PHYSICS 110A : MECHANICS 1
PROBLEM SET #6 SOLUTIONS

[1] A point mass m slides frictionlessly, under the influence of gravity, along a massive ring
of radius ¢ and mass M. The ring is affixed by horizontal springs to two fixed vertical
surfaces, as depicted in Fig. 1. All motion is within the plane of the figure.

Figure 1: A point mass m slides frictionlessly along a massive ring of radius a and mass
M, which is affixed by horizontal springs to two fixed vertical surfaces.

(a) Choose as generalized coordinates the horizontal displacement X of the center of the ring
with respect to equilibrium, and the angle 8 a radius to the mass m makes with respect to
the vertical (see Fig. 1). You may assume that at X = 0 the springs are both unstretched.
Find the Lagrangian L(X,¥6, X.9, t).

(b) Derive the equations of motion.

(c) Find the eigenfrequencies for the small oscillations of this system. You may find it
convenient to define 22 = 2k/M, v? = g/a, and r = m/M.

Solution:
(a) The coordinates of the mass point are
r=X+asinf , y=—acosh .
The kinetic energy is
T=3IMX*+1Im(X+ 0L(:0S6’6")2 + 1ma® sin?0 6
=M +m)X*+ %mazé’2 +macosf X6 .

The potential energy is
U=kX?—mgacos® .

Thus, the Lagrangian is

L= %(M+m)X2 + %ma292 +macosf X 0 — kX2 + mgacosf .



(b) The equations of motion are

d(oL)_ oL
dt\ 94, ) 0Oq, '

for each generalized coordinate ¢,. For X we have
(M +m)X +macosf —masinf 6> = —2kX .

For 07 .. .
ma® 6 + macos X = —mgasin@ .

(c) Linearizing the equations of motion, we have

((M +m)w? — 2k maw? > (X(w)) 0

maw2 ma2w2 — mga

Setting the determinant to zero, we arrive at the quadratic equation
wt — ((22 + (1+ r)yz)wz + 12022 =0

and the eigenfrequencies are given by

wi =12+ (1+r)?)* %\/(02 -1+ 7‘)1/2)2 + 4r221?

[2] [José and Saletan problem 3.11] Consider a three-dimensional one-particle system whose
potential energy in cylindrical polar coordinates {p, ¢, z} is of the form V(p, k¢ + z), where
k is a constant.

(a) Find a symmetry of the Lagrangian and use Noether’s theorem to obtain the constant
of the motion associated with it.

(b) Write down at least one other constant of the motion.

(c) Obtain an explicit expression for the vector field de/dt = V (¢) , where
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and use it to verify that the functions found in (a) and (b) are indeed constants of the
motion.

Solution:



(a) We have .
L=12im(p*+ p?¢* + %) = V(p, ko + 2) .

Consider now the one-parameter family of coordinate transformations,

dN) =dp+ A\

ZA) =z—- Ak .
Clearly

kop+2=kd+z,

hence L does not vary with A, and therefore

is conserved: @ = 0.

(b) Since %—f = 0, the Hamiltonian H is conserved. And since the kinetic energy is homo-

geneous of degree two in the generalized velocities {p, <;5, 2}, the Hamiltonian is simply the
total energy: H =T + E. Thus,

E=im(p® + p*¢> + %) + V(p, k¢ + 2)
is conserved: E = 0.

(¢) The ‘dynamical vector field” A is simply the total time derivative, expressed in terms of
derivatives with respect to coordinates and velocities:
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The generalized accelerations follow from the equations of motion,

. oV
d o OV OV
a0 = 55 =k
LoV
mE= T
which yield
__1ov __ kv 29 1OV
P= m Op mp? 0z p T om0z



Therefore, we have
AQ =A (mpzqz.b — mk‘é)

=p-2mpd+ ¢ - mp? + % - (—mk)

We also have

AE =A %m([)2 + p2? + 2"2) +AV(p, ko + z)
LoV oV

LoV 95 7
—pa—p—l-qba—(b%—za—l—mpp—l—mp pP+mzz

LoV . oV OV . 1 0V
=p—+o-k—+i —+mp-| ——

dp 0z 0z m Odp
+mpe _ Kk V269 +mz LoV =0
mp? 0z p 0z

[3] A mass m moves frictionlessly under the influence of gravity along the curve y = 22 /2a.
Attached to the mass is a massless rigid rod of length £, at the end of which is an identical
mass m. The rod is constrained to swing in the (x,y) plane, as depicted in the figure below.
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(a) Choose as generalized coordinates = and ¢. Find the kinetic energy T and potential
energy U.

(b) Find the conjugate momenta p, and p,.
(c¢) Find the conjugate forces F, and F,.

(d) Write the Lagrangian for small oscillations, when 2? < a? and ¢ < 7.



(e) Find the coupled equations of motion for small oscillations.
(f) Find the eigenfrequencies for the two modes of oscillation.
Solution:

(a) The coordinates of the mass on the curve are (z, y;) = (z, ¥2/2a). Note y = (z/a) &
The coordinates for the hanging mass are (z,, y,) = (z + £sin¢, 22/2a — £cos ¢). The
kinetic energy is

T = gm(@] + 97 + 35 + 93)
z? 2 19252 T . .
=m|l+ — |&" + 3ml°¢ +m€<cosgb+—sm¢):p¢
a a

The potential energy is

mg
U=mg(y; +vys) = — 22 — mgl cos ¢

(b) We have L =T — U and

oL 22\ . T .
Pr = 5o =2m <1+§>:E+m€<cos¢+asm¢>¢
p¢zg—g:m€2¢5+m€<cos¢+§SinqS):i:
(c) We have
Fgc:a—L 2ma 2+—£smq§ qﬁ—m
Ox a? a
Fy= gg—m€<—s1n¢+—cos¢)xqﬁ mgf sin ¢

(d) For small |z| and |¢|, the Lagrangian is a quadratic form in the generalized coordinates
and velocities, viz.

2

z:mi2+%m£2é2+m£$‘¢_7$ Lmgl? + mgl

(e) Now we have

Dy = 2mi + mlep , Py = mlp + mli
and 5
mg
The equations of motion are therefore
2
o2mi + mld = —ﬂ
a

mli +mbld = —mgl ¢



(f) Define the dimensionless quantity u = x/¢. Then the equations of motion are

2+ ¢ = —20% u

where 21 = (g/a)'/? and 2y = (g/¢)"/?. Writing u(t) = uge ™! and ¢(t) = poe ™", we
have the coupled algebraic equations

2(w? — Qf) w? U\ _ g
AT
2

Setting the determinant to zero, we obtain a quadratic equation in w<,

wh =202 + 0w + 22022 =0 |

Wi =02+ 025+ + 2

with solutions



