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Chapter 17

Quadratic Hamiltonians

17.1 Bosonic Models

The general noninteracting bosonic Hamiltonian is written

H=1wty v | (17.1)

) rs* s

where ¥ is a rank-2/N column vector whose Hermitian conjugate is the row vector
Wh= (], 0k vy, ) (17.2)

Since [¢); , 1/);] = .., we have

@57
T I[N><N 0
[Lpr7 WS} =2, , 2= ) (17.3)
0 _I[NXN

with I the identity matrix. Note that the indices » and s run from 1 to 2NV, while 7 and j run
from 1 to N. The matrix H is of the form

A B
H = (B* A*) (17.4)

where A = A" is Hermitian and B = B is symmetric.

The Hamiltonian is brought to diagonal form by a canonical transformation:

S
——

u vr
T
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which is to say ¥ = S @, or in component form
wz’ = Uia ¢a + ‘/ZZ ¢:rz
Yl =V b + Ui 0}

where a, like ¢, runs from 1 to N. In order that the transformation be canonical, we must
preserve the commutation relations, meaning [, , ¢f] = 6, i.c.

(17.6)

[@T’ gp;q = 27”5 (177)
This then requires
Srst=8rs=x , (17.8)
which entails
U -Vv =1 UV -VU =0 (17.9)
UUT — VvVt =1 Uvt—-vur=0 . (17.10)
5 I o
Note that Y = 7, where Z = 0 1) hence
Tyt
S1=xsy= (_th (}f ) . (17.11)
Thus, the inverse relation between the ¥ and ¢ operatorsis ® = S W = YStYy, or
—U* . — V!
¢CL a /lfb’l a /lfb’l T (17.12)
¢(T1 = _V;'a ,lvbz + Uia ,lvbz ’
17.1.1 Bogoliubov equations
We are now in the position to demand
E 0
T £ _
STHS =& = (0 E) , (17.13)
where F is a diagonal N x N matrix. Thus,
HS=S"le=XSXE |, (17.14)

which is to say

A B\ (U V* U —V\[(E 0
(B* A) (V U*):(—V U*)(O E) ' (17.15)
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If the bosonic system is stable, each of the eigenvalues F, is nonnegative. In component form,
this yields the Bogoliubov equations,

- v (17.16)
Bij Uja + Aij V;'a = _Vz‘a Ea )
with no implied sum on a on either RHS. The Hamiltonian is then
H=> E,(l¢,+1) . (17.17)
At temperature 7', we have
(01 ¢y) = n(E,) 80 (17.18)

where
1

FE) =
ME) = ST =1
is the Bose distribution. The anomalous correlators all vanish, e.g. (¢,¢,) = 0. The finite tem-
perature two-point correlation functions are then

ijg) = Z {na U;;z Uja + (1 + na) ‘/;a ‘/;1} (1720)

a

Wity =Y {ma Vi Ui+ (140, U Vi) (17.21)

a

(17.19)

where n, = n(E,).

17.1.2 Ground state
We have found
P=SW=xSyvw | (17.22)
hence
¢a = UL‘ % - VaTi %T

17.23
= Ui =0l Vi, e

We assume the following Bogoliubov form for the ground state of H:
1G) = Cexp (10, 0lu!)[0) (17.24)

where C is a normalization constant, () is a symmetric matrix, and |0) is the vacuum for the
bosons: ;| 0) = 0. We now demand that | G ) be the vacuum for the ¢ bosons: ¢,| G) = 0. This
means A A A A

6. e2]0) = e? (e—Q . eQ) 0) | (17.25)
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where )
Q=1Q, vl (17.26)
We now define A )
Py(x) = e ), ™9 (17.27)
and we find 4 (2)
i\ —zQ NPEe
U)oy, Qe = Quuf (17.28)
and integrating' we obtain
i) = e e = () 2 Qu Yl (17.29)
We may now write
e e? =UL v+ (UL Qy — VI ul (17.30)

and we demand that the coefficient of %T' vanish for all a, which yields
Q= (UT)_lvT ’ (17.31)

or, equivalently, Q" = VU~!. Note that Q' = V*(U*)~! = Q since UTV* = VIU*.

17.1.3 A final note on the boson problem

Note that STHS has the same eigenvalues as H only if ST = S, i.e. only if S is Hermitian. We
have 8" = YS! ¥ and therefore

SHHS=XS'XHS . (17.32)
Now
A B
SH = (_ [ A*) . (17.33)

Consider the characteristic polynomial P(E) = det(E — XH). Since det(M) = det(M") for any
matrix M, we consider

(DH) = (gi :ﬁ;) = (j‘; __i*) =T NEH) T (17.34)

where

0 I
J = (—11 0) (17.35)

INote that e~*@ Yl e"Q = W] since [%Tv Q} =0.
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and J ' = -7, i.e. 7?> = —Z. But then we have
P(E)=det(E—YH)=det(E+J 'YHJT)=det(E+ X H)=P(-E) . (17.36)

We conclude that the eigenvalues of ¥ H come in (+FE, —FE) pairs. To obtain the eigenenergies
for the bosonic Hamiltonian H, however, as per eqn. 17.32, we must multiply S' X H S on
the left by X, which reverses the sign of the negative eigenvalues, resulting in a nonnegative
definite spectrum of bosonic eigenoperators (for stable bosonic systems).

17.2 Fermionic Models

The general noninteracting fermionic Hamiltonian is written

H=1Ywln w | (17.37)

2
where once again ¥ is a rank-2/N column vector whose Hermitian conjugate is the row vector

WT:(¢I>"'>¢}V?¢1?"'?¢N) ) (1738)

In contrast to the bosonic case, we now have { ¢, , %T' } = 0;; with the anticommutator, hence

{w,, wi} =6, . (17.39)

The matrix # is of the form
1y — <_é ) _fi*) , (17.40)
where A = A" is Hermitian and B = —B" is antisymmetric. Since this is of the same form as

eqn. 17.33, we conclude that the eigenvalues of # come in (+F, —F) pairs’.

As with the bosonic case, the Hamiltonian is brought to diagonal form by a canonical transfor-

mation:
S

/—/T
DT

which is to say ¥ = S &, or in component form

wi = Uia ¢a + ‘/ZZ ¢(Tz

W = Vi, po + U & (1742

2This is true even though B in eqn. 17.33 is symmetric rather than antisymmetric. In proving the evenness of the
characteristic polynomial P(E) = P(—FE), we did not appeal to the symmetry or antisymmetry of B.
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In order that the transformation be canonical, we must preserve the anticommutation relations,
ie.{¢,, )} = J,, meaning

{2, 01} =6, | (17.43)
which requires that S is unitary:
Si§=88"=1 |, (17.44)
where 7 is again the identity matrix of rank 2N. Thus,
UlU+VivV =1 UV 4+VU=0 (17.45)
UUT+V* V=1 Uvt+vut =0 . (17.46)

The inverse relation between the operators follows from ¢ = S~V = STy:

by = Ui ), + Vi b

¢(T1 = V;'a 7/)2 + Uia 7/’3 ) (1747)
The transformed Hamiltonian matrix is
SHS=¢£= (gj _OE) . (17.48)

Without loss of generality, we may take F to be a diagonal matrix with nonnegative entries. In
component notation, the eigenvalue equations are

A; U, +B,;V,,=U, E,

- v (17.49)
_Bij Uja - Aij Vja =Vi.E, -
The Hamiltonian then takes the form
H=>"E,(slé,—3) - (17.50)
At temperature 7', we have
(Dldy) = [(E,)0p (17.51)
where .
f(E) (17.52)

~ exp(E/k,T) + 1
is the Fermi distribution. As for bosons, the anomalous correlators all vanish: (¢,¢,) = 0. The
tinite temperature two-point correlation functions are then

Wity =S LU U+ (1= 1) Vi Vi }
a (17.53)
War) =Y ViU + 0= L) ULV}

a

where f, = f(E,).
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17.2.1 Ground state

We write
G) = Cexp (10, 0lv!) [0) (17.54)
with @ = —@Q", and we demand, as in the bosonic case, that ¢,|G) = 0. Again we define
Q = 3Q,; ¥v}, and
Ui(z) = ey, e (17.55)
We then have
d i\L e A1 20
QXZZ; ) =0 |:¢27Q:| " = Qij ¢; = i(r) = _'_xQz'j ¢; . (17.56)
Thus, ) )
e Qe =Uly,+ (VE+UL Q) vl (17.57)
from which we obtain
Q=—(UhH"vt . (17.58)

Since UTV* + VIU* = 0, we recover Q = —Q".

17.3 Majorana Fermion Models

Majorana fermions satisfy the anticommutation relations {6, , 6,} = 20,;. Thus, (6;,)* = 1 for
every i. We also have 6] = 6, and for this reason they are sometimes called ‘real’ fermions. If
¢ is the annihilator for a Dirac particle, with {c, ¢/} = 1, we may define Majorana fermions 7

and 77 as follows:

(n—1n) (17.59)
(n+wm) . (17.60)

77:c+cT c=

7=1i(c—ch ¢l =

N[ N

The most general noninteracting Majorana Hamiltonian is of the form

H=1iM.0,0; . (17.61)
where M = —M*' = M* is a real antisymmetric matrix of even dimension 2N. This is brought

to canonical form by a real orthogonal transformation,

0; = Riaka (17.62)
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where R'R = Z, and where {¢, , &,} = 20,,. We have

0 —E, 0 0

E, 0 0 0
RMR=E®is*=|0 0 0 —E - . (17.63)
0o 0 E, 0 -
Thus,
N
= %Z 0 €20-1 820 = Z E, (CILCa - %) ) (17.64)
=1 a
where
Cy = %(5211 1 i§2a) y Gy = %(52(1 1+ 252(1) . (17.65)
17.3.1 Majorana chain
Consider the Hamiltonian
H=-i) o,0,0,, (17.66)

where 0, = +1 is a Z, gauge field and {«,,,®,} = 24,,, is the Majorana fermion anticom-
mutator. Periodic boundary conditions are assumed, i.e. o, ,; = «;. We now make a gauge
transformation to a new set of Majorana fermions,

The Hamiltonian may now be written as

N
H=-i) 0,0, . (17.68)
n=1
where 0y, = o0, with 0 = H;VZI ;. So the boundary conditions on the ¢ Majoranas are
either periodic (¢ = +1) or antiperiodic (¢ = —1). We now switch to crystal momentum space,
defining
1 U 1
A ikn ikn )
= — e , 0, =— ernre, . (17.69)

The k-values are quantized according to e’ = ¢. The anticommutators are

{Hm’ n} = 2(;m n,0mod N ) {eka p} = 25k+p Omod 27 (1770)
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There are four cases to consider:

Casel: o = +1, N even. We have ¢?*¥ = +1, and the N allowed k values are

kei%x{1,...,§N—1} L k=0 , k==

(17.71)

Note that the allowed crystal momenta all occur in {+k, —k} pairs, with the exception of k = 0

and k = m, which are unpaired.

Casell: 0 = +1, N odd. We have ¢**V = +1, and the N allowed k values are

2w 1
kei—ﬁx{l,... , 5(1\1—1)} . k=0
Only £ = 0 is unpaired.
Caselll: 0 = 1, N even. We have ¢?*V = —1, and the N allowed k values are
2w
keiwx{%, L %(N—l)}

All the crystal momenta are paired.
CaselV: o =1, N odd. We have ¢**¥ = —1, and the N allowed k values are
2
keiﬁﬂx{%,...,%]\f—l} k=
Only k£ = 7 is unpaired.

We may now write

=Y (0B ) i Y e

ke(0,m) keU
:ZQSink‘é_kék—QZZe Ze’
ke(0,m) ke(0,m) keU

(17.72)

(17.73)

(17.74)

(17.75)

where U denotes the set of unpaired (or self-paired) crystal momenta, i.e. the set of & for which

¢* = e~ Note that {_, , §,,} = 26,,, and 6_, = 6], so we may define §_,

9 =2 ¢, Where ¢, is a complex fermion. Thus, we have

H= Z 4sinkc,tck+E0 ,
ke(0,m)

:—2226 ik Z'Ze_ik

ke(0,m) keU

where

fck and

(17.76)

(17.77)
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We now proceed to evaluate £, for our four cases.

Casel: Since U = {0, 7}, we have }_, ;e~* = 0. For k € (0, 7) we may write k = 2r(/N with
te{l,..., N —1}. We then have

N
N

B = =20y e — 2etn(1) (17.78)
(=1

Note that we have used the identity

2 — . (17.79)

CaseIl : We have U = {0}. For the main set k¥ € (0,7) we may write £k = 27(/N with { €
{1,..., 2(N —1)}. We then have

N1
51

—27i/N —im/N
a _ - —omil/N . _ (€ +e . s
EM = —2i ;:1: e 2N _j = _9; ( — ) —i=—cn(5y) - (780

CaseIll : We have U = {0}. For k£ € (0,7) we may write k& = 27(/N + n/N with ¢ €
{0, cee %N—l}.Then

y_q
2

E(()III) — _9je—im/N Z e 2N _ 9 g (%) . (17.81)
=0

CaseIV : We have U = {n}. For k € (0,7) we may write k¥ = 27(/N — /N with ¢ €
{1,..., 3(N—=1)}. Thus,

N+1_q

] 2 ) —im /N 1
E(()IV) = - e“T/N E €—2m£/N +1= —27,(?;?_6%) +17= —ctn (%) . (1782)
/=1

Note that in the N — oo limit, in all four cases we have E, = 2N/7m + O(1).
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17.4 Jordan-Wigner Transformation

The Jordan-Wigner transformation is an equivalence, in one-dimensional lattice systems, be-
tween the S = 1 SU(2) algebra and the algebra of spinless fermions. Explicitly, we have

n—1
St =exp (zﬁr Z c}cj) ch

j=1
nt (17.83)
S, =exp (iw Z c}c]) c,
j=1
STZL = Clzcn - %
The inverse is then
n—1
cl = exp <z'7r (57 + %)) St
j=1
- (17.84)
¢, = exp (m (57 + %)) S,
j=1
Note that ¢'™'¢ has eigenvalues +1, and that
c eiwcTC =—c CTei”CTC = CT . (1785)
Taking the Hermitian conjugate,
eimele ot = _cf , eimlec — ¢ (17.86)

The expression
1

exp (mi (sz + %)) = 1:[ exp (iﬂ(Sj—’ + %)) (17.87)

1

<

is known as a Jordan-Wigner string.

The nearest-neighbor bilinear transverse spin interaction terms are
el
+ g— o pimency —
Sn nt1 = Cn € ' Cnt1 = CnCny1
el
- g+ _ imenen Jf At
Sn Sn—i—l =€ Cnt1 = Cny16p
+ g+ b oimchen, b _ i b
Sn Sn—i—l =Cp€ " Cnt+1 = CnCnya

(17.88)

.
— + . 1T Cp C o
Sn Sn—i—l =Cy€ o Cn+1 - Cn—i—l Cp
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On an N-site ring, however, on the ‘last’ link, which connects site NV back to site 1, yields

Sy Sy =~ e Cyvcl
Sy S = —e™ cle
N o 1 fj (17.89)
Sy ST =—e™ clel
Sy Sy =—€" MclcN
where
) N
M=> de . (17.90)
7j=1

Note that ¢™ = (—1)™ must commute with every possible term we could write, since fermion
number parity must be conserved.

17.4.1 Anisotropic XY model

Consider the anisotropic XY model in a perpendicular field on an N-site chain®, with

. = NZI {J ST+, S SgH} + hi sz (17.91)
"o v
=3 { n+1+CL+1C)+J(n n+1—|—cn+1c)}+h2(cllcn—%) ’
n=1 n—1
where J, = $(J, = J,). On an N-site ring, we add the term
AH = J, Sy ST+ J,S% SY
= —%e”M{JJF(CjVCI —i—cl cN) +J_ (CN 014—01 CN)} (17.92)
Since ¢ commutes with H, . and with all fermion bilinears (hence with AH as well), we

can specify the eigenvalues as 1 = ¢™ — +1, which are the even and odd fermion number
sectors, respectively. We then define

- if n =+1
P (17.93)
teyy ifn=—
If we write )
ikn
c,=—=» €¢c, (17.94)
iz

3See E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16,407 (1961).
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where the index n refers to real space and k£ to momentum space, we have the wave vector

quantization rule e* = —n, i.e. for even and odd sectors
g 12U+ )N iy =1 (17.95)
/ 25 /N ifn=-1

Thus, the Hamiltonian becomes

f[ring = Z {(JJr cosk + h) cl ¢, + 1y e chel, + e e, ck} + iNh
k
H
kA (17.96)
— f W k ) ( k )
= & C_ * )
kz>o ( k k) (Ak —wy, CT—k
where
w, =J, cosk+h . A, =1J_sink . (17.97)

Diagonalizing via a unitary transformation, we obtain
Has =Y B (e —3) (17.98)
k

where the dispersion relation is

E, =\/wi+]|A]?= \/(J+cosk:—|—h)2—|—J3 sin’k . (17.99)

Note that S} H, S, = diag(E,, —E,), where

_ (w g
S, = <vk " ) (17.100)
where g N
= ——k Ly = E (17.101)
V2E (B +wy) V2E(E; + wy)
Thus,
Ve = Ug Cp — Uk CT—k (17.102)
71: = U Cp Ty, CL
Note that v_, = u, = uj; whilev_, = —v, = v}, and that
=t v (17.103)

ol = vp vk +
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When we compute correlation functions, we use the fact that
e = (ct+ o) =) = = (=) +¢) (17.104)
and, defining A; = cT. +c;and B; = CT» — ¢;, Then the correlation functions are
<Sx Sx+é> ! <B A1 By Apyia By An+z>
= (545 ) =2(-1){( A, B 1 A1 Briv 1 Ansr1 Buse) (17.105)
= (S Siee) = 1 (A By Auie Buge)

where, without loss of generality, we presume ¢ > 0. These expressions may be evaluated using
Wick’s theorem,

<Ol 02 T O2m> = Z (_1>0 <OU(1) 00(2)> T <OO'(2T—1) OO’(27”)> ) (17106)
S
where o is one of a special set of permutations C,, of the set {1, ..., 2r} called contractions, which

are arrangements of the 2r indices into r pairs. Exchanging any two pairs, or exchanging the
indices within a pair results in the same contraction, so the number of such contractions is
ICyr| = (2r)!/(2" - r!). Here (—1)7 is the sign of the permutation 0. As an example, for r = 2
there are 4!/(4 - 2) = 3 contractions. We then have

Now we need the following:

(A Ay ) = 6y , (B,B,y) = =0, , (A,B,)=G(n' —n) (17.108)
The first two of these relations follow by inversion symmetry, i.e.
(A,A,) = (A,A) = (AA)=1({A AN =6, . (17.109)
with a corresponding argument showing (B, B,,) = —4,,,,. We then have

G(n' —n) = <(cT +e,) (e, —c.))

n

Z (<Ck Ck’> <C Ck'> + <C kC— k> <Ckc >) = (17.110)

N
1 ( 2 2 Cikn ikt L Wi T AL\ ikn—n)
:—g uy — |vg +2ukvk)e e :—E —— e
N £ N2\"E,

forn # n', and at T = 0. Note that (B,,A,) = —G(n — /) for n # n/ and that G(0) = 1 — 2v
where v = (c;cj) is the fermion occupation per site, which is translationally invariant. Thus,
we have

p.(0) = 1 G2(0) = LG(0) G(—0) (17.111)
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The transverse spin correlations may be expressed as determinants, viz.

G(1) G2 - G
p. () = det G(:O) G(zl) G(“g:—l) (17.112)
G2—0 GB—0 - GO
and
G(-1)  G(0) Gl —2)
G(-2) G(-1) - G(t—3)
p(0) =det | . o | . (17.113)
G—0) GL—0) - G(-1)

Matrices like these which are constant along the diagonals are called Toeplitz matrices. A matrix
M is Toeplitz if M, ; = M, ;,, = m(i — j).

(2

17.4.2 Majorana representation of the JW transformation

With Eqn. 17.65, which describes how one can write a single Dirac fermion with operators c
and ¢! in terms of two Majorana fermions «and f3, i.e. « = ¢+ ¢l and 8 = i(c — ¢), we can write
the JW transformation as follows:

Xn = (Z aq 51) (Z o) 62) U (l pn n—l) a,
Y, =(iay By) (iayBy) -+ (i, B, 1) B, (17.114)
Z,=—1qa, [,

Here we write (X,,,Y,,Z,) for the Pauli matrices (¢%,0”,0%) = (25%,25,25%). Note that

n’ - n’ n n)’nr’n

X, Y, =1Z,. Thus, we have written the N spin operators along the chain in terms of 2N Majo-

rana fermions {ay, (i, . . ., ay, By}, and, through the relations «,, = ¢, + ¢}, and 3, = i(c, — cl,),
in terms of N Dirac fermions {(c;,cl), ..., (cy,ck)}. Note that
ia, 3, =—7, =exp(irclc,) =1—2cec, |, (17.115)

and we thereby recover Eqn. 17.84.
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