
PHYSICS 110A : MECHANICS 1
PROBLEM SET #10 SOLUTIONS

[1] Recall problem #3 from HW #6, in which a mass m moves frictionlessly under the
influence of gravity along the curve y = x2/2a. Attached to the mass is a massless rigid rod
of length ℓ, at the end of which is an identical mass m. The rod is constrained to swing in
the (x, y) plane, as depicted in the figure below.

(a) Choose as generalized coordinates x and φ. Find the kinetic energy T and potential
energy U .

(b) Choose as generalized displacements the coordinates η1 = x and η2 = φ themselves. For
small oscillations, find the T and V matrices. It may be convenient to define Ω1 ≡

√

g/a
and Ω2 ≡

√

g/ℓ.

(c) Find the eigenfrequencies of the normal modes of oscillation.

(d) Suppose Ω1 =
√
3Ω0 and Ω2 = 2Ω0, where Ω0 has dimensions of frequency. Find the

modal matrix.

Solution :

(a) The coordinates of the mass on the curve are (x1 , y1) = (x , x2/2a). Note ẏ = (x/a) ẋ.
The coordinates for the hanging mass are (x2 , y2) = (x + ℓ sinφ , x2/2a − ℓ cosφ). The
kinetic energy is

T = 1
2m(ẋ21 + ẏ21 + ẋ22 + ẏ22)

= m

(

1 +
x2

a2

)

ẋ2 + 1
2mℓ

2φ̇2 +mℓ
(

cosφ+
x

a
sinφ

)

ẋφ̇ .

The potential energy is

U = mg(y1 + y2) =
mg

a
x2 −mgℓ cosφ .

1



(b) Equilibrium occurs for x = φ = 0, hence

Tσσ′ =
∂2T

∂q̇σ∂q̇σ′

∣

∣

∣

∣

q̄

=

(

2m mℓ
mℓ mℓ2

)

and

Vσσ′ =
∂2U

∂qσ∂qσ′

∣

∣

∣

∣

q̄

=

(

2mΩ2
1 0

0 mℓ2Ω2
2

)

.

(c) We set P (ω2) = det (ω2
T− V) = 0, with

ω2
T− V =

(

2m(ω2 −Ω2
1) mℓω2

mℓω2 mℓ2(ω2 −Ω2
2)

)

Thus,

P (ω2) = m2ℓ2
{

ω4 − 2 (Ω2
1 +Ω2

2)ω
2 + 2Ω2

1Ω
2
2

}

.

Solving the quadratic equation, we have the two normal mode frequencies

ω2
± = Ω2

1 +Ω2
2 ±

√

Ω4
1 +Ω4

2 .

(d) With Ω1 =
√
3Ω0 and Ω2 = 2Ω0, we have ω2

+ = 12Ω2
0 and ω2

− = 2Ω2
0 . We then solve

for the eigenvectors using (ω2
i T− V)σσ′Aσ′ i = 0. From the form of ω2

T− V, we see that

A2,i =
ℓ−1ω2

i

Ω2
2 − ω2

i

A1,i ,

and imposing the normalization A
t
TA = I, we have

A =
1√
5m

(

2 1
−3ℓ−1 ℓ−1

)

.

[2] Two pendula each consisting of a point mass m hanging from a massless rigid rod of
length ℓ are coupled by a massless spring of spring constant k (between the mass points).
When the pendula hang vertically, the spring is unstretched. Compute the eigenfrequencies
and the normal modes. Classify the normal modes according to whether they are even or
odd with respect to the group Z2, generated by the elements I (identity) and P (reflection
about a vertical line midway between the two pendula).

Solution :

The extension of the spring to lowest order in the angular displacements is ℓ(θ2− θ1), hence
the Lagrangian for small oscillations is

L = 1
2mℓ

2
(

θ̇21 + θ̇22
)

− 1
2kℓ

2
(

θ2 − θ1
)2 − 1

2mgℓ
(

θ21 + θ22
)

.
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Figure 1: Coupled identical pendula.

Thus, the T and V matrices are

T = mℓ2
(

1 0
0 1

)

, V = mℓ2
(

Ω2 + ν2 −Ω2

−Ω2 Ω2 + ν2

)

,

where

Ω ≡
√

k

m
, ν ≡

√

g

ℓ
.

The modal matrix is obtained by inspection:

A =
1

ℓ
√
2m

(

1 1
1 −1

)

.

This satisfies

A
t
TA =

(

1 0
0 1

)

, A
t
VA =

(

ν2 0
0 2Ω2 + ν2

)

.

The normal mode ψ(1) ∝
(1
1

)

with frequency ω1 = ν is symmetric (even parity), and the

normal mode ψ(2) ∝
(

1
−1

)

with frequency ω2 =
√
2Ω2 + ν2 is antisymmetric (odd parity).

[3] Two masses m1 and m2 are connected to a spring and a pendulum arm, as depicted in
fig. 2. The unstretched length of the spring is a.

(a) Choosing generalized coordinates x and θ as shown, write the Lagrangian for this system.

(b) Expanding about equilibrium, write the Lagrangian for small oscillations as a quadratic
form. Suggestion: It may be convenient to define the generalized displacements η1 ≡ x and

η2 ≡ ℓθ.

(c) Let Ω ≡
√

k/m1, ν ≡
√

g/ℓ, and r ≡ m2/m1 . Find the T and V matrices.

(d) Find the eigenfrequencies ω1,2 .

(e) Find an expression for the ratios of the components of the normal mode eigenvectors

ψ
(+)
2 /ψ

(+)
1 and ψ

(−)
2 /ψ

(−)
1 .
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Figure 2: A spring, a pendulum, and two masses.

Solution :

(a) We have

x1 = a+ x , x2 = a+ x+ ℓ sin θ , y2 = −ℓ cos θ

and
ẋ1 = ẋ , x2 = ẋ+ ℓ cos θ θ̇ , ẏ2 = ℓ sin θ θ̇ .

Thus

T = 1
2m1ẋ

2
1 +

1
2m2(ẋ

2
2 + ẏ22)

= 1
2 (m1 +m2)ẋ

2 +m2ℓ cos θ ẋ θ̇ +
1
2m2ℓ

2θ̇2

U = 1
2kx

2 −m2gℓ cos θ

(b) Equilibrium occurs for x = 0 and θ = 0. For small x and θ, we have

T = 1
2(m1 +m2)ẋ

2 +m2ℓ ẋ θ̇ +
1
2m2ℓ

2θ̇2 + . . .

U = 1
2kx

2 + 1
2m2gℓθ

2 −m2gℓ+ . . . .

Taking the hint and defining η1 ≡ x and η2 ≡ ℓθ, we have

L = 1
2(m1 +m2) η̇

2
1 +m2 η̇1η̇2 +

1
2m2 η̇

2
2 − 1

2k η
2
1 − 1

2m2

g

ℓ
η22 ,

where we have dropped a constant term m2gℓ.

(c) Writing
L = 1

2 η̇
t
T η̇ − 1

2 η
t
Vη ,

4



we can read off

T = m1

(

1 + r r
r r

)

, V = m1

(

Ω2 0
0 rν2

)

.

(d) We solve det(ω2
T− V) = 0, with

ω2
T− V = m1

(

(1 + r)ω2 −Ω2 rω2

rω2 r(ω2 − ν2)

)

.

Thus,

P (ω2) = det(ω2
T− V) = m2

1

(

ω4 −
[

Ω2 + (1 + r) ν2
]

ω2 +Ω2ν2
)

= 0 .

Clearly the m2
1 coefficient doesn’t affect the calculation of the eigenfrequencies, which are

given by

ω2
1,2 =

1
2

[

Ω2 + (1 + r) ν2
]

± 1
2

√

[

Ω2 + (1 + r) ν2
]2 − 4Ω2ν2 .

(e) We have
(

(1 + r)ω2
± −Ω2 rω2

±

rω2
± r(ω2

± − ν2)

)

(

ψ
(±)
1

ψ
(±)
2

)

= 0 .

Thus, taking the equation arising from the bottom row, we have

rω2
± ψ

(±)
1 + r(ω2

± − ν2)ψ
(±)
2 = 0 ,

and thus
ψ
(±)
2

ψ
(±)
1

=
ω2
±

ν2 − ω2
±

.

Note that we may write

ω2
± − ν2 = 1

2

[

Ω2 + (r − 1) ν2
]

± 1
2

√

[

Ω2 + (r − 1) ν2
]2
+ 4rν4 .

and therefore we conclude ω2
+ > ν2 and ω2

− < ν2. Thus, the masses are 180◦ out of phase
in the high frequency mode, and are in phase in the low-frequency mode.
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