PHYSICS 110A : MECHANICS 1 MIDTERM EXAMINATION SOLUTIONS

[1] A point particle of mass m moves in one space dimension with potential energy

$$
U(x) = U_0 \left(\frac{x^3}{3a^3} - \frac{x}{a}\right)
$$

.

Here U_0 and a are both positive.

(a) What are the dimensions of a and of U_0 ?

[5 points]

(b) Sketch $U(x)$, identifying the behavior at $x \to \pm \infty$, the value at $x = 0$, and the location and values of any local minima and maxima. [15 points]

(c) Sketch the phase curves for $E = -\frac{2}{3}$ $\frac{2}{3}U_0, E = 0, E = \frac{2}{3}$ $\frac{2}{3}U_0$, and $E = 1.35U_0$. Identify which of the curves is a separatrix. Note that a given phase curve may have more than one disconnected component.

[15 points]

(d) Find an expression for the period of the bound orbit at $E = 0$, *i.e.* find $T(E = 0)$. Express $T(E = 0)$ fas a dimensionful quantity multiplied by a dimensionless integral. [15 points]

Solution :

(a) $[a] = L$ and $[U_0] = E = ML^2/T^2$

(b) See the top panel of fig. [1.](#page-1-0) There is a local maximum at $x = -a$ and a local minimum at $x = +a$, since $U'(\pm a) = 0$.

(c) See the bottom panel of fig. [1.](#page-1-0) The phase curve for $E = \frac{2}{3}U_0$, corresponding the local maximum of $U(x)$ at $x = -a$, is a separatrix (shown in red). All phase curves for energies $E < \frac{2}{3}U_0$ are disjoint sets, *i.e.* they consist of a union of a bound periodic orbit and an $L ₃ U₀$ are disjoint sets, i.e. they consist of a union of a bound periodic orbit and an
unbound orbit. At energy $E = -\frac{2}{3}U_0$, corresponding to the local minimum of $U(x)$ at $x = +a$, the bound orbit has shrunken to a single fixed point. Below $E = -\frac{2}{3}U_0$ there are only unbound orbits.

(d) The turning points for the bound orbit at $E = 0$ are $x_-(0) = 0$ and $x_+(0) = \sqrt{3}a$, which are solutions to $E = U(x) = 0$. Thus, from $E = \frac{1}{2}mv^2 + U(x)$ we have $dt = \pm dx/v$ and

$$
T(E) = \sqrt{2m} \int_{x_{-}(E)}^{x_{+}(E)} \frac{dx'}{\sqrt{E - U(x')}} = \sqrt{\frac{2m}{U_0}} \int_{0}^{\sqrt{3}a} \frac{dx'}{\sqrt{\frac{x'}{a} - \frac{x'^3}{3a^3}}}
$$

Figure 1: Top: $U(x)$ versus x/a . Bottom: phase curves for $E = -\frac{2}{3}$ $\frac{2}{3}U_0$ (green), $E = 0$ (blue), $E = \frac{2}{3}U_0$ (red), and $E = 1.35U_0$ (magenta). The velocity scale v_0 is given by $v_0 = \sqrt{2U_0/m}.$

With $s \equiv x/a$ we have

$$
T(0) = \sqrt{\frac{2ma^2}{E_0}} \int\limits_{0}^{\sqrt{3}} \frac{ds}{\sqrt{s - \frac{1}{3}s^2}} \simeq 3.45082 \sqrt{\frac{2ma^2}{E_0}}
$$

,

where the last result is from numerical integration.

[2] A forced, damped oscillator obeys the equation

$$
\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_0 \cos(\omega_0 t) .
$$

You may assume the oscillator is underdamped. Note that the forcing frequency ω_0 is identical to the natural frequency of the unforced, undamped oscillator.

(a) Write down the most general solution of this differential equation. [20 points]

(b) Your solution should involve two constants. Derive two equations relating these constants to the initial position $x(0)$ and the initial velocity $\dot{x}(0)$. You do not have to solve these equations.

[15 points]

(c) Suppose $\omega_0 = 5.0 \,\mathrm{s}^{-1}$, $\beta = 4.0 \,\mathrm{s}^{-1}$, and $f_0 = 8 \,\mathrm{cm} \,\mathrm{s}^{-2}$. Suppose further you are told that $x(0) = 0$ and $x(T) = 0$, where $T = \frac{\pi}{6}$ $\frac{\pi}{6}$ s. Derive an expression for the initial velocity $\dot{x}(0)$. [15 points]

Solution :

(a) The general solution with forcing $f(t) = f_0 \cos(\Omega t)$ is

$$
x(t) = xh(t) + A(\Omega) f0 \cos (\Omega t - \delta(\Omega)),
$$

with

$$
A(\Omega) = \left[(\omega_0^2 - \Omega^2)^2 + 4\beta^2 \Omega^2 \right]^{-1/2} , \quad \delta(\Omega) = \tan^{-1} \left(\frac{2\beta\Omega}{\omega_0^2 - \Omega^2} \right)
$$

and

$$
xh(t) = Ce^{-\beta t} \cos(\nu t) + De^{-\beta t} \sin(\nu t) ,
$$

with $\nu = \sqrt{\omega_0^2 - \beta^2}$.

In our case, $\Omega = \omega_0$, in which case $A = (2\beta\omega_0)^{-1}$ and $\delta = \frac{1}{2}$ $\frac{1}{2}\pi$. Thus, the most general solution is

$$
x(t) = Ce^{-\beta t} \cos(\nu t) + De^{-\beta t} \sin(\nu t) + \frac{f_0}{2\beta \omega_0} \sin(\omega_0 t) .
$$

(b) We determine the constants C and D by the boundary conditions on $x(0)$ and $\dot{x}(0)$:

$$
x(0) = C
$$
, $\dot{x}(0) = -\beta C + \nu D + \frac{f_0}{2\beta}$

.

Thus,

$$
C = x(0) \qquad , \qquad D = \frac{\beta}{\nu} x(0) + \frac{1}{\nu} \dot{x}(0) - \frac{f_0}{2\beta\nu} .
$$

(c) From $x(0) = 0$ we obtain $C = 0$. The constant D is then determined by the condition at time $t = T = \frac{1}{6}$ $\frac{1}{6}\pi$.

Note that $\nu = \sqrt{\omega_0^2 - \beta^2} = 3.0 \,\mathrm{s}^{-1}$. Thus, with $T = \frac{1}{6}$ $\frac{1}{6}\pi$, we have $\nu T = \frac{1}{2}$ $\frac{1}{2}\pi$, and

$$
x(T) = D e^{-\beta T} + \frac{f_0}{2\beta \omega_0} \sin(\omega_0 T) .
$$

This determines D:

$$
D = -\frac{f_0}{2\beta\omega_0} e^{\beta T} \sin(\omega_0 T) .
$$

We now can write

$$
\dot{x}(0) = \nu D + \frac{f_0}{2\beta}
$$

= $\frac{f_0}{2\beta} \left(1 - \frac{\nu}{\omega_0} e^{\beta T} \sin(\omega_0 T) \right)$
= $\left(1 - \frac{3}{10} e^{2\pi/3} \right) \text{cm/s} .$

Numerically, the value is $\dot{x}(0) \approx 0.145\,\mathrm{cm/s}$ $\,$.