PHYSICS 110A : MECHANICS 1
PROBLEM SET #2 SOLUTIONS

[1] Using the method of partial fractions, solve the ODE

d
d—? = (u—1)(u—2)(u—3)
for t(u). Sketch the phase flow along the real u line, and the integral curves in the (¢, u)
plane. Show that for uy, < 1 or uy, > 3 that u(t) flows to u = 00 in a finite time t*, but
that for u, € (1,3) the flow is toward the stable fixed point u* = 2, which takes infinite
time to reach.

Solution:

We begin with a review of the method of partial fractions as applied to our problem. We
have

1 a IS Y
(u—a)(u—>b)(u—c) u—a+u—b+u—c
where
R S B SR
(a—b)(a—c) ~’ (b—a)b—c) U (c—a)(c—0b)
Thus,

du
(u—a)(u—>b)(u—-c)

Integrating, then, we have

= adlog(u — a) + Bdlog(u — b) + ydlog(u — ¢) = dt

(u—a)* (uw=0)" (u—0)7 = (ug — a)* (ug — b)" (ug — )" ¢

4

Figure 1: The function f(u) = (u — 1)(u — 2)(u — 3) and the flow @ = f(u).



Figure 2: Integral curves for problem 1.

Withazl,b:2,andc:3wehavea:%,ﬁ:—l,andvz%. Defining v = u — 2, we

then have
V1—v"2=4/1-v5%e" |

which yields

1 1—0v2
t(v :—].O S E—
(v) =5 g
and
Vo

v(t
t) = Vg + (1 — ) exp(2t)

Recall that u = v + 2. We see that if |vy| < 1, i.e. if uy € (1,3), then as ¢ — oo we have
v(t) — 0, which is to say u(t) — 2. For |vy| > 1, which is to say u, < 1 or u, > 3, the
denominator vanishes at a finite time ¢*, where

2
ton) = o 527 )

and as t — t* we have v(t) — 400 for v, > 0 and v(t) - —oo for v, < 0. The particle
escapes to infinity in a finite time, because the velocity function f(u) grows faster than
linearly, hence, with u, > 3, for example,

L{%<OO




converges.

[2] Consider the n = 2 dynamical system given by

dx 3 dy 2
Tl A s =TTy -y,

where r > 0.

(a) Assuming r > 1, how many fixed points are there? Find them. Hint: Start with the
second equation.

(b) Show that for r < 1 there are two more fixed points. Find them.

(c) Expanding about a fixed point (z*,y*), with u, = 2 —2* and u,, = y —y*, the linearized
dynamics takes the form @ = Mw, where M is a 2 X 2 matrix. Find an expression for M
at the fixed point (z*,y*).

(d) What are the eigenvalues of the linearized system @ = Mwu at (z*,y*) = (0,0)7
Solution:

(a) Starting with the second equation, we set y = (rz — y)y = 0, with solutions y = 0 and
y = rz. For y = 0, we solve & = (1 — 22) = 0 to obtain = 0 and x = 41. This gives us
three roots, at (0,0), (1,0), and (—1,0).

(b) When y = 7z, the first equation gives & = (1 — r — 22)z = 0, the solutions of which
are x = 0 and x = £+/1 — r. The first of these fixed points lies at (0,0), which we already
found in part (a). The second two fixed points lie at j:(\/l —r,ry/1— 7‘), and are real only
for r < 1.

(c) We have V,(z,y) = = —y — 2% and Vy(z,y) = rzy — y?. Thus,

ov,/ox 0V,/0y 1 — 3z*2 -1
M — =
ov,/0x 9V, /0y ( ry* ra’ — 2y*

x*,y*)

1 -1
0 0
the eigenvalues are 1 and 0. Thus one unstable direction, associated with the eigenvector

<(1)> and eigenvalue 1, and a fized line, associated with the direction <i>

(d) At (z*,y*) = (0,0), we have M = > This gives Tr M = 1 and det M = 0, hence

[3] Consider the n = 2 dynamical system

% @ - <—U07<¢>> ’



where U(¢) = — cos ¢+ 2rsin?¢ with r > 0. Phase space is thus a cylinder: (¢,w) € S* xR.
(a) Show that the energy F = %wz + U(¢) is conserved.

(b) Show that there is a critical value r, such that for r» < r, the potential U(¢) has a single
minimum at ¢ = 0 and a single maximum at ¢ = £m, but for » > r_, there is a global
minimum at ¢ = 0, a local minimum at ¢ = £7, and two local maxima at ¢ = +¢*(r).
Find the value of r, and the function ¢*(r).

(c) Sketch the potential U(¢) for r = 0.15. Plot the phase curves at energies F; = 0 and
E, =15

(d) Sketch the potential U(¢) for r = 0.80. Find the separatrix energy corresponding to
the energy E* = U,,,, . Plot the phase curves at energies Iy =0, Ey, = 1.2, E5 = E*, and
B, =22

Solution:

(a) With E = $w? + U(¢) we have
dE. dw dU(¢)do .. p B
7Y +—¢ i [w+U(¢)]w—0

(b) We analyze the potential by finding its extrema, setting U'(¢) = 0. We may write
U(¢) = —c+ 2r(1 — ¢?) with ¢ = cos ¢, hence U’(¢) = —(dU/dc) sin ¢, with

au
=—4drc—1
dcos ¢ re
Thus, U’'(¢) = 0 whenever sin¢ = 0 (i.e. the minima at ¢ = 0 and ¢ = +7), or cos ¢ =
c* = —1/4r (i.e. the maxima at ¢ = £ cos~!c*). The local maxima exist only if |c*| < 1,
which requires r > r, = 1, in which case ¢*(r) = cos™!(—1/4r).

(¢) The plots are shown in the left panels of fig. 3.

(d) The energy of the separatrix ie E* = Uy, = U(¢*(r)), thus

N 1 1 1
E ———I—2r<1—m) =2+ o
For r = 0.8 we have " = % = 1.75625. For E € [—1,1) there is a single closed phase curve
centered at ¢ = 0, topologically equivalent to a circle. As FE exceeds E = U(£7) = 1, the
phase curves develop another branch centered at ¢ = m. (Thus F =1 is also a separatrix,
since the topology of the phase curves changes at that energy.) At E = E* these two
disjoint portions of the phase curve merge. For F > E* there are again two disjoint phase
curves, each of which winds fully around the (¢,w) cylinder, one of which lies in the upper
half of the cylinder (w > 0, corresponding to counterclockwise rotation of the angle ¢), and
the other in the lower half of the cylinder (w < 0, clockwise rotation of ¢).
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Figure 3: Potential and phase curves at representative energies for » = 0.15 (left panels)
and r = 0.80 (right panels).
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