and that no patterned solution exists for k2 > µ. The condition Dφ,X < 0
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corresponds to the Eckhaus instability and Dφ,Y < 0 to the zigzag instability. A sketch of the stability
boundaries is provided in fig. 7.11.

These are many other patterning instabilities. For example, the Benjamin-Feir instability is an analog
of the Eckhaus instability which occurs in travelling plane waves. This and other such examples are
discussed in detail in the books by R. Hoyle and by M. Cross and H. Greenside, both listed in chapter 0
of these notes.
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