PHYSICS 110A : MECHANICS 1 FINAL EXAMINATION SOLUTIONS

[1] Provide concise but accurate answers to the following questions. Include equations and sketches where appropriate.

(a) What is a dynamical system?

[4 points]

A dynamical system is a set of n coupled autonomous first-order differential equations, of the form $\dot{\varphi} = V(\varphi)$, where $\varphi^t = (\varphi_1, \dots, \varphi_n)$. *n* is the dimension of the dynamical system.

(b) For a weakly damped forced harmonic oscillator, sketch the amplitude response $A(\Omega)$ and phase shift $\delta(\Omega)$ as a function of the ratio Ω/ω_0 , where Ω is the forcing frequency and ω_0 is the natural frequency.

[4 points]

Figure 1: Amplitude and phase shift versus oscillator frequency (units of ω_0) for β/ω_0 values of 0.1 (red), 0.25 (magenta), 1.0 (green), and 2.0 (blue).

(c) What is Noether's theorem?

[4 points]

Noether's theorem says that to every independent continuous one-parameter family of transformations which leaves the Lagrangian invariant, there corresponds an associated conserved quantity. Specifically, if $q_{\sigma} \to \tilde{q}_{\sigma}(q, \zeta)$ is the transformation parameterized by ζ , with $\tilde{q}_{\sigma}(q,\zeta=0)=q_{\sigma}, \text{ then}$

$$
A = \sum_{\sigma=1}^{n} \frac{\partial L}{\partial \dot{q}_{\sigma}} \frac{\partial \tilde{q}_{\sigma}}{\partial \zeta}\Big|_{\zeta=0}
$$

is conserved under the dynamics.

(d) For the geometric orbit shape $r(\phi) = r_0/(1 - \varepsilon \cos(\beta \phi))$, what are the values of r and ϕ at periapsis (r_p) and apoapsis (r_a) . What is the condition on β that the orbit be closed? [4 points]

Periapsis is the distance of closest approach. This occurs for $\cos(\beta \phi) = -1$, hence $\phi_{\rm p} =$ $(2n+1)\pi/\beta$ and $r_p = r_0/(1+\varepsilon)$. Apoapsis occurs for $\cos(\beta\phi) = +1$, hence $\phi_a = 2n\pi/\beta$ and $r_a = r_0/(1 - \varepsilon)$. The geometric orbit is closed provided $\beta \in \mathbb{Q}$ is a rational number.

(e) What do we mean by 'normal modes' of small coupled oscillations? Why are they useful to study?

[4 points]

The normal modes of a coupled system of small oscillations are linear combinations ξ_i of the generalized displacements η_{σ} which oscillate with a pure frequency ω_i , with $\eta_{\sigma} = \sum_i A_{\sigma i} \xi_i$; A is the *modal matrix*. They are useful because they permit us to write the general solution to the coupled small oscillations problem as an expansion in terms of the normal modes.

[2] Consider one-dimensional motion with the potential energy $U(x) = U_0 a^2 f(x)$, where

$$
f(x) = \frac{e^{x/a}}{2x^2 + a^2}
$$

.

(a) Sketch $U(x)$ as a function of x. Note that $x \in \mathbb{R}$ may take both positive and negative values. Identify the location of all minima and maxima. (It may be useful to consider the potential as a function of the dimensionless position $s = x/a$. [4 points]

The function $U(x)/U_0$ is plotted in the top panel of fig. [2.](#page-2-0) Note that

$$
f'(x) = \left(\frac{1}{a} - \frac{4x}{2x^2 + a^2}\right) \frac{e^{x/a}}{2x^2 + a^2}
$$

and thus the condition $f'(x) = 0$ yields $2x^2 - 4ax + a^2 = 0$, with roots at $x_{\pm} = \left(1 \pm \frac{1}{\sqrt{2}}\right)$ $\frac{1}{2})a$. We also have $f(-\infty) = 0$ due to the exponential. Thus there is a global minimum $U(x) = 0$ at $x = -\infty$, a local maximum $U_0 f(x_+)$ at $x = x_-,$ and a local minimum $U_0 f(x_+)$ at $x = x_+.$

(b) Sketch the phase curves in the (x, \dot{x}) plane. There are several different types of orbits, depending on their energy in relation to the values at the local minimum and maximum of $U(x)$. Sketch what happens at four different representative energy values, including that for the separatrix.

[12 points]

Conservation of energy says that $E = \frac{1}{2}mv^2 + U(x)$ is a constant, thus

$$
\frac{v(x)}{v_0} = \pm \sqrt{\frac{E}{U_0} - f(x)} \quad ,
$$

Figure 2: $U(x)$ versus x (top) and phase curves (bottom) for problem 2.

where $v_0 = \sqrt{2U_0/m}$. Representative phase curves at four different energies are depicted in fig. [2.](#page-2-0)

(c) What is the energy E^* corresponding to the separatrix? [4 points]

The energy of the separatrix is

$$
E^* = U_0 a^2 \frac{\exp(x_-/a)}{2x_-^2 + a^2} = U_0 \frac{\exp(1 - \frac{1}{\sqrt{2}})}{3 - 2\sqrt{2}} = 1.144017 U_0 .
$$

(You were not expected to obtain the numerical coefficient.)

[3] A point mass m rolls under the influence of gravity along a semicircular surface of radius R, as depicted in fig. [3.](#page-3-0)

(a) Find the Lagrangian. [5 points]

The coordinates of the mass are

 $x = R \sin \phi$, $y = R \cos \phi$.

Figure 3: A mass point m rolls inside along a semicircular surface of radius R .

Thus

$$
L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - mgy = \frac{1}{2}mR^2\dot{\phi}^2 - mgR\cos\phi.
$$

(b) Find the equations of motion. [5 points]

The momentum is $p_{\phi} = \partial L/\partial \dot{\phi} = mR^2 \dot{\phi}$, and the force is $F_{\phi} = \partial L/\partial \phi = mgR\sin\phi$. Thus, the equation of motion is $\dot{p}_{\phi} = F_{\phi}$, *i.e.*

$$
\ddot{\phi} = \omega_0^2 \sin \phi \quad ,
$$

where $\omega_0 = \sqrt{g/R}$. This is the equation of an inverted pendulum.

(c) What quantities are conserved? [5 points]

The only conserved quantity is the energy $E = \frac{1}{2}mR^2\dot{\phi}^2 + mgR\cos\phi$. Assuming the mass starts from rest at an initial angle ϕ_0 , we have $E = mgR \cos \phi_0$.

(d) Assume the mass starts at $\phi(0) = \phi_0$ with $\dot{\phi}(0) = 0$. At some value $\phi = \phi^*$, the centrifugal force mv^2/R starts to exceed the component of the gravitational force normal to the surface and the mass flies off. Find ϕ^* . [5 points]

The component of gravity $-g\hat{y}$ normal to the surface is $-g\hat{y} \cdot \hat{n} = -g \cos \phi$, where the surface normal is $\hat{\mathbf{n}} = \hat{\mathbf{r}} = \sin \phi \, \hat{\mathbf{x}} + \cos \phi \, \hat{\mathbf{y}}$. The centrifugal force is mv^2/R where

$$
\frac{1}{2}mv^2 = mgR(\cos\phi_0 - \cos\phi) \quad \Rightarrow \quad \frac{mv^2}{R} = 2mg(\cos\phi_0 - \cos\phi) \quad .
$$

Thus, we set

$$
mg(\cos\phi_0 - \cos\phi) - mg\cos\phi = 0 \quad \Rightarrow \quad \cos\phi^* = \frac{2}{3}\cos\phi_0 \quad .
$$

Thus, $\phi^* = \cos^{-1}(\frac{2}{3})$ $rac{2}{3}\cos\phi_0$. Aside: This is a classic problem which can be solved using the formulation of constraints, which, alas, we did not cover. However, it is even easier to solve without the constraint formalism.

[4] Two particles of identical masses m interact via the central potential

$$
U(r) = U_0 \left\{ \left(\frac{\sigma}{r}\right)^4 - \left(\frac{\sigma}{r}\right)^2 \right\} ,
$$

where σ is a length scale.

(a) Sketch $U(r)$ as a function of the dimensionless variable r/σ . Find all extrema. Identify the behavior as $r \to 0$ and as $r \to \infty$. [5 points]

It is convenient to define $s \equiv r/\sigma$, in which case $U(r) = U_0 (s^{-4} - s^{-2})$. Thus we find $U'(r) = U_0 \sigma^{-1}(-4s^{-5} + 2s^{-3})$. Setting $U'(r) = 0$ yields $s = \sqrt{2}$, *i.e.* $r^* = \sqrt{2}\sigma$. The minimum value of $U(r)$ is then $U_{\text{min}} = -\frac{1}{4} U_0$.

(b) Show that a stable circular orbit exists for the relative coordinate problem provided the angular momentum ℓ is sufficiently small. Find the critical value ℓ_c above which no bound orbits exist. Define the quantity $\varepsilon \equiv 1 - (\ell/\ell_c)^2$, in which case bound orbits exist for $0 < \varepsilon < 1$. Sketch the effective potential $U_{\text{eff}}(r)$ for the cases (i) $\ell < \ell_{\text{c}}$ and (ii) $\ell > \ell_{\text{c}}$. [5 points]

The effective potential is

$$
U_{\text{eff}}(r) = \frac{\ell^2}{2\mu r^2} + U(r) = U_0 \left\{ \left(\frac{\sigma}{r}\right)^4 + \left(\frac{\ell^2}{\ell_c^2} - 1\right) \left(\frac{\sigma}{r}\right)^2 \right\}
$$

$$
= U_0 \left(s^{-4} - \epsilon s^{-2}\right) ,
$$

where $\mu = \frac{1}{2}m$ and $\ell_c = \sqrt{m\sigma^2 U_0}$. When $\varepsilon < 0$ we have that $U_{\text{eff}}(r)$ is monotonically decreasing and therefore there are no bound orbits. Bound orbits require $0 < \varepsilon < 1$ which means $0 < \ell < \ell_c$. See the sketches in fig. [4.](#page-5-0)

(c) For $0 < \ell < \ell_c$ (*i.e.* $0 < \varepsilon < 1$), find the radius $r_0(\varepsilon)$ of the stable circular orbit. [5 points]

Extrema of $U_{\text{eff}}(r)$ are obtained by differentiating with respect to r, or, equivalently with respect to s , and then setting the result to zero. This yields

$$
-4s^{-5} + 2\varepsilon s^{-3} = 0 \qquad \Rightarrow \qquad s^2 = \frac{2}{\varepsilon} \quad (\varepsilon > 0) \quad .
$$

Thus, $\varepsilon > 0$ in order to have a local minimum at $r_0 = \sqrt{2/\varepsilon} \sigma$, which is the location of the circular orbit. This requires $\ell < \ell_c = \sqrt{m\sigma^2 U_0}$.

Figure 4: $U_{\text{eff}}(x)$ versus x/σ for $\varepsilon = 0, 0.5, \text{ and } -1$.

(d) Find the frequency ω of small oscillations of the radial motion $r(t)$ about the circular orbit.

[5 points]

Writing $r = r_0 + \eta$, the equations of motion are

$$
\mu \ddot{\eta} = -U''_{\text{eff}}(r_0) \eta + \mathcal{O}(\eta^2) \quad ,
$$

where

$$
U''_{\text{eff}}(r) = U_0 \,\sigma^{-2} \left(20 \, s^{-6} - 6\varepsilon \, s^{-4} \right) \qquad \Rightarrow \qquad U''_{\text{eff}}(r_0) = U_0 \,\varepsilon^3 \,\sigma^{-2} \quad ,
$$

after substituting $s = r_0/\sigma = \sqrt{2/\varepsilon}$. Thus, the frequency of small radial oscillations is

$$
\omega = \sqrt{\frac{U''_{\text{eff}}(r_0)}{\mu}} = \sqrt{\frac{2\,\varepsilon^3\,U_0}{m\sigma^2}} \quad ,
$$

with $0 < \varepsilon < 1$.

(e) The shape of the perturbed orbit is $r(\phi) = r_0 + \eta_0 \cos(\beta \phi)$, where η_0 is a constant determined by initial conditions and β is calculable in terms of the parameters of the problem. Find an expression for β in terms of ε . [50 quatloos extra credit]

From conservation of angular momentum, we have $\dot{\phi} = \ell / \mu r_0^2$ for the circular orbit. Thus,

$$
\beta = \frac{\omega}{\dot{\phi}} = \frac{\mu r_0^2}{\ell} \omega = \frac{\ell_c}{\ell} \cdot \frac{(m/2)(2\sigma^2/\varepsilon)}{\sqrt{m\sigma^2 U_0}} \cdot \sqrt{\frac{2\,\varepsilon^3\,U_0}{m\sigma^2}} = \sqrt{\frac{2}{\varepsilon}}.
$$

[5] Three identical masses m are connected by four identical springs k as depicted in the figure below. In equilibrium, the springs are all unstretched.

Figure 5: Three identical masses connected by four identical springs.

(a) Choose as generalized coordinates the displacements η_1 , η_2 , and η_3 with respect to the equilibrium positions of the masses. Write the Lagrangian. [5 points]

We have

$$
T = \frac{1}{2}m \dot{\eta}_1^2 + \frac{1}{2}m \dot{\eta}_2^2 + \frac{1}{2}m \dot{\eta}_3^2
$$

\n
$$
U = \frac{1}{2}k \eta_1^2 + \frac{1}{2}k (\eta_2 - \eta_1)^2 + \frac{1}{2}k (\eta_3 - \eta_2)^2 + \frac{1}{2}k \eta_3^2 ,
$$

and $L = T - U$.

(b) Find the T and V matrices (each of which is 3×3).

[5 points]

We have

$$
\mathsf{T}_{\sigma\sigma'} = \frac{\partial^2 T}{\partial \dot{\eta}_{\sigma} \partial \dot{\eta}_{\sigma'}} \bigg|_{\eta=0} = \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{pmatrix} , \quad \mathsf{V}_{\sigma\sigma'} = \frac{\partial^2 U}{\partial \eta_{\sigma} \partial \eta_{\sigma'}} \bigg|_{\eta=0} = \begin{pmatrix} 2k & -k & 0 \\ -k & 2k & -k \\ 0 & -k & 2k \end{pmatrix} .
$$

(c) Find the eigenfrequencies. You might worry that you have to solve a cubic equation, but it turns out that $P(\omega) = \det(\omega^2 T - V)$ nicely factorizes. The following identity,

$$
\det \begin{pmatrix} a & c & 0 \\ c & b & c \\ 0 & c & a \end{pmatrix} = a (ab - 2c^2) ,
$$

should prove useful. [5 points]

We have

$$
P(\omega^2) = \det(\omega^2 \mathsf{T} - \mathsf{V}) = k \begin{pmatrix} u - 2 & -1 & 0 \\ -1 & u - 2 & -1 \\ 0 & -1 & u - 2 \end{pmatrix}
$$

= $(u - 2) \{ (u - 2)^2 - 2 \} = (u - u_1)(u - u_2)(u - u_3) ,$

where $u \equiv \omega^2/\omega_0^2$, $\omega_0 \equiv \sqrt{k/m}$, and

$$
u_1 = 2 - \sqrt{2}
$$
, $u_2 = 2$, $u_3 = 2 + \sqrt{2}$.

Thus the eigenfrequencies are

$$
\omega_1 = \sqrt{2 - \sqrt{2}} \ \omega_0 \quad , \quad \omega_2 = \sqrt{2} \ \omega_0 \quad , \quad \omega_3 = \sqrt{2 + \sqrt{2}} \ \omega_0 \quad .
$$

(d) Find the modal matrix A.

[5 points]

We write

$$
\begin{pmatrix} u_i - 2 & -1 & 0 \ -1 & u_i - 2 & -1 \ 0 & -1 & u_i - 2 \end{pmatrix} \begin{pmatrix} \psi_1^{(i)} \\ \psi_2^{(i)} \\ \psi_3^{(i)} \end{pmatrix} = 0
$$

and solve. We obtain the column vectors

$$
\psi^{(1)} = C_1 \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix} , \quad \psi^{(2)} = C_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} , \quad \psi^{(3)} = C_3 \begin{pmatrix} -1 \\ \sqrt{2} \\ -1 \end{pmatrix} .
$$

Note that the three eigenvectors are mutually orthogonal in the conventional sense, *i.e.* $\psi^{(i)} \cdot \psi^{(j)} = 0$ if $i \neq j$. This is because \overline{T} is a multiple of the identity matrix, and thus $\psi^{(i)} \cdot \mathsf{T} \cdot \psi^{(j)} = 0$ is equivalent to $\psi^{(i)} \cdot \psi^{(j)} = 0$. For $i = j$ we have

$$
\psi^{(1)} \cdot \mathsf{T} \cdot \psi^{(1)} = 4mC_1^2 = 1
$$
, $\psi^{(2)} \cdot \mathsf{T} \cdot \psi^{(2)} = 2mC_2^2 = 1$, $\psi^{(3)} \cdot \mathsf{T} \cdot \psi^{(3)} = 4mC_3^2 = 1$,

and thus

$$
A = \frac{1}{2\sqrt{m}} \begin{pmatrix} 1 & \sqrt{2} & -1 \\ \sqrt{2} & 0 & \sqrt{2} \\ 1 & -\sqrt{2} & -1 \end{pmatrix} .
$$

Note that in the low frequency normal mode $i = 1$ all the masses move in phase. In the $i = 2$ normal mode, the central mass is stationary. In the $i = 3$ normal mode, the restoring force is greatest because the second and third springs have greatest compression/extension for a given mode amplitude.