
PHYSICS 110A : MECHANICS 1
PROBLEM SET #2 SOLUTIONS

[1] Using the method of partial fractions, solve the ODE

du

dt
= (u− 1)(u− 2)(u − 3)

for t(u). Sketch the phase flow along the real u line, and the integral curves in the (t, u)
plane. Show that for u0 < 1 or u0 > 3 that u(t) flows to u = ±∞ in a finite time t∗, but
that for u0 ∈ (1, 3) the flow is toward the stable fixed point u∗ = 2, which takes infinite
time to reach.

Solution:

We begin with a review of the method of partial fractions as applied to our problem. We
have

1

(u− a)(u− b)(u− c)
=

α

u− a
+

β

u− b
+

γ

u− c
.

where

α =
1

(a− b)(a− c)
, β =

1

(b− a)(b− c)
, γ =

1

(c− a)(c− b)
.

Thus,

du

(u− a)(u− b)(u− c)
= αd log(u− a) + β d log(u− b) + γ d log(u− c) = dt .

Integrating, then, we have

(u− a)α (u− b)β (u− c)γ = (u0 − a)α (u0 − b)β (u0 − c)γ et

Figure 1: The function f(u) = (u− 1)(u− 2)(u − 3) and the flow u̇ = f(u).
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Figure 2: Integral curves for problem 1.

With a = 1, b = 2, and c = 3 we have α = 1
2 , β = −1, and γ = 1

2 . Defining v ≡ u− 2, we
then have

√

1− v−2 =

√

1− v−2
0 et ,

which yields

t(v) =
1

2
log

∣

∣

∣

∣

∣

1− v−2

1− v−2
0

∣

∣

∣

∣

∣

and

v(t) =
v0

√

v20 + (1− v20) exp(2t)
.

Recall that u = v + 2. We see that if |v0| < 1, i.e. if u0 ∈ (1, 3), then as t → ∞ we have
v(t) → 0, which is to say u(t) → 2. For |v0| > 1, which is to say u0 < 1 or u0 > 3, the
denominator vanishes at a finite time t∗, where

t∗(v0) =
1
2 log

(

v20
v20 − 1

)

,

and as t → t∗ we have v(t) → +∞ for v0 > 0 and v(t) → −∞ for v0 < 0. The particle
escapes to infinity in a finite time, because the velocity function f(u) grows faster than
linearly, hence, with u0 > 3, for example,

∞
∫

u
0

du

f(u)
< ∞
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converges.

[2] Consider the n = 2 dynamical system given by

dx

dt
= x− y − x3 ,

dy

dt
= rxy − y2 ,

where r > 0.

(a) Assuming r > 1, how many fixed points are there? Find them. Hint: Start with the

second equation.

(b) Show that for r < 1 there are two more fixed points. Find them.

(c) Expanding about a fixed point (x∗, y∗), with ux ≡ x−x∗ and uy = y−y∗, the linearized
dynamics takes the form u̇ = Mu, where M is a 2 × 2 matrix. Find an expression for M
at the fixed point (x∗, y∗).

(d) What are the eigenvalues of the linearized system u̇ = Mu at (x∗, y∗) = (0, 0)?

Solution:

(a) Starting with the second equation, we set ẏ = (rx− y)y = 0, with solutions y = 0 and
y = rx. For y = 0, we solve ẋ = x(1− x2) = 0 to obtain x = 0 and x = ±1. This gives us
three roots, at (0, 0), (1, 0), and (−1, 0).

(b) When y = rx, the first equation gives ẋ = (1 − r − x2)x = 0, the solutions of which
are x = 0 and x = ±

√
1− r. The first of these fixed points lies at (0, 0), which we already

found in part (a). The second two fixed points lie at ±
(√

1− r, r
√
1− r

)

, and are real only
for r < 1.

(c) We have Vx(x, y) = x− y − x3 and Vy(x, y) = rxy − y2. Thus,

M =





∂Vx/∂x ∂Vx/∂y

∂Vy/∂x ∂Vy/∂y





(x∗,y∗)

=





1− 3x∗2 −1

ry∗ rx∗ − 2y∗



 .

(d) At (x∗, y∗) = (0, 0), we have M =

(

1 −1
0 0

)

. This gives TrM = 1 and detM = 0, hence

the eigenvalues are 1 and 0. Thus one unstable direction, associated with the eigenvector
(

1
0

)

and eigenvalue 1, and a fixed line, associated with the direction

(

1
1

)

.

[3] Consider the n = 2 dynamical system

d

dt

(

φ
ω

)

=

(

ω
−U ′(φ)

)

,
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where U(φ) = − cosφ+2r sin2φ with r ≥ 0. Phase space is thus a cylinder: (φ, ω) ∈ S1×R.

(a) Show that the energy E = 1
2 ω

2 + U(φ) is conserved.

(b) Show that there is a critical value rc such that for r < rc the potential U(φ) has a single
minimum at φ = 0 and a single maximum at φ = ±π, but for r > rc, there is a global
minimum at φ = 0, a local minimum at φ = ±π, and two local maxima at φ = ±φ∗(r).
Find the value of rc and the function φ∗(r).

(c) Sketch the potential U(φ) for r = 0.15. Plot the phase curves at energies E1 = 0 and
E2 = 1.5.

(d) Sketch the potential U(φ) for r = 0.80. Find the separatrix energy corresponding to
the energy E∗ = Umax . Plot the phase curves at energies E1 = 0, E2 = 1.2, E3 = E∗, and
E4 = 2.2.

Solution:

(a) With E = 1
2ω

2 + U(φ) we have

dE

dt
= ω

dω

dt
+

dU(φ)

φ

dφ

dt
=

[

ω̇ + U ′(φ)
]

ω = 0 .

(b) We analyze the potential by finding its extrema, setting U ′(φ) = 0. We may write
U(φ) = −c+ 2r(1− c2) with c ≡ cosφ, hence U ′(φ) = −(dU/dc) sinφ, with

dU

d cosφ
= −4rc− 1 .

Thus, U ′(φ) = 0 whenever sinφ = 0 (i.e. the minima at φ = 0 and φ = ±π), or cosφ =
c∗ = −1/4r (i.e. the maxima at φ = ± cos−1 c∗). The local maxima exist only if |c∗| < 1,
which requires r > rc =

1
4 , in which case φ∗(r) = cos−1(−1/4r).

(c) The plots are shown in the left panels of fig. 3.

(d) The energy of the separatrix ie E∗ = Umax = U
(

φ∗(r)
)

, thus

E∗ =
1

4r
+ 2r

(

1− 1

16r2

)

= 2r +
1

8r
.

For r = 0.8 we have E∗ = 281
160 = 1.75625. For E ∈ [−1, 1) there is a single closed phase curve

centered at φ = 0, topologically equivalent to a circle. As E exceeds E = U(±π) = 1, the
phase curves develop another branch centered at φ = π. (Thus E = 1 is also a separatrix,
since the topology of the phase curves changes at that energy.) At E = E∗ these two
disjoint portions of the phase curve merge. For E > E∗ there are again two disjoint phase
curves, each of which winds fully around the (φ, ω) cylinder, one of which lies in the upper
half of the cylinder (ω > 0, corresponding to counterclockwise rotation of the angle φ), and
the other in the lower half of the cylinder (ω < 0, clockwise rotation of φ).
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Figure 3: Potential and phase curves at representative energies for r = 0.15 (left panels)
and r = 0.80 (right panels).
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