PHYSICS 110A : MECHANICS 1
PROBLEM SET #3 SOLUTIONS
There are four problems in all. Problems 1 and 2 constitute a practice midterm exam.

[1] A particle of mass m moves in the one-dimensional potential

Uz) = =2 (2% — a2)2 . (1)

(a) Sketch U(z). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as z — 4o0.
[15 points]

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy F = % Uy. Do the same for £ = 2U,,.

[15 points]

(¢) The phase space dynamics are written as ¢ = V (), where ¢ = (i) Find the upper

and lower components of the vector field V.
[10 points]

(d) Derive an expression for the period T' of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]

Solution :
(a) Clearly the minima lie at # = £a and there is a local maximum at z = 0.

(b) See Fig. 1 for the phase curves. Clearly U(+a) = 0 is the minimum of the potential,
and U(0) = U, is the local maximum and the energy of the separatrix. Thus, £ = % U, cuts
through the potential in both wells, and the phase curves at this energy form two disjoint
sets. For EJ < U, there are four turning points, at

Ty _=-—a 1+

| E
Uo
and
| E
Ty _ =at|1l—1/—
2 UO
For E = 2U,, the energy is above that of the separatrix, and there are only two turning
points, z _ and Loy The phase curve is then connected.

(c) From mi = —U’(z) we have

i (2) = () = (o) g
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Figure 1: Sketch of the double well potential U(x) = (Up/a*)(x? —a?)?, here with distances
in units of a, and associated phase curves. The separatrix is the phase curve which runs
through the origin. Shown in red is the phase curve for U = % Uy, consisting of two deformed
ellipses. For U = 2 Uj, the phase curve is connected, lying outside the separatrix.

(d) Set x = +a + n and Taylor expand:
4Uy
Ulta+n) =— 7+ 00 . (3)
Equating this with %k n?, we have the effective spring constant k = 8U,/ a?, and the small

oscillation frequency
k 8 Uo
0=\ =V )

The period is 27 /w,.



[2] An R-L-C circuit is shown in fig. 2. The resistive element is a light bulb. The inductance
is L = 400 puH; the capacitance is C' = 1 uF; the resistance is R = 32. The voltage V (t)
oscillates sinusoidally, with V' (t) = V; cos(wt), where V;; = 4V. In this problem, you may
neglect all transients; we are interested in the late time, steady state operation of this
circuit. Recall the relevant MKS units:

10=1V-s/C , 1F=1C/V , 1H=1V.s*/C
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Figure 2: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped? Why?
[10 points]

(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is
greater than a threshold P, = % W. For fixed V|, = 4V, find the frequency range for w over
which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
Py(t) = I*(t)R. (Average this over a cycle to get the average power dissipated.)

[20 points]

(c) Neglecting transients, compare the expressions for the instantaneous power supplied
by the voltage source, P, (t), and the power dissipated by the resistor Py (t) = I*(t)R. If
P, (t) # Pg(t), where does the power extra power go or come from? What can you say
about the averages of P, and Pp(t) over a cycle? Explain your answer.

[20 points]

(d) What is the maximum charge ___on the capacitor plate if w = 3000s~'?

[100 quatloos extra credit]

max



Solution :

(a) We have
—1/2 4 1 R 41
wy = (LC) =5x10%s , ﬁ:ﬁ:zlxlOs
Thus, w% > (32 and the circuit is underdamped.
(b) The charge on the capacitor plate obeys the ODE
. Q.
LQ—FRQ—FE =V(t)

The solution is v
Q(t) = Quom(t) + A(w) fo cos (wt — (5(w)) ,

with

—-1/2 26w
Alw) = (w2 — w2)? + 45202 5(w) — tan~!
@ = e - e ) = ()

Thus, ignoring the transients, the power dissipated by the bulb is

2
Pu(t) = Q*(t) R = w?A?*(w) szR sin® (wt — 6(w))

Averaging over a period, we have (sin?(wt —6)) = %, SO

V*O2R _ V_O2 4B2w2

Pp) = w?A® =2
(Pr)=wA(w) 2L? 2R (w} —w?)? + 45%w?

Now V#/2R = 1 W. So P, = aV§/2R, with o = §. We then set (Py) = P,,, whence
(1—a)-46%w? = a(wi — w?)?

The solutions are

(07

wy =+ 1_0‘5+¢<1;0‘>ﬁ2+w3= (3v/3 & v/2) x 10005~

So light is emitted for w € (w_,w, ).

(¢) The instantaneous power supplied by the voltage source is

2
P,(t)=V(t)I(t)=—wA VTO sin(wt — 9) cos(wt)

VE /. .
=wA BT (Sln5 — sin(2wt — 5))
As we have seen, the power dissipated by the bulb is
2

Py(t) = w?A? % sinXwt — 0)



These two quantities are not identical, but they do have identical time averages over one
cycle:

‘/02 2 2 42
(Py(t)) = (Pa(t)) = 5 - 452 w? A%(w)

Py (t) = Py(t) +E(t) )

where o )
L
2 2C

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of E over a

E(t)

cycle must vanish, which guarantees ( Py, (t)) = ( Py(t)).

(d) Kirchoff’s law gives for this circuit the equation

Q+2BQ+w§Q:% cos(wt)

with the solution

Q1) = Q1) + A) *L cos (wt — 5(w))

where @, (t) is the homogeneous solution, i.e. the transient which we ignore, and

Alw) = (wg — w?)? 4+ 4p5%02 e , O(w) = tan_1< 225w >

wg — w?

Then v

— Alw) 22

Qmax (w) L
Plugging in w = 3000s~!, we have
Aw) = [(6> =322 +4-4%.32] /2 x1073¢% = ELERNTE R
8v/13

Since V,/L = 10? C/s?, we have

5

Quax = ——=C=0.347C

4y/13

[3] The potential energy of two atoms in a molecule can sometimes be approximated by the
Morse function,

2
U(r) = A[(e(R_T)/’\ - 1) - 1] ,
where r is the interatomic distance and A, R, and A are positive constants.

(a) Sketch the function U(r) for 0 < r < oo.



(b) Find the equilibrium separation r* at which U(r) is minimized.

(c) Assume the motion is one-dimensional. Writing r» = r*+x, so that z is the displacement
relative to equilibrium, show that U(r) takes the form U(r* +z) = Uy + 3k for small |z|,
so that Hooke’s law applies. What do we mean by ‘small’?

(d) What is the effective force constant k?

Solution :
2
15}
nl
il
-0.5
o 2 “ 6 8 10
Figure 3: Sketch of Morse potential for A= R =X =1.
(a) See fig. 3.

(b) The equilibrium separation 7* is the solution to the equation U’(r*) = 0. From

U'(r)= —% B/ (e(R_r)/A - 1)

we obtain 7* = R.

c) now we expand U (r) as a Taylor series about r = r* = R:
(c)

UR+z)= Al -1)° - A

T 22 2
_A<_X+W+’”) )
22 a3

from which we determine U, = —A and k = U”(R) = 2A/)\%. By ’small’ we mean that
the third order term in the Taylor expansion is small in comparison with the second order
term, which evidently requires |z| < .

(d) We have k = U”(R) = 2A/\%.



[4] An undamped oscillator has a period T' = 1.000s. Some damping is then introduced,
causing the period of the damped oscillations to increase to 7" = 1.001s.

(a) What is the damping coefficient 37
(b) By what factor will the oscillation amplitude be decreased after ten cycles?

(c) Which effect of the damping would be more noticeable: the change in the period, or the
change in the amplitude?

Solution :

(a) We have wy = 27/T and T' = 27 /v = 27 /+/w} — 32. Thus,

(b) The amplitude reduction is

exp(—108T") = 0.060

(c) The amplitude is exponentially attenuated and after ten cycles is affected much more
than the frequency.



