PHYSICS 110A : MECHANICS 1 MIDTERM EXAMINATION SOLUTIONS

[1] A point particle of mass m moves in one space dimension with potential energy

$$U(x) = U_0 \left(\frac{x^3}{3a^3} - \frac{x}{a}\right)$$

Here U_0 and a are both positive.

(a) What are the dimensions of a and of U_0 ?

[5 points]

(b) Sketch U(x), identifying the behavior at $x \to \pm \infty$, the value at x = 0, and the location and values of any local minima and maxima. [15 points]

(c) Sketch the phase curves for $E = -\frac{2}{3}U_0$, E = 0, $E = \frac{2}{3}U_0$, and $E = 1.35U_0$. Identify which of the curves is a separatrix. Note that a given phase curve may have more than one disconnected component.

[15 points]

(d) Find an expression for the period of the bound orbit at E = 0, *i.e.* find T(E = 0). Express T(E = 0) fas a dimensionful quantity multiplied by a dimensionless integral. [15 points]

Solution :

(a) [a] = L and $[U_0] = E = ML^2/T^2$

(b) See the top panel of fig. 1. There is a local maximum at x = -a and a local minimum at x = +a, since $U'(\pm a) = 0$.

(c) See the bottom panel of fig. 1. The phase curve for $E = \frac{2}{3}U_0$, corresponding the local maximum of U(x) at x = -a, is a separatrix (shown in red). All phase curves for energies $E < \frac{2}{3}U_0$ are disjoint sets, *i.e.* they consist of a union of a bound periodic orbit and an unbound orbit. At energy $E = -\frac{2}{3}U_0$, corresponding to the local minimum of U(x) at x = +a, the bound orbit has shrunken to a single fixed point. Below $E = -\frac{2}{3}U_0$ there are only unbound orbits.

(d) The turning points for the bound orbit at E = 0 are $x_{-}(0) = 0$ and $x_{+}(0) = \sqrt{3}a$, which are solutions to E = U(x) = 0. Thus, from $E = \frac{1}{2}mv^{2} + U(x)$ we have $dt = \pm dx/v$ and

$$T(E) = \sqrt{2m} \int_{x_{-}(E)}^{x_{+}(E)} \frac{dx'}{\sqrt{E - U(x')}} = \sqrt{\frac{2m}{U_0}} \int_{0}^{\sqrt{3}a} \frac{dx'}{\sqrt{\frac{x'}{a} - \frac{x'^3}{3a^3}}}$$

Figure 1: Top: U(x) versus x/a. Bottom: phase curves for $E = -\frac{2}{3}U_0$ (green), E = 0 (blue), $E = \frac{2}{3}U_0$ (red), and $E = 1.35U_0$ (magenta). The velocity scale v_0 is given by $v_0 = \sqrt{2U_0/m}$.

With $s \equiv x/a$ we have

$$T(0) = \sqrt{\frac{2ma^2}{E_0}} \int_0^{\sqrt{3}} \frac{ds}{\sqrt{s - \frac{1}{3}s^2}} \simeq 3.45082 \sqrt{\frac{2ma^2}{E_0}}$$

where the last result is from numerical integration.

[2] A forced, damped oscillator obeys the equation

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f_0 \cos(\omega_0 t)$$

You may assume the oscillator is underdamped. Note that the forcing frequency ω_0 is identical to the natural frequency of the unforced, undamped oscillator.

(a) Write down the most general solution of this differential equation.[20 points]

(b) Your solution should involve two constants. Derive two equations relating these constants to the initial position x(0) and the initial velocity $\dot{x}(0)$. You do not have to solve these equations.

[15 points]

(c) Suppose $\omega_0 = 5.0 \,\mathrm{s}^{-1}$, $\beta = 4.0 \,\mathrm{s}^{-1}$, and $f_0 = 8 \,\mathrm{cm}\,\mathrm{s}^{-2}$. Suppose further you are told that x(0) = 0 and x(T) = 0, where $T = \frac{\pi}{6}$ s. Derive an expression for the initial velocity $\dot{x}(0)$. [15 points]

Solution :

(a) The general solution with forcing $f(t)=f_0\,\cos(\varOmega t)$ is

$$x(t) = x_{\rm h}(t) + A(\Omega) f_0 \cos\left(\Omega t - \delta(\Omega)\right) \,,$$

with

$$A(\Omega) = \left[(\omega_0^2 - \Omega^2)^2 + 4\beta^2 \Omega^2 \right]^{-1/2} \quad , \quad \delta(\Omega) = \tan^{-1} \left(\frac{2\beta\Omega}{\omega_0^2 - \Omega^2} \right)$$

and

$$x_{\rm h}(t) = C e^{-\beta t} \cos(\nu t) + D e^{-\beta t} \sin(\nu t) ,$$

with $\nu = \sqrt{\omega_0^2 - \beta^2}$.

In our case, $\Omega = \omega_0$, in which case $A = (2\beta\omega_0)^{-1}$ and $\delta = \frac{1}{2}\pi$. Thus, the most general solution is

$$x(t) = C e^{-\beta t} \cos(\nu t) + D e^{-\beta t} \sin(\nu t) + \frac{f_0}{2\beta\omega_0} \sin(\omega_0 t)$$

(b) We determine the constants C and D by the boundary conditions on x(0) and $\dot{x}(0)$:

$$x(0) = C$$
 , $\dot{x}(0) = -\beta C + \nu D + \frac{f_0}{2\beta}$

Thus,

$$C = x(0) \qquad , \qquad D = \frac{\beta}{\nu} x(0) + \frac{1}{\nu} \dot{x}(0) - \frac{f_0}{2\beta\nu}$$

(c) From x(0) = 0 we obtain C = 0. The constant D is then determined by the condition at time $t = T = \frac{1}{6}\pi$.

Note that $\nu = \sqrt{\omega_0^2 - \beta^2} = 3.0 \,\mathrm{s}^{-1}$. Thus, with $T = \frac{1}{6}\pi$, we have $\nu T = \frac{1}{2}\pi$, and

$$x(T) = D e^{-\beta T} + \frac{f_0}{2\beta\omega_0} \sin(\omega_0 T) \quad .$$

This determines D:

$$D = -\frac{f_0}{2\beta\omega_0} e^{\beta T} \sin(\omega_0 T) \quad .$$

We now can write

$$\begin{split} \dot{x}(0) &= \nu D + \frac{f_0}{2\beta} \\ &= \frac{f_0}{2\beta} \bigg(1 - \frac{\nu}{\omega_0} e^{\beta T} \, \sin(\omega_0 T) \bigg) \\ &= \left(1 - \frac{3}{10} e^{2\pi/3} \right) \mathrm{cm/s} \quad . \end{split}$$

Numerically, the value is $\dot{x}(0)\approx 0.145\,{\rm cm/s}$ ~ .