PHYSICS 110A: MECHANICS 1 PROBLEM SET #1

[1] The one-component dynamical system $\dot{u} = f(u)$ is simple to solve graphically. Simply plot f(u) versus u. The velocity \dot{u} is then to the right in regions where f(u) > 0 and to the left in regions where f(u) < 0. Points where f(u) = 0, which are generically isolated, are fixed points of the dynamics, as discussed in §1.1.5 of the lecture notes.

Consider the modified logistic equation,

$$\frac{dN}{dt} = f(N) = rN\left(1 - \frac{N^2}{K^2}\right) \quad ,$$

with r > 0.

- (a) Sketch f(N) versus N (you may restrict your attention to $N \ge 0$) and draw arrows on the N axis in the direction of the flow \dot{N} .
- (b) Identify all fixed points and classify them as either stable or unstable.
- (c) Solve exactly for N(t) subject to the initial condition $N(0) = N_0$ by using the method of partial fractions.
- [2] A particle of mass m moves in the one-dimensional potential

$$U(x) = U_0 \frac{x^2}{a^2} e^{-x/a} .$$

- (a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure that your sketch shows the proper behavior as $x \to \pm \infty$.
- (b) Sketch a representative set of phase curves. Identify and classify any and all fixed points. Find the energy of each and every separatrix.
- (c) Sketch all the phase curves for motions with total energy $E = \frac{2}{5}U_0$. Do the same for $E = U_0$. (Recall that e = 2.71828....)
- (d) Derive and expression for the period T of the motion when $|x| \ll a$.
- [3] A plane flying horizontally at constant speed v_0 and at height h_0 above the sea must drop a bundle of supplies to a hapless castaway on a small raft.
- (a) Write Newton's second law for the bundle as it falls from the plane, assuming gravity is the only force acting on the bundle.
- (b) Solve for the bundle's position as a function of time t since the release of the bundle.
- (c) How far before the raft, measured horizontally, must the pilot drop the bundle if it is to hit the raft?

- (d) What is this distance if $v_0=50\,\mathrm{m/s},\,h_0=100\,\mathrm{m},$ and $g=9.8\,\mathrm{m/s}?$
- (e) Within what interval $\pm \Delta t$ of time must the pilot release the bundle if it is to land within 10 m of the raft?
- [4] A mass m is constrained to move along the x-axis subject to a velocity-dependent force $F(v) = -F_0 e^{v/V}$, where F_0 and V are constants.
- (a) Find v(t) if the initial velocity is $v(0) = v_0 > 0$ at time t = 0.
- (b) At what time does the mass come instantaneously to rest?
- (c) By integrating the function v(t), find x(t).
- (d) How far does the mass travel before it starts to turn around and reverse direction?