
PHYSICS 110A : MECHANICS 1
PROBLEM SET #7 SOLUTIONS

[1] A point mass m slides inside a hoop of radius R and mass M , which itself rolls without
slipping on a horizontal surface, as depicted in fig. 1.

Figure 1: A mass point m rolls inside a hoop of mass M and radius R which rolls without
slipping on a horizontal surface.

Choose as general coordinates (X,φ, r), where X is the horizontal location of the center of
the hoop, φ is the angle the mass m makes with respect to the vertical (φ = 0 at the bottom
of the hoop), and r is the distance of the mass m from the center of the hoop. Since the
mass m slides inside the hoop, there is a constraint:

G(X,φ, r) = r −R = 0 .

Nota bene: The kinetic energy of the moving hoop, including translational and rotational
components (but not including the mass m), is Thoop = MẊ2 (i.e. twice the translational
contribution alone).

(a) Find the Lagrangian L(X,φ, r, Ẋ , φ̇, ṙ, t).

Solution : The Cartesian coordinates and velocities of the mass m are

x = X + r sinφ ẋ = Ẋ + ṙ sinφ+ rφ̇ cosφ

y = R− r cosφ ẏ = −ṙ cosφ+ rφ̇ sinφ

The Lagrangian is then

L =

T
︷ ︸︸ ︷

(M + 1
2
m)Ẋ2 + 1

2
m(ṙ2 + r2φ̇2) +mẊ(ṙ sinφ+ rφ̇ cosφ) −

U
︷ ︸︸ ︷

mg(R− r cosφ)

Note that we are not allowed to substitute r = R and hence ṙ = 0 in the Lagrangian prior

to obtaining the equations of motion. Only after the generalized momenta and forces are
computed are we allowed to do so.
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(b) Find all the generalized momenta pσ, the generalized forces Fσ, and the forces of con-

straint Qσ.

Solution : The generalized momenta are

pr =
∂L

∂ṙ
= mṙ +mẊ sinφ

pX =
∂L

∂Ẋ
= (2M +m)Ẋ +mṙ sinφ+mrφ̇ cosφ

p
φ
=

∂L

∂φ̇
= mr2φ̇+mrẊ cosφ

The generalized forces and the forces of constraint are

Fr =
∂L

∂r
= mrφ̇2 +mẊφ̇ cosφ+mg cosφ Qr = λ

∂G

∂r
= λ

FX =
∂L

∂X
= 0 QX = λ

∂G

∂X
= 0

Fφ =
∂L

∂φ
= mẊṙ cosφ−mẊφ̇ sinφ−mgr sinφ Qφ = λ

∂G

∂φ
= 0 .

The equations of motion are
ṗσ = Fσ +Qσ .

At this point, we can legitimately invoke the constraint r = R and set ṙ = 0 in all the pσ
and Fσ.

(c) Derive expressions for all conserved quantities.

Solution : There are two conserved quantities, which each derive from continuous invariances
of the Lagrangian which respect the constraint. The first is the total momentum pX :

FX = 0 =⇒ P ≡ pX = constant .

The second conserved quantity is the Hamiltonian, which in this problem turns out to be
the total energy E = T +U . Incidentally, we can use conservation of P to write the energy
in terms of the variable φ alone. From

Ẋ =
P

2M +m
−

mR cosφ

2M +m
φ̇ ,

we obtain

E = 1
2
(2M +m)Ẋ2 + 1

2
mR2φ̇2 +mRẊφ̇ cosφ+mgR(1− cosφ)

=
αP 2

2m(1 + α)
+ 1

2
mR2

(
1 + α sin2φ

1 + α

)

φ̇2 +mgR(1− cosφ) ,
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where we’ve defined the dimensionless ratio α ≡ m/2M . It is convenient to define the
quantity

Ω2 ≡

(
1 + α sin2φ

1 + α

)

φ̇2 + 2ω2
0(1− cosφ) ,

with ω0 ≡
√

g/R. Clearly Ω2 is conserved, as it is linearly related to the energy E:

E =
αP 2

2m(1 + α)
+ 1

2
mR2Ω2 .

(d) Derive a differential equation of motion involving the coordinate φ(t) alone. I.e. your
equation should not involve r, X, or the Lagrange multiplier λ.

Solution : From conservation of energy,

d(Ω2)

dt
= 0 =⇒

(
1 + α sin2φ

1 + α

)

φ̈+

(
α sinφ cosφ

1 + α

)

φ̇2 + ω2
0 sinφ = 0 ,

again with α = m/2M . Incidentally, one can use these results in eqns. and to eliminate

φ̇ and φ̈ in the expression for the constraint force, Qr = λ = ṗr − Fr. One finds

λ = −mR
φ̇2 + ω2

0 cosφ

1 + α sin2φ

= −
mRω2

0

(1 + α sin2φ)2

{

(1 + α)

(
Ω2

ω2
0

− 4 sin2(1
2
φ)

)

+ (1 + α sin2φ) cosφ

}

.

This last equation can be used to determine the angle of detachment, where λ vanishes and
the mass m falls off the inside of the hoop. This is because the hoop can only supply a
repulsive normal force to the mass m. This was worked out in detail in my lecture notes on
constrained systems.

[2] A uniformly dense ladder of mass m and length 2ℓ leans against a block of mass M ,
as shown in Fig. 2. Choose as generalized coordinates the horizontal position X of the
right end of the block, the angle θ the ladder makes with respect to the floor, and the
coordinates (x, y) of the ladder’s center-of-mass. These four generalized coordinates are not
all independent, but instead are related by a certain set of constraints.

Recall that the kinetic energy of the ladder can be written as a sum T
CM

+ Trot, where

T
CM

= 1
2
m(ẋ2 + ẏ2) is the kinetic energy of the center-of-mass motion, and Trot = 1

2
Iθ̇2,

where I is the moment of inertial. For a uniformly dense ladder of length 2ℓ, I = 1
3
mℓ2.

(a) Write down the Lagrangian for this system in terms of the coordinates X, θ, x, y, and
their time derivatives.
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Figure 2: A ladder of length 2ℓ leaning against a massive block. All surfaces are frictionless..

Solution : We have L = T − U , hence

L = 1
2
MẊ2 + 1

2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2 −mgy .

(b) Write down all the equations of constraint.

Solution : There are two constraints, corresponding to contact between the ladder and the
block, and contact between the ladder and the horizontal surface:

G1(X, θ, x, y) = x− ℓ cos θ −X = 0

G2(X, θ, x, y) = y − ℓ sin θ = 0 .

(c) Write down all the equations of motion.

Solution : Two Lagrange multipliers, λ1 and λ2, are introduced to effect the constraints.

We have for each generalized coordinate qσ,

d

dt

(
∂L

∂q̇σ

)

−
∂L

∂qσ
=

k∑

j=1

λj

∂Gj

∂qσ
≡ Qσ ,

where there are k = 2 constraints. We therefore have

MẌ = −λ1

mẍ = +λ1

mÿ = −mg + λ2

Iθ̈ = ℓ sin θ λ1 − ℓ cos θ λ2 .

These four equations of motion are supplemented by the two constraint equations, yielding
six equations in the six unknowns {X, θ, x, y, λ1, λ2}.
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(d) Find all conserved quantities.

Solution : The Lagrangian and all the constraints are invariant under the transformation

X → X + ζ , x → x+ ζ , y → y , θ → θ .

The associated conserved ‘charge’ is

Λ =
∂L

∂q̇σ

∂q̃σ
∂ζ

∣
∣
∣
∣
ζ=0

= MẊ +mẋ .

Using the first constraint to eliminate x in terms of X and θ, we may write this as

Λ = (M +m)Ẋ −mℓ sin θ θ̇ .

The second conserved quantity is the total energy E. This follows because the Lagrangian
and all the constraints are independent of t, and because the kinetic energy is homogeneous
of degree two in the generalized velocities. Thus,

E = 1

2
MẊ2 + 1

2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2 +mgy

=
Λ2

2(M +m)
+ 1

2

(

I +mℓ2 − m
M+m

mℓ2 sin2 θ
)

θ̇2 +mgℓ sin θ ,

where the second line is obtained by using the constraint equations to eliminate x and y in
terms of X and θ.

(e) What is the condition that the ladder detaches from the block? You do not have to solve
for the angle of detachment! Express the detachment condition in terms of any quantities
you find convenient.

Solution : The condition for detachment from the block is simply λ1 = 0, i.e. the normal
force vanishes.

Further analysis : It is instructive to work this out in detail (though this level of analysis
was not required for the exam). If we eliminate x and y in terms of X and θ, we find

x = X + ℓ cos θ y = ℓ sin θ

ẋ = Ẋ − ℓ sin θ θ̇ ẏ = ℓ cos θ θ̇

ẍ = Ẍ − ℓ sin θ θ̈ − ℓ cos θ θ̇2 ÿ = ℓ cos θ θ̈ − ℓ sin θ θ̇2 .

We can now write

λ1 = mẍ = mẌ −mℓ sin θ θ̈ −mℓ cos θ θ̇2 = −MẌ ,

which gives
(M +m)Ẍ = mℓ

(
sin θ θ̈ + cos θ θ̇2

)
,
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Figure 3: Plot of θ∗ versus θ0 for the ladder-block problem. Allowed solutions, shown
in blue, have α ≥ 1, and thus θ∗ ≤ θ0. Unphysical solutions, with α < 1, are shown in
magenta. The line θ∗ = θ0 is shown in red.

and hence

Qx = λ1 = −
Mm

m+m
ℓ
(
sin θ θ̈ + cos θ θ̇2

)
.

We also have

Qy = λ2 = mg +mÿ

= mg +mℓ
(
cos θ θ̈ − sin θ θ̇2

)
.

We now need an equation relating θ̈ and θ̇. This comes from the last of the equations of
motion:

Iθ̈ = ℓ sin θ λ1 − ℓ cos θλ2

= − Mm
M+m

ℓ2
(
sin2θ θ̈ + sin θ cos θ θ̇2

)
−mgℓ cos θ −mℓ2

(
cos2θ θ̈ − sin θ cos θ θ̇2

)

= −mgℓ cos θ −mℓ2
(

1− m
M+m

sin2θ
)

θ̈ + m
M+m

mℓ2 sin θ cos θ θ̇2 .
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Collecting terms proportional to θ̈, we obtain

(
I +mℓ2 − m

M+m
sin2θ

)
θ̈ = m

M+m
mℓ2 sin θ cos θ θ̇2 −mgℓ cos θ .

We are now ready to demand Qx = λ1 = 0, which entails

θ̈ = −
cos θ

sin θ
θ̇2 .

Substituting this into eqn. , we obtain

(
I +mℓ2

)
θ̇2 = mgℓ sin θ .

Finally, we use this result to substitute for θ̇2 to obtain an equation for the detachment
angle θ∗:

E −
Λ2

2(M +m)
= mgℓ sin θ0 =

(

3−
m

M +m
·

mℓ2

I +mℓ2
sin2θ∗

)

· 1
2
mgℓ sin θ∗ .

If our initial conditions are that the system starts from rest1 with an angle of inclination
θ0, then the detachment condition becomes

sin θ0 =
3
2
sin θ∗ − 1

2

(
m

M +m

)(
mℓ2

I +mℓ2

)

sin3θ∗

= 3
2
sin θ∗ − 1

2
α−1 sin3θ∗ ,

where

α ≡

(

1 +
M

m

)(

1 +
I

mℓ2

)

.

Note that α ≥ 1, and that when M/m = ∞2, we recover θ∗ = sin−1
(
2
3
sin θ0

)
. For finite α,

the ladder detaches at a larger value of θ∗. A sketch of θ∗ versus θ0 is provided in Fig. 3.

Note that, provided α ≥ 1, detachment always occurs for some unique value θ∗ for each θ0.

1‘Rest’ means that the initial velocities are Ẋ = 0 and θ̇ = 0, and hence Λ = 0 as well.
2
I must satisfy I ≤ mℓ

2.
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