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Chapter 15

Spins, Coherent States, Path Integrals, and
Applications

15.1 The Coherent State Path Integral

15.1.1 Feynman path integral

The path integral formulation of quantum mechanics is both beautiful and powerful. It is use-
tul in elucidating the quantum-classical correspondence and the semiclassical approximation,
in accounting for interference effects, in treatments of tunneling problems via the method of
instantons, etc. Our goal is to derive and to apply a path integral method for quantum spin. We
begin by briefly reviewing the derivation of the usual Feynman path integral.

Consider the propagator K (z;,z;, T"), which is the probability amplitude that a particle located
atz = z; at time ¢t = 0 will be located at x = z; at time t = 7. We may write

K (2,20, T) = (x| e 10 ) (15.1)
_ <xN ‘ e—i€H/h | g—ieH/h 1 1 p—ieH/h ‘ x4 > )

where € = T'/N, and where we have defined z, = z, and =, = z;. We are interested in the limit
N — oo. Inserting (N — 1) resolutions of the identity of the form

[e.e]

1=/d$j\$j><$j\ ) (152)

—0o0



2 CHAPTER 15. SPINS, COHERENT STATES, PATH INTEGRALS, AND APPLICATIONS

we find that we must evaluate matrix elements of the form

o0

(i | e 2y ) ~ / dp; (@i | py ) (ps | e TMe™ VM 2y )

—00

(15.3)

oo
_ /dpj 6ipj(xj+1—xj) 6—iep§/2mh6—i5\/(xj)/h

The propagator may now be written as

(ay | e TN 2y ~ /> H dz; /H dpy, exp [Pk(fckﬂ —Tp) — ﬁpi - %V(xk)]}
() [T {55 () v
/ Da(t { /dt [gmjﬂ — V(x)” , (15.4)

z(0)=
o(T) =2

where we absorb the prefactor into the measure Dz(t). Note the boundary conditions on the
path integral at ¢ = 0 and ¢ = 7'. In the semiclassical approximation, we assume that the path
integral is dominated by trajectories x(¢) which extremize the argument of the exponential in
the last term above. This quantity is (somewhat incorrectly) identified as the classical action,
S, and the action-extremizing equations are of course the Euler-Lagrange equations. Setting
dS = 0 yields Newton’s second law, mi& = —0V/0x, which is to be solved subject to the two
boundary conditions.

-1
1

/—/h\
\gls

=2

> &
i

;fls‘

The ‘imaginary time” version, which yields the ‘thermal propagator’, is obtained by writing
T = —ihp and t = —i7, in which case

‘Euclidean action’ s,

N

~

hg

(| |z, = / Dx(T) exp{ —% /dT {gm:ﬁ + V(m)} } . (15.5)

w(O):wi
x(h,@‘):xf

The partition function is the trace of the thermal propagator, viz.

[e.e]

Z=Tre " = /dm (z|e?a) = / Da(7) exp (— Sglz(1)]/h) (15.6)

oo 2(0)=x(hB)
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The equations of motion derived from Sy are mi = +0V/0x, corresponding to motion in the
‘inverted potential’.

15.1.2 Coherent state path integral for the ‘Heisenberg-Weyl” hroup

We now turn to the method of coherent state path integration. In order to discuss this, we
must first introduce the notion of coherent states. This is most simply done by appealing to the
one-dimensional simple harmonic oscillator,

p2

H = 5~ + gmuwga® = hw (ala+3) | (15.7)

where a and a' are ladder operators,

a:€8x+2% , aT:—faij% (15.8)
with ¢ = /h/2mwy. Exercise: Check that [a, a] = 1.
The ground state satisfies a 1)y(z) = 0, which yields
Yo(z) = (270*) Y4 exp(—a?/40%) . (15.9)
The normalized coherent state | z ) is defined as
|2) = "2l =0l o) :6_%22;0;—% In) . (15.10)
The coherent state is an eigenstate of the annihilation operator a:
a‘z>:z‘z> — <z‘aT:<z‘2 . (15.11)
The overlap of coherent states is given by
(21]2) = e B e Blal iz (15.12)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent
states allow a simple resolution of the identity,

d*

271

2 dR [
ol,zE ezdlmz (15.13)

1= —
271 T

ENICI

which is straightforward to establish.
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To gain some physical intuition about the coherent states, define

P
One finds (exercise!)
¥ 2) = (2|2 = (270214 o—iPQ/2h jiPz/h e—(w—Q)2/4£2 : (15.15)
PQ

hence the coherent state v, , () is a wavepacket Gaussianly localized about = = @, but oscil-
lating with momentum P. Exercise: Compute ((¢ — Q)?) and {(p — P)?).

Now we derive the imaginary time path integral. We write
<zf } e PH ‘ 2 > = <ZN ‘ e cH/h ] gmel/h . 1 gmeH/h } ZO> ) (15.16)

inserting resolutions of the identity at N — 1 points, as before. We next evaluate the matrix
element

€ (%5 H Zj—1
<Zj‘e_EH/h}Zj—O:<Zj‘zj—1>'{1_ﬁ < <z}"z‘ ) : +}
AR (15.17)
~ <zj ‘zj_1> exp{ — %H(zﬂzj_l)}
where "
H(z|w) = % = e (0] H(al,a) e |0) . (15.18)

This last equation is extremely handy. It says, upon invoking eqn. 15.11, that if H(a,a') is
normal ordered such that all creation operators a' appear to the left of all destruction operators
a, then H(z|w) is obtained from H (a', a) simply by sending a' — z and a — w. This is because
a acting to the right on | w ) yields its eigenvalue w, while a' acting to the left on ( z | generates
Z. Note that the function H(z|w) is holomorphic in w and in Z, but is completely independent
of their complex conjugates w and z.

The overlap between coherent states at consecutive time slices may be written

(zj|zj-1) = exp {— : [Ej(zj —zj_1) — zj—1(% — Zj_l)} } : (15.19)

hence

Conlams Yoo (| 20) :exp{éN 1{2] (G — %) zj(zj—zj_g}}

J=1

(15.20)

X exp {% 2(Z — Zp) — %ZN(ZN - ZN—I)} )
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which allows us to write down the path integral expression for the propagator,

(ze|e™]z) = /ﬁl % exp ( - SE[{ZjaZj}]/ﬁ>

) N-1 o o ) el (15.21)
Spl{z, zH/h=") {5 Zj(2 — 2j-1) — 5 2i(Zj41 — Zj)} +s > H(zlz)
j=1 J=1
+5% (% —2vo1) —34(5 — &)
In the limit N' — oo, we identify the continuum Euclidean action
7 0 0
_ 1/_0z z 1 B
Spl{z(7),2(7)}|/h = /dT {5 (z 9 ¢ E) + 7 H(z|z)} (15.22)
0
+3% [Zf - Z(hﬁ)} ~ 3% [5(0) - 51} ;
and write the continuum expression for the path integral,
(z]|e™]z) = / Dlz(7), 2(r)] e Sl 0N/ (15.23)

The continuum limit is in a sense justified by examining the discrete equations of motion,

108y _ . cOH(Z|z)
h 8zk — ek 1 h 8Zk
(15.24)
1 8SE . € 8H(Zk|zk_1)
hom T AT T o :
which have the sensible continuum limit
0z  0H(z|z) 0z 0H (z|2)
Y= _ e 15.2
h@f 0z ’ h@f 0z (15.25)

with boundary conditions Z(73) = Z; and 2(0) = 2. Note that there are only two boundary
conditions — one on z(0) and the other on Z(73). The function z(7) (or its discrete version z;)
is evolved forward from initial data z;,, while z(7) (or z;) is evolved backward from final data
% This is the proper number of boundary conditions to place on two first order differential (or
finite difference) equations. It is noteworthy that the action of eqn. 15.21 or eqn. 15.22 imposes
only a finite penalty on discontinuous paths.! Nevertheless, the paths which extremize the action
are continuous throughout the interval 7 € (0, 23). As z(7) is integrated forward from z,, its

!In the Feynman path integral, discontinuous paths contribute an infinite amount to the action, and are therefore
suppressed.
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final value z(n3) will in general be different from z,. Similarly, Z(7) integrated backward from z;
will in general yield an endpoint value z(0) which differs from z;. The differences (k) — z; and
Z(0) — Z, are often identified as path discontinuities, but the fact is that the equations of motion
know nothing about either z; or z. These difference terms do enter in a careful accounting of
the action formulae of eqns. 15.21 and 15.22, however.

The importance of the boundary terms is nicely illustrated in a computation of the semiclas-
sical imaginary time propagator for the harmonic oscillator. With H = hw a'a (dropping the
constant term for convenience), we have

(2| exp(—Bhwoa'a) |z ) =e ~g 1l =gl Z <m}exp (—Bhwoa'a) |n)
o Vmlnl (15.26)

= eXp{ — %‘Zf|2 - %|Zi‘2 + szZ' 6_6hw0}

The Euclidean action is Ly = 1h(zZ — 22) + hwy 2z, so the equations of motion are

1
2

) H H
hz = 8_ = hwy Z , hz = —aT = —fuwy 2 (15.27)
0z 0z

subject to boundary conditions z(0) = z;, Z(h5) = Z. The solution is
—woT

A1) = ze o Er) = et (15.28)

Along the “classical path’ the Euclidean Lagrangian vanishes: L, = 0. The entire contribution
to the action therefore comes from the boundary terms:

S/ =0+ 372 — ze770) — Lz(zp 70 — 7))

(15.29)
= %|Zf‘2 + %|Zi‘2 — 2% C
What remains is to compute the fluctuation determinant. We write
zj = z]'?l +1; , Zj = ECI +7; (15.30)
and expand the action as
_ o —c 828 1 828 1 828 o
Sg [{Zjv Zg}] = SE[{Zjla Zjl ]+ nin; + 5 nin; + 5 ninj + ...
07;0z; 2 02,0z, 2 0%,0%; 107, (15.31)

E1+g(5i )<éj i)( )+



15.2. COHERENT STATES FOR SPIN 7

For general H, we obtain

e 0°H (zz|zg)5,_
ho0z0z T

82H(2, |Zi—1) 5

Aij = 5ij - 62 j-‘rl

€
¢ OPH(Z41|2)
R am

with ¢ and j running from 1 to N — 1. The contribution of the fluctuation determinant to the
matrix element is then

1 1 Akl Bkl 1 1 Re m . —1/2 A B
27m {__ (Re M Im nk) <—i z) <Ckl Alk) (1 —i) <|m m) } = det Cc A

(15.33)
In the case of the harmonic oscillator discussed above, we have B;; = C;; = 0, and since A;;
has no elements above its diagonal and A;; = 1 for all i, we simply have that the determinant
contribution is unity.

15.2 Coherent States for Spin

For the pros: A. Perelomov, Generalized Coherent States and their Applications (Springer-
Verlag, NY, 1986).

A spin-coherent state | £2) is simply a rotation of the ‘highest weight’ state | m = +5), such
that the spin is maximally polarized along 2, i.e.

N-S|2)y=+5|2) . (15.34)

Note that | m = +S) is itself a coherent state with £2 = 2. We can effect this rotation by means
of an element R of the group SU(2):

R = exp(i1)S®) exp(10SY) exp(ipS*)
)= =|2)

To define and manipulate the spin coherent states, it is useful to introduce the Schwinger rep-
resentation of quantum spin. You are probably already familiar with the Holstein-Primakoff
transformation,

(15.35)

St=nt@s—-nn)? S =(@2S—-nhnn | S*=hh—-S ,  (15.36)
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with 0 < hTh < 2S. by which a quantum spin can be represented by a single boson. Note that
the eigenvalues of the boson number operator n, = h'h range over the nonnegative integers.
There are thus an infinite number of allowed states, but only a finite number (25 + 1) of states in
the Hilbert space for spin. But the factor v/25 — h'h in S* annihilates the state of maximal po-
larization, | m = +5'), and thus for any Hamiltonian which can be written in terms of the spin
algebra operators, the infinite-dimensional boson Hilbert space is effectively divided into two
parts. The “physical’ states all have 0 < n, < 2S5, and there are no matrix elements connecting
this subspace to the “‘unphysical’ one where n, > 25.

The square roots are unwieldy, however, and in practice one expands them in powers of (n,,/25),
viz.
1/hth 1 /hThy\2
—ntn)2 = Va5 q1- (T () 15.37
(2S5 — h'h) 28 {1 5\25) Tglag) (15.37)
This expansion forms the basis of spin wave theory. Hence, within spin wave theory, unphys-
ical states are allowed. For example, an interaction like S;" S} between spins on sites i and j

takes the form 25 h! h ; within the spin wave expansion. But such a term knows nothing of the
border lying at n, = 25 separating physical from unphysical states.

In the Schwinger representation, two bosons are used, and the constraint is a holonomic one
(i.e. one which can be written as an equality):

St=da'b | S~ =ab! , 5% = L(ala—bb) (15.38)

and subject to the constraint a’a + b'b = 25. The constraint simply says n, + n, = 25, i.e. there
are a total of 25 bosons present. Note that the operators S* change the number of a and b
bosons, but preserve the total n, 4 n,, hence they commute with the constraint.

Exercise: Verify that [ST,S™] = 257 and [S*, S*| = +5% for both the Holstein-Primakoff and
Schwinger representations.

A shorthand way of rendering the spin operators in the Schwinger representation is

S =1(d bT)a(Z) . (15.39)

We now investigate the action of the SU(2) rotation R on the Schwinger bosons. We wish to
evaluate the expression

Let’s work this out:

e Rotation about the z-axis:

X
+i5
—_ivs® [ @ i S? _i%ata ¥yt a —i%ptp Lt € "2a
e S eups —e ZQaanbe e 22b6622aa: ” ) (1541)
b b e ‘2 b
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e Rotation about the y axis:
—i0sy (AN sy _ 8(abt—alb) (@) —E(abl—alb) _ cos(0/2) a +sin(0/2) b
¢ (b) © = (b) c N <— sin(6/2) a + cos(6/2)b) (15.42)

We are also licensed to make an additional rotation & = exp(i£S), where S = 1(a'a + b'b). The
final result of the combined transformation R U is

(Z) Ut R (b) RU = (_“U z) (‘b‘) (15.43)

where u and v are spinor coordinates,

u=e W22 cog (%9)

4 4 15.44
v = e W2 ti®/2 i (%9) ( )

The phase ¢ is unphysical, and without loss of generality we are free to define { = —(¢ + ), in

which case
_ 1 1
(g) B <— Sln((g )> 0 cos(%é >Z ¢+¢> <Z) : (15.45)

Now that we know how the Schwinger bosons themselves transform under SU(2), we investi-
gate the transformation properties of the spin operators S, which are bilinear in the Schwinger

bosons. We find
. u —o) (1 0 a v\ (a
Rer=@ 0 (3 ) (6 5) (50 6)
14 gy [ cosf  sinfe”\ (a
S22 (a b ) <sin96’¢ —cosf b

=sinfcos ¢ S* + sinfsin ¢ S* + cosh S* |

\—/mh—

hence RfS*R = 2 - S, and

S|2)=RIS*|2)=(RISR)RI|2)=02-5|2) . (15.46)
Explicitly, then,
A 1/2 22 25\'/?
|2) = [(25)!]_/ (uaT+vbT)25‘O>:Z(k) ukvzs_k‘k—5> . (15.47)

k=0

Example: S = 13,0 = 1r, ¢ = 1r gives | 2) = I+ 5l =

2
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A useful property of the coherent states: if

2S5
[) = f(a,0)]0) =Y fi(ah)F ) 7F[0) (15.48)
k=0
then )
(2]y) =09 f(u,0) (15.49)

i.e. replace a' — 4 and b' — v as arguments of f. The overlap of the coherent states is

< 0 ‘ Q/> = (uu’ + 171/)25

[ s (1550
where
v(62,2) = 2arg (' + ') (15.51)
P T
cos 50 cos 50’ +sin 50 sin 50" cos(¢' — ¢)
Perhaps the most important result, for our purposes, is the resolution of the identity:
1:25+1/d9m><m | (15.52)

As with the case of coherent states for the harmonic oscillator, the spin coherent states permit
a simple resolution of the identity despite their nonorthogonality.

The last step, before we tackle the derivation of the spin path integral, is to compute matrix
elements in the coherent state basis. We assume that the Hamiltonian commutes with the con-
straint, i.e. it preserves total spin. The most general such Hamiltonian may be written

H =Y Cpj ()™ ()" (@)™ (0)" (15.53)
m,n,j
and its matrix elements may be evaluated using

preserves total S

(| Ty O @ 07 | ) = g

— — 2S—m—n ~m ~n, m+j n—j
 (U1uz + U102) ayr vy ug vy

25 —m —n)!

(15.54)
Note that the above operator product must be normal-ordered, with annihilation operators a, b

appearing to the right of creation operators a, b'.
Exercise: Verify eqn. 15.54 by finding the O(z}°23°) term of the matrix element in the (unnor-

malized) generalized coherent state

|2, 2) = e o) | (15.55)
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where z is a complex number. Show thata |z, 2) = 2u|z,2),b|z,2) =zv|2 ), and
(z,02 } 2 2 ) =exp [z (wd +0v')] . (15.56)
Use these results to verify eqn. 15.54.

As with the case of the coherent state path integral for the Heisenberg-Weyl group, only diag-
onal matrix elements are needed. In this case the expression eqn. 15.54 simplifies to

A m n m+j n—j | A (25)' —m =n , m+j , n—j
(2] (a")™ (N (@)™ (b)" 7 | £2) = 55— m—n) am ot u" " (15.57)
Two examples of matrix element computation:
e O = ST =a'b. Here, (m,n,j)=(1,0,-1),s0
<Q‘aTb‘Q>:2SﬂU:Ssinﬁei¢ . (15.58)
e O = (S,) First we normal order:
g2 _ (alb+al ?
“ 2
= i(aTb a'b+ablab’ +a'bbla+a bTaTb> (15.59)
(2,0,-2)  (0,2,2) (1,1,0) (1,000 (0,1,0)

— = AN AN
:i(aTaTbb+bTbTaa+2aTbTab+ ala + bTb) ,
which, following the rules in Eqn. 15.57, yields

215%02) =1(29)(2S — 1)(a*v* + v*u* + 2avuv) + +(25) (au + vv)
z 4 4

(15.60)
= 5(S — 3)(sinfcos¢)® + 15
Exercise: Prove that
(25757 2) = S(S = 1) Q7 + 18 6,5+ =S e, O (15.61)
15.2.1 Coherent state wavefunctions
Consider a state
|0) = 5 TalBH)|0) (15.62)
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where ¥(al, b') is homogeneous of degree 25. Then
(2]V)=0(w,02) |, (15.63)
where ¥ (4, ) is obtained from ¥(a', b") simply by substituting ' — % and b" — .

Now suppose we wish to calculate the matrix element of some operator A between states | v
and | @ ). We assume that A preserves total spin, in which case it may be written

A= Z Aklj Tklj
kil (15.64)

Th; = (a)* (0)' (@) (1)

Note here that we have written A in normal-ordered form, but this time with the creation
operators appearing to the right. One then has

<W}A\¢>:2i;1/d(2<\lf oy ali|o) | (15.65)
It can further be shown that
) ON /oY
(2T, |®)= <%) (%) u* o' o (a,v) (15.66)
and that
~ | . .
(0| Ty | @) = 25 +(];;r)f+1)' ~/% U (u, v) b o @ 5 B(a, 7). (15.67)

15.2.2 Valence bond states

The operator .AZTJ» = a}b} — b}a} creates a singlet ‘valence bond’ between sites i and j.
Exercise: Show that .A;'j transforms as an SU(2) singlet, i.e. R AL- R =Al e
Now consider the valence bond solid (VBS) state

| w(L,m))y= ][] (alb] —dlal)"|0) (15.68)

(ij)eL

where ‘ 0) is the Schwinger boson vacuum. Here, the product is over all links (ij) of some
regular lattice £. The state | U(L,m) ) possesses the following properties:

e | U(L,m) ) is asinglet, ie. it has total spin zero.
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e For every site 4, we have (a] a; + b} b,) | U(L,m)) = mz|¥(L,m)), where z is the coordi-
nation number of L. Le. there is a quantum spin S = 1mz at every site.

e The maximum eigenvalue of the total link spin J;; = S; + §; is J;** = 25 — m. This
is significant because with two spin-S objects the total spin will in general range from 0
to 25. What is special about the VBS states is that they have zero weight in the sector
Jij > 2S — m for every link.

Consequently, | ¥(£,m) ) is annihilated by any link spin projection operator PZ(ij), so long as
J > 25 — m. The projector P{(ij) may be written as an order 25 polynomial in S, - S;, viz.

25 1

paij) = ] S5t S+ — ghlk+ 1)

) - Sk(k+ 1)
(k#J)

(15.69)

Therefore, if one writes a Hamiltonian of the form

H= Z Z A, PL(ij) (15.70)

y J=28-m+1

with each \; > 0, then H| ¥(£,m)) = 0 and | ¥(L,m) ) is an exact, zero energy ground state
for H.?

The simplest example is for the S = 1 linear chain, where

PpI=

(i) =5(Si- )" + 38 S;+3 (15.71)

D=

We conclude that the bilinear-biquadratic S = 1 chain with Hamiltonian

H=J3" [0 St + (8, S0)?] (15.72)

has as its exact ground state ‘ (L, m =1)), where L is the linear chain. The energy per site is
2

—3J.
3

The states | (L, m) ) are easily generalized to ones of broken translational or lattice point group

symmetry, even while maintaining the constraint that zm link operators .A are associated with
each site i (with different values of j). °

2If every \; is nonnegative, then it is simple to prove that H itself can have no negative eigenvalues.

3Were this not the case, then some sites would have different total spin than others. It is perfectly sensible from
a mathematical point of view to consider models where the total spin varies from site to site. Most (but by no
means all) models of physical interest, however, have one value of S for each magnetic site.
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For example, on the honeycomb lattice, where we have links oriented along 0°, 120°, and 240°,
we can define the state

[ W(m,m,m") ) = T A)™ T (™ T Aal)™

(ij)e0° (klye120° (rs)€240°

0) . (15.73)

This state therefore has S = 3(m+m’+m”) on each site, but it breaks the point group symmetry
of the underlying tr1angular Bravais lattice. Similarly, one can define ‘columnar” states on the
square lattice which break both translational and point group symmetry, e.g.

“IIA> H Umn m+1n_ 1nna';[n+17n)}0>

(15.74)
‘ \IIB > H Aojn 2]+1 n_ b;j,nagj—i-l,n)z ‘ 0>

Exercise: Compare and contrast the states | U, ) and | ¥y, ).

15.2.3 Derivation of spin path integral

Let us compute the real time propagator in the coherent state basis. We begin, as usual, by
writing

< QN } 6—2HT/E
where each symbol 1 stands for an insertion of the resolution of the identity, eqn. 15.52. We
next compute

AN } e—ieH/h 1 e—ieH/h 1..-1 6—2’5H/ﬁ } ‘(20> ’ (1575)

e (92;| H| 02,
<Q}—15H/ﬁ ]1>_<Q‘ 1>_{1_E< ]A} ‘A ]1>+O(€2)}
i | 925-1) (15.76)
;1) exp ( —ieH (8| fzj_l)/h) ,
where the Hamiltonian is replaced by its coherent state matrix element,
H(2;|92;_1) = i) (15.77)

)

Exercise: Show that H(£2;|$2;_,) = H(u;,9; | u;_1,v;_1) is a holomorphic function of its argu-
ments.

We therefore have

< _(}N } o—iHT/h

i 25 + 1\ N1
2)=( — ) /dle /dQNle (P (15.78)
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where A = §/his given by
N e
A: —ZZIH<Q§ ‘ Qj_1> — ﬁZH<QJ ‘ Qj—l) . (1579)
j=1 j=1
Expanding in the difference between £2; and £2;_;, we may write

In < .(A)j ‘ Qj_1> =251n {1 — ﬂj(uj — uj—l) — @j('Uj - 'Uj—l)}

= 2S¢ {aj (%) - (Le%—l) T } (15.80)
~ —25¢ (ﬂjﬂj + @j@j) -+ O((QJ — Qj_1)2)

The continuum limit is
r 1
AlQ(t)] = / dt {22’S(uu + v0) — - H(r})} : (15.81)
where H(£2) = H(£2| £2). Substituting u = cos(f/2) and v = sin(0/2) exp(i¢), we obtain

it + o0 = isin®(0/2) ¢ = %(1 — cos ) ¢ = %w (15.82)

where dw = (1 — cos ) d¢ is the differential element of solid angle. We may now, finally, write
the spin path integral as
r d 1
N . ) w . N
) :/Dn(t) eXp{ —z/dt [SEJrﬁH(Q)]} (8%
0

w(O):wi

< O ‘ o~ HT/h

(T) ) (£2(00) | £2;) (15.83)

®(T)=w;

where w = v/u = tan(6/2) exp(i¢) is the stereographic projection of the spinor coordinates
(u,v) onto the complex plane.

The inclusion of the overlap terms inside the path integral is necessary if we are to allow for
the possibility of so-called discontinuous paths. Within the semiclassical approximation, w(t)
and v(t) are integrated forward from initial data «; and v; while @(¢) and ©(t) are integrated
backward from final data u; and v;.* We encountered an analogous situation with the coherent
state path integral for the Heisenberg-Weyl group, where z(t) was integrated forward from
initial data z; and Z(t) integrated backward from final data Z;. In fact, these paths are perfectly
continuous; there simply is no reason why z(7") should have any resemblance to z;, or Z(0) to
z;, since the equations of motion know nothing about either z; or .

*The equations of motion may also be written in terms of the stereographic coordinate w = v/u, in which case
w(t) is integrated forward from initial data w, and w(t) is integrated backward from final data w.
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The thermal, or imaginary time, propagator in the coherent state representation is

hg
(O] 0y) = / PO() exp {_ /dr [is % Ln(a)] }~< 2| 0(h8)) ()| 2) . (1584)

’w(O):wi

@(T)=w;

15.2.4 Gauge field and geometric phase

The solid angle functional w[§2(t)] may be written

T

w[2(t)] = /th(fZ) .

0

(15.85)

=¥
|

for any A(£2) which satisfies V x A = £, i.e.
2 =¢, — A%(N) (15.86)

(To see this, use Stokes” theorem.) We now derive a useful result:

. oAb d2b  d
5w[ﬂ(t)]—/dt{%ﬁ5ﬁ ‘I‘A E(;Q}

DA DA d
_ _ a 15.87
/dt(am (mb) 002 (15.87)

:/dt60“eab60b00:/dt6n-%—t><.Q :

and hence the functional derivative is

e 2 (15.88)

15.2.5 Semiclassical dynamics

We begin with the action functional,

A[Q2(t),\(t)] = A[2(1)] +/dt)\(t)(f)2(t) -1) . (15.89)
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Here, A(¢) is a Lagrange multiplier field which enforces the constraint Q) - 2(t) = 1 atall
times. We next vary with respect to £2(¢) and A(¢):

‘SAA :—Sa—nx(}—la—{]jumﬁ

(m@ o hos (15.90)
bA .,

N 2*(t) -1

Setting these variations to zero, we solve for A(t) by taking the dot product of the first equation
with £2(¢) and then substituting £2?%(¢) = 1. In this manner, we find

1 0H
=— .0 |
2h 092
The effect of this is to render all terms on the RHS of eqn. 15.90 orthogonal to £2, thereby effec-

tively projecting 9H /042 onto this orthogonal subspace. It is then easy to obtain the equations
of motion

(15.91)

02 O0H .

—— =—= X2 . 15.92

praleys (15.92)
If we write the equations of motion in terms of the spinor coordinates {u, v, @, v} themselves,
it is important to recognize that they must satisfy the constraint uu + vv = 1. A Lagrange
multiplier field A is invoked to impose this constraint at every value of the time ¢. This results
in the equations of motion

2ihSU = 0_{[ + \u 2ihSU = 0_{[ + v (15.93)
ou o0v
) H . H
—2thSu = 8_ + \u —2thSv = 8_ + A\ . (15.94)
ou ov

Varying the action with respect to the Lagrange multiplier field of course yields the constraint
equation. We are then left with five equations in the five unknowns {u, v, @, v, A}, along with
the four boundary conditions,

u(0) = v, : w(T) = u, : v(0) = v, , o(T) =0 . (15.95)
Implementing the constraint, one obtains an expression for A,
i .. _OH OH
A = 2iS(uu+00) —a 2% "o (15.96)
= —2iS(ut + vv) —u on _ v on : (15.97)
ou ov

Note that for real 0 and ¢ that eqns. 15.93 and eqn. 15.94 are related by complex conjugation.
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15.3 Other Useful Representations of the Spin Path Integral

15.3.1 Stereographic representation

In the stereographic representation, we write

w="L = tan(6/2) e’® . (15.98)
u
One then finds
ww d
=i+ 00— : 15.
T ow Ut + vv dtlnu (15.99)
From the differential
dw = § sec® (0/2) ¢ df + i tan(0/2) € d¢ (15.100)
we obtain
dw N dw 1
————— = —sinfdd Nd¢p . 15.101
Itaow? 20" ¢ (15.101)

The Hamiltonian matrix elements may be recast in terms of w and w. For example,

S+:aTb—>2Sﬂv:12St_U

T ww i (15.102)
2 L t, _ pt T — D) — _
S* = 5(a'a —b'b) — S (uu — vv) Sl+ww

Thus, the real and imaginary time path integrals are given by

T .
ar /D[u‘)(t), w(t)] exp { . i/dt [— iS % v %H(w, w)] } (15.108)
0
and
T — . -
(]| ) :/D[w(t),w(t)] exp{—/dt [S%+%H(w,w)]} . (15.104)

0

respectively. In these above expressions, the metric D[w, w] includes the (1 + ww)~? factor at
each time step, and the Hamiltonian H(w,w) is the coherent state diagonal matrix element
expressed in terms of the stereographic coordinate w and its conjugate w. These expressions
are incomplete, however, in that we’ve omitted the boundary overlap factorsatt = 0andt =T

Exercise: Complete the expression in eqns. 15.103 and 15.104, adding the boundary terms.
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15.3.2 Recovery of spin wave theory

To recover spin wave theory and the Holstein-Primakoff transformation, define z = uv/|v| =
cos(0/2) exp(—ig). Then |z|* = |u|? and
dz = —3 sin(0/2) e " df —icos(0/2) e " dp . (15.105)
We then obtain .
dzNdzZ = % sinfdd ANde . (15.106)
The geometrical phase, which is responsible for the w[£2(t)] term in the action functional, is
obtained using _
7= % (1 — cos0) do — i de + d cos?(0/2) (15.107)
which, after dropping the total time derivatives, yields (i/2) dw. As for the Hamiltonian, we
have
St =a'b— 25w =252V1 - 2z

S* = %(a*a —b'b) — S (u — vv) = 28 (22 — )

(15.108)

This is equivalent to Holstein-Primakoff, with h = v/2S z as the HP boson. We therefore obtain

T

7)) = / DIA(t), h(1)] exp { i / dt [ﬁh + %H(ﬁ, h)} } , (15.109)

0

< o) ‘ p—iHT/h

where the functional integration is over a disk of area 275 for each time ¢.

154 Quantum Tunneling of Spin

15.4.1 Model Hamiltonian

The theory of quantum spin tunneling has been developed largely by E. Chudnovsky, A. Garg,
D. Loss, and others. Consider the following model Hamiltonian,

H=K,S5}+K,S; —vHS, (15.110)

where K; > K, > 0. This describes a spin-S particle with an easy axis along « and a hard
axis along z. To treat this problem by the coherent state path integral, we need to compute the
diagonal matrix element of /1 in the coherent state basis. One finds,

E(0,¢) = (02|H|2) =k cos®0 + ky sin*(0) sin®(¢) — h cos() (15.111)

where k; = S(S — %)KZ (¢t = 1,2), h = vSH, and where we have dropped an unimportant
constant. In weak fields &, the energy function £(f, ¢) has the following features:
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e E(0,¢) has two degenerate minima with 6y = cos™*(h/2k;) at ¢ = 0 and at ¢ = 7. The
minimum energy is E§ = —h?/4k;.

e There is a global maximum with E,,.x = k; + h located (assuming h > 0) at the South Pole
(0 = ), and a local maximum with £/ .= k; — h located at the North Pole (6 = 0).

ax

e There are two saddle points, located at 6x = cos™*(h/2(ky — ks)), with ¢ = £3m. The
energy of the saddle points is Eguqdie = k2 — ihz [ (k1 — ko).

We therefore expect to find two low-lying states which are linear combinations of the coher-
ent states |6 = 6y, ¢ =0) and | § = 6, » = 7 ). Let us abbreviate these two states |0) and | 7 ),
respectively. The eigenstates of the system should be symmetric and antisymmetric combina-
tions of these states: | = ) =271/ 2{‘ 0)=£|nm >} The tunnel splitting A = FE, may be obtained
by examining the matrix elements,

(41| 4+ )= (0] [0) + (0] |} = e~
- - - DA (15.112)
(=] = )= (0]e" o) = (0] "} = e0ea)
where E, differs from E§' due to ‘zero-point energy’, i.e. quantum fluctuations. In reality, there
is no reason why the states | & ) should necessarily be eigenstates of H. What is important,
though, is that the antisymmetric combination projects out all of the ground state. By taking
the # — oo limit, the contribution from admixtures of higher-lying eigenstates to | + ) can be
suppressed. What this means is that we can calculate the exact tunnel splitting by the formula,

A:limlln{<0‘e_ﬁH‘0>+<0‘6_6H}7T>} . (15.113)

BF\ (0l [0y (o e 7)

Another way, of course, to compute the tunnel splitting is to simply numerically diagonalize
the rank-(2J + 1) Hamiltonian matrix. This works without fail, but it is not particularly in-
structive in elucidating the physics of spin tunneling. Moreover, it may be that an instanton
calculation, which we shall presently describe, yields certain analytic results which are useful
and in general impossible to obtain numerically.

15.4.2 Instantons and tunnel splittings

The essence of the instanton approach to quantum tunneling is described in a beautiful article
by Sidney Coleman, entitled “The Uses of Instantons”. We write the imaginary time matrix
element <Pf ‘ exp(—FH) } Pi> between points P; and P, as a path integral. In our case, each
P labels a spin orientation 2, and each state | P) is a spin coherent state. We extremize the
action, applying the method of stationary phase. This involves solving the classical equations
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of motion, subject to boundary conditions which we shall not fully specity, save to say that the
most naive boundary conditions are simply £2(0) = £, an 2(h3) = £2,.°

There may be several instanton paths connecting P, and P,. Associated with each such instan-
ton « is a characteristic time 7,, a classical action Y,, + i¢,, written in units of / and separating
real and imaginary parts, and also a ‘fluctuation determinant” prefactor D, arising from inte-
grating over Gaussian fluctuations about the classical instanton trajectory. If we write

fo = DoePoe™ | (15.114)

then the diagonal matrix element can be written in the ‘dilute instanton gas” approximation as

o hB hB
(Pule Py =Y Y fan [mto g,
n=0 {Oc;w&k} 0 Ton—1 (15.115)

— cosh (hﬁ‘ 3 ¢, )

Here we denote the return instantons from P, to P; with the index &. Since the return path is a
time-reversed one, we have {; = ¢,, i.e. the return paths have opposite phase.

The off-diagonal matrix element, in which paths must begin at P, and end at P, requires an
odd number of instanton events, and is given by

o hp hB3
(Po|e Py =30 3 fan o [ oo o
nzzo{ak,o_zk} 0 Ton (15116)
b
= & -sinh ( A o
PN ( Z )

If > &, is real, then we can read off the tunnel splitting:

A=2hY Dyet e . (15.117)

15.4.3 Garg’s calculation (1993)

Starting from the Euclidean Lagrangian,

Ly =ihS(1—cosf) ¢+ E(6,6) (15.118)

°In fact, the proper boundary conditions are u(0) = w;, v(0) = v;, @(h3) = 1, and v(hB) = vy, as derived above.
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one derives the Euler-Lagrange equations of motion,

00 dt 99 h 00 (15.119)
oL, doL,  19E . . . '
a—gﬁ_aa—qﬁ—o—ﬁ&(ﬁ ’LSSID(Q)G
Note that iE OF OF
R Bt NP S 15.12
- 55 t0%5 =0 (15.120)

which says that the energy E(f, ¢) is conserved along the classical trajectories. One can use
this result to finesse the instanton calculation and solve directly for ¢ as a function of ¢. Energy
conservation provides a quadratic equation in cos(6),

h?

Ey = T Ky cos®(6) + ky sin?(0) sin® ¢ — h cos(f) (15.121)
1

the solution of which is written (Garg, 1993),

:uo—l—z'\/Xsingb\/l—ug—)\sinng

u(9) e (15.122)

where u = cos(0), uy = h/2k; = h/h., and A\ = ky/k;. Note that u = cos § is complex along the
instanton path. Nevertheless, the path obeys the boundary condition that u = u, at ¢ = 0 and
¢ = . The dimensionless instanton action is

+7
A=Y +ip=BE,+iS [dp{1—u(¢)} , (15.123)

0

whence

™

¢=1ImA==+S d¢{1

0

“ o)~ ) (15.124)

Thus, there are two instantons connecting (6,¢) = (6,0) and (6,¢) = (6, 7) which wind
around the sphere in opposite directions. The tunnel splitting, according to eqn. 15.117, is

A=4De Y cos (7?5[1 . Wh—kgb . (15.125)

The tunnel splitting therefore vanishes at a set of dimensionless field strengths h,,, where

1
hmzz,/kf—k§{1—m;2} . (15.126)
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Note that for h = 0 the splitting vanishes whenever S = m + 1, which is to say whenever the
ground state is a Kramers doublet.

In Feg clusters, where S = 10, this predicts ten values of h > 0 where A vanishes. In fact,
experiments by Wernsdorfer and Sessoli see only four such vanishings. The reason for this is
that the effective Hamiltonian for the experimental molecule includes a term proportional to
J¢ 4+ J* which is not included in the Hamiltonian of eqn. 15.110. This new term allows for two
additional instanton solutions. Moreover, the new solutions exhibit discontinuities in £2(7) at
the boundaries 7 = 0 and 7 = h3. This very interesting result was obtained by Kegecioglu and
Garg (2002).

15.5 Haldane’s Mapping to the Nonlinear Sigma Model

The many-spin dimensionless action is

T

/ dt H({2:(1)}) (15.127)

0

St =

A= —SZW[Q‘(U] -

where the Hamiltonian is that of a Heisenberg antiferromagnet, with diagonal coherent state
matrix elements given by

H({2(t)}) =552 Jy -9 (15.128)

ihj

where J;; = J(|R;;|) with R;; = R; — R; is a function of the distance between sites i and j in
the lattice. The spin coherent state at site 7 is polarized along the direction

. Li\?2
O, = i g 1-(“%5) +;—gLi , (15.129)

where n; - L, = 0. Here, n; is the local Néel field, which varies slowly once the sublattice
modulation 7; extracted from the spin field £2;, L; describes ferromagnetic fluctuations about
the local Néel order; v, is the unit cell volume. Note that

hSY 2=vyY Li= / d% L(z) (15.130)

where the RHS is obtained after taking the continuum limit.
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15.5.1 Hamiltonian

We now expand the Heisenberg interaction £2; - £2; in the slowly varying quantities n; — n; and
L;. Since 7; is a unit vector, we may write

We then have

2 0 = non {1 = S — ) - (g - )}{1 — (5@ 1) +. }

Y - Y% o - 15.132
+pgMini (L= Li) + 5oy - (Li — Ly) ( )

2
1 (Y 2 2 2
+5 (o) (B8 - -y}
Lattice differences may now be expanded in derivatives, as

of (R;)
OR”

Pf(Ry)

f(R;) — f(R;) = (R — RY) IR ORY

+ % (R — RY) (RY — RY) +... (15.133)

Expanding to Gaussian order in the fields n and L and their gradients, we find

2

2 2=, {1 — L(RY — R (RY — RY) (9,m%) (D,n%) + ... } (15.134)
41 (;:S) {(1 — ;) (L7 4+ L3) — (RY — RY) (RY — RY) (9,L%) (O,L%) + .. }

+—m ni (R} — R) (0uL7)

e S (RY — RY)(0,L5) +

_%77] J

Upon performing the double sum over lattice sites ¢ and j, the terms on the last line vanish,
and we are left with
H = Hy + Hp + Ejy (15.135)

where the classical energy Ej is given by

Eo=18Y "Jymn; . (15.136)

2
The Hamiltonian also contains contributions due to gradients in the Néel field,

52 2 a
Ha = " 4dNv Z Jij i mj }Ri - Rj} ./ddx (9un)? (15.137)

0 4
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where d is the dimensionality of the (presumed hypercubic) lattice and N is the number of
lattice sites, and from ferromagnetic fluctuations,

2 a
Hr = zthZJu — i) /d 40W,,_LQZJ”}R ;| /ddx@L )2 . (15.138)

Retaining only terms of order L? — and hence dropping terms of order (VL)? — we obtain the
Hamiltonian,

d% {% pe(Vi)? + 1 X—1L2} (15.139)

where the spin stiffness is given by
s = — Jiinin; |Ri — R; 15.140
P QdN % ; 3 T 1 ‘ ( )

and the inverse susceptibility is given by

-1 _ UO UO ~ B N
= Z Jig (L=min;) =+ [J 0)—J (Q)} : (15.141)

where Q = (7/a,7/a,....7/a) is the zone corner wavevector. The dimensions of ps and x are:
o =E-L*% [\J=E-T>-L7" . (15.142)

15.5.2 Geometric phase

The geometric phase contribution to the dimensionless action is written

A, = —SZw[Qi(t)] - —SZW [n( +o 2 h - (t)} . (15.143)

We now expand in the notionally small quantity linear in L;, using the result of eqn. 15.88:

ABI—Sme[m]—S/dt Z(%)L%—Z <
:_Szmw[ﬁz’]—%/ddx/dt%—?xﬁ L

(15.144)



26 CHAPTER 15. SPINS, COHERENT STATES, PATH INTEGRALS, AND APPLICATIONS

15.5.3 Emergence of the nonlinear sigma model

Let’s start with the quantum action obtained thus far,

2
A_——/dd /dt{ +L—+L M A
2x ot
(15.145)

We have included here an external field H(«,t) which has uniform (k ~ 0) and staggered
(k =~ Q) components H, and H;, respectively. Now let us integrate out L. In order to do so, we
must introduce a Lagrange multiplier field A\(z, ¢) which enforces the local constraint n - L = 0.
At each position «, we must evaluate the functional integral

T = /D)\ /DL exp{——/dd/dt[ )\n+aa—t>< +972L‘§BH)H
- 7, /D)\(t) exp{ /dd /dt )\n+— Q%ZBH) } (15.146)

N 2
~ 1, exp{ /dd/dt{ +QO§§XHU-88_?xﬁ+%X(g%’gB> (Huxﬁ)2”

where Z, and Z, are independent of H, and n, and where we have suppressed the « coordinate.
The complete action functional, including the geometric phase term, is then

1 [, L (0PN = GoksX L, O
1 1 (97 H
2
+ o (B ) () - gj}’jBHs-ﬁ} -8 nwln

Dimensional analysis reveals the spin wave velocity ¢ = \/ps/x. Defining 2° = ¢, we find that
the quantum field theoretic action, excluding the geometric phase term, is

(15.147)

— & d+1 a W, a 290,“]3 H on ~
A 2hc/d x{(a“n )+ g Haggn ¥ ™
YJolg N2 200k ol ey
+ (th) (Hy, X n) ot H, n} Szi:mw[n,]
where we adopt a Minkowski (+, —, ..., —) metric. The Euclidean version is

B_ P [gdm oy pay o 2oy oo O
A —th/d x{(@un )(0un®) + heS H, 550 < ™

gouB>2 o 200K 4 o\, .
- H, + 0B H s +iS Y piw(
<ﬁcS (H, X n) el n} 1 : n; W]

(15.148)
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Notice the factor of 7 in the coefficient of the second term. To maximize the weight exp(—.A"),
the third term inside the brackets should be as large as possible. This favors a spin flop in which
the Néel vector lies perpendicular to the (uniform) applied magnetic field H,,.

The coupling constant for the nonlinear sigma model is defined to be

1/2
gole_ b _ V2 2y T3y (1= min;) (15.149)
Ps V PsX CLS Zz] 1% ( 77177]) |Rz - Rj‘z/a2 .
For a nearest neighbor model on a d-dimensional cubic lattice, we have®
2/d d—1
g= 2vd o (15.150)
S
15.5.4 Continuum limit of the geometric phase: d =1
In one space dimension, we have
L
—_— . . . 1 Ow
D (1Y wiy] = wlng] — wlin] + wh] — ... = [do = (15.151)
j 9
We now invoke eqn. 15.88, which says
T
Sw = / dt€,,, 7" n°oén® | (15.152)
0
to obtain the beautiful result,
Ap = —SZ(—l)j wn;] =1 S/dx/dtn on X — =215 Qtz (15.153)
J
where @)y, is an integer topological invariant, known as the Pontrjagin index of the field n(z,t):
Qiz = 817r d% e e, n" O,mb a,nc (15.154)

where 2 = ¢t as before. Q;, measures the winding of the field n(x, t) over the unit sphere. To
see it is an integer, change variables from local coordinates (n®, n¢) to (&, &) in the vicinity of
n. The differential surface area element projected along n is

onb onc
= L
dX, " €pe 85“ oE

d*¢ (15.155)

2

®Take care not to confuse the coupling g with the g-factor g,,.
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and changing variables from (z°, ') to (£%,¢'), we obtain

1
Qu = - / e, (15.156)
52

int

which is manifestly an integer.

Put another way, think of n(z,¢) as a rubber band draped over the surface of a sphere. As time
evolves from 0 to 7', the configuration of the rubber band changes, but if the configuration itself
is periodic, i.e. n(z,0) = n(x,T"), The Pontrjagin index measures the number of times the rubber
band winds around the sphere. Configurations of n(x,¢) which yield a nonzero value of @,
are known as skyrmions. An example of a skyrmion configuration on the two-dimensional (z, y)
(or (z,t)) plane is obtained by identifying the vector n(z, y) with the (inverse) stereographically
projected position (z,y). Put another way, we set

% =tan(0/2) e = (z +iy)/a (15.157)

where a is an arbitrary length scale. This (exercise!) is equivalent to

2ax 2ay a? — 2% —y?
= =7 - | = 15.1
o T a2 T 2 a2 (15158)
This skyrmion has Pontrjagin index Q,, = 1.

Thermodynamic properties are derived from the Euclidean action,

AL =2miS Qe + 2[;; / &z (Va)? . (15.159)

The effect of the geometric phase term, then, is quite simple and in fact discrete:

. +1 ifSez
28 Que — 15.160
{(—1)% itSez+1 ( )

Thus, for integer S, the geometric phase term always contributes a factor of unity, and the
full quantum field theoretic action is that of the two-dimensional O(3) model, also called the
nonlinear sigma model. For half-odd integer S, space-time configurations with even and odd
Pontrjagin index destructively interfere with each other.

What have we learned? First of all, we conclude that antiferromagnetic Heisenberg chains
generically fall into two classes: those with integer spin and those with half-odd integer spin.
The field theory for the first class is simply that of the classical O(3) model in two dimensions.
The Hohenberg-Mermin-Wagner theorem precludes any spontaneous breaking of the contin-
uous O(3) symmetry in d = 2 at any finite value of p;. The system has a gap, and correlation
functions decay exponentially, up to power law corrections, viz.

(W | Sy~ 85| o) = (—1)7 |57/ exp(~4]/€) . (15.161)
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where the correlation length ¢, in units of the lattice spacing a, is a function of the dimensionless
quantity ps/hic.

For the second class — the half-odd integer antiferromagnetic chains — the field theory includes

the so-called “6-term’, 0 oh O
R n n

with § = 275 = 7 mod 27. While no exact solution to the field theory with the f-term is
yet known, we nonetheless conclude that all half-odd integer antiferromagnetic chains behave
equivalently, since they all map onto the same model. Since the S = ; Heisenberg antifer-
romagnetic chain is known, from Bethe’s Ansatz, to possess a disordered ground state with
gapless excitations and power law correlations, (S, - S;) ~ (—1)7/|j| (up to logarithmic correc-
tions), we conclude that the same is true for the S = 3, %, etc. spin chains.

15.5.5 The geometric phase in higher dimensions

So long as the Néel field n(z, t) is a smooth function of space and time, there are no interesting
topological terms in the field theory in more than one space dimension. The reason is trivial.
Consider a d-dimensional system as a network of parallel one-dimensional chains. Call the
longitudinal (chain) coordinate z. For each set of transverse coordinates R |, one can define the
integer Pontrjagin index Q,, (R, ). The geometric phase term in the action is then given by

Ay =8> nwln] =5 np QuR)=0 (15.163)

R,

where the last equality follows from the assumed smoothness of n(x,t), which requires that
Q). (R ) be independent of R , since a smooth integer-valued function must be a constant!

When the smoothness constraint is relaxed, however, the geometric phase term can play an im-
portant role. For a two-dimensional antiferromagnet, there exist topology-changing instanton
for which AQ,, = +1. Such field configurations are called ‘hedgehogs’, because the direction
of the field n(t,z,y) points radially outward from the center of the hedgehog. For quantum-
disordered two-dimensional antiferromagnets (i.e. small p;), Haldane argued that geometrical
phase considerations associated with the presence of hedgehogs would distinguish not only
between integer and half-odd integer S on the square lattice, but between even and odd inte-
ger S as well.

15.6 Large-N Techniques

The basic idea behind large-/N approaches is to extend the global symmetry group of some
physical model from e.g. O(3), SU(2), etc. to a larger group, such as O(N), SU(N), or Sp(XN). If the
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extension is done in a certain way, the resultant model can be solved exactly in the N — oo limit.
N plays the role of 1/k, so N — oo is a classical limit of sorts, with no quantum fluctuations.
Furthermore, one can derive a systematic diagrammatic expansion in powers of 1/N, which
can be used to investigate properties at finite V.

We shall barely scratch the surface of this subject. My aim here is to guide you through a
large- N calculation for the nonlinear sigma model.

15.6.1 1/N expansion for an integral

To begin, consider the one-dimensional integral,
7= / dee N@ (15.164)

where f(z) is some function and N is large. Clearly the integral is dominated by values of =
near the minimum of f(z). Suppose a unique global minimum exists at z = z.. We can then
write

I _ 6_Nf(1'c) /du 6_%Nf//(xc)u2 e—%NfW(SUc)U:; e_iNf////(xc)uzl o
1 1"
_ 6—Nf(xc) /du 6_§Nf () u? {1 . %Nf”/(l‘c) u3 . ime/(xC) u4 4. } (15.165)
o 1/2 N
_ —Nf(zc 1 4
~(w7g) - )
Thus, we have derived a 1/N expansion for the integral:
. 0 O(N"")
O(NY) O(N?) corrections
N r - -\

[\

Nf'(azo)y 1 f"(x) I
bt LO(NTY) (15.166)
) SN [f”(l‘cﬂ ( )

15.6.2 Large-N theory of the nonlinear sigma model

Recall the Euclidean action for the O(3) nonlinear sigma model,

Lo

_Ps d 0 a\2
Ap = ST /d :)s/dx (Oun®)” (15.167)

0
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where n = (n”,n?,n?) is a three-component unit vector and Ly = hc/k,T. In the case of Hal-
dane’s derivation of the sigma model action for quantum antiferromagnets, n(z) is physically
the Néel field, which varies slowly from site to site even though the local magnetization it-
self oscillates from one sublattice to the next.” It should be emphasized, though, that the D-
dimensional nonlinear sigma model also describes the finite temperature phase transition of
an isotropic D-dimensional ferromagnet.

Quantum mechanics is irrelevant at finite temperature, since the imaginary time variable is
bounded: 0 < 7 < Rf. At a critical point, the spatial correlation length diverges as £(77) ~
T — T¢|7%, and the temporal correlation length (or correlation time) diverges along with &, as
& ~ & . Here, v is the correlation length exponent and z the dynamic critical exponent. With
h3 finite, however, sufficiently close to 7 the correlation time exceeds the thickness 23 of the
temporal ‘slab’, hence the degrees of freedom at a particular location in space are ‘locked” as
a function of imaginary time. Finite 7" second order transitions of a d-dimensional quantum
system are therefore described by a d-dimensional action.” At zero temperature, though, the
temporal slab is infinitely thick, and one cannot ignore temporal fluctuations. The action is
then for a (d + 1)-dimensional system.

It is perhaps worth emphasizing that the continuum effective action for the Heisenberg ferro-
magnet is given by

n3
Ay = /ddx/dT {iS vyt A(n) - g_:_L + 3 ps (ﬁfz)z} (15.168)
0
where v, is the unit cell volume, and

52

N ddvy “F

Ds J(R)R* . (15.169)

Note the difference between this and the effective action of the antiferromagnet, in which space
and time appear symmetrically. The effective (low-energy) theory for the antiferromagnet pos-
sesses a ‘Lorentz invariance” where the speed of light is replaced by the spin wave velocity

¢ =/ps/Xx-

Returning to the nonlinear sigma model, the partition function is given by the functional inte-
gral

7 = e /T — / Da(z) e sl (15.170)

n2=1

"The notation I adopt here is that (d + 1)-dimensional vectors are denoted as » = (2, x).

8Note that this does not say that quantum mechanics has no effect whatsoever at finite temperature. Indeed, the
partition function for the quantum and classical Heisenberg models will be different. What is true is that the
critical properties at a finite temperature second order transition are not affected by quantum mechanics.
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The extension of the O(3) model to one with an O(/N) symmetry is trivial. Simply replace the
3-component unit vector (n,, n,, n,) by an N-component one, n = (n,,n,,...,ny). How do we
generalize the unit length constraint to general N? Let us write the constraint as n?(z) = ¢N,
where the parameter ¢ is as yet undetermined. We can envisage two natural extensions to
general V:

e Maintain n? = 1, i.e. take ¢ = N1

e Fix g and let NV vary. The length of n then increases with V.

It turns out that it is the second of these schemes which generates a proper 1/N expansion, as
we shall soon see.

To enforce the length constraint, we insert into the functional integral a J-function 6(n* — ¢N)
at every space-time point. We write the J-function as

100

5(y) = / dhe ™ | (15.171)

—100

where the integration contour runs along the imaginary axis, from —ioo to +ioco. The partition
function is then expressed as a double functional integral over the fields n(z) and A(z),

Z = / Din(z), A(z)] e el (15.172)
where
Ag = /dd+1$ {%(@na)z + A (n? — qN)} . (15.173)
g
For convenience we have defined the coupling
g=le_ b (15.174)
Ps \V XPs

The dimensions of g are [g] = L4

We now integrate out the n®(x) fields, which are quadratic in A,. Writing

/dd+1 /ddH "n®( z,2")n(2") — gN /ddﬂx M) (15.175)

: s 0
K(x,x):—%@ (x —a')

with

T (x—2') (15.176)
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the partition function can be written in terms of an effective free energy which is a function of
the field A\(z) alone:

7 - / DA(z) e~ NFual kT (15.177)
where

o NFgN/ksT _ /Dn(m) o~ Apn(x)X(z)]

(15.178)
= (det K)™ exp {qN/dd+1x )\(x)}

Thus, the effective free energy is
F4[N/k,T =Indet K —¢q / de N(z) (15.179)

where the determinant of the integral operator K is, as always, defined by the product of its
eigenvalues,

Indet K =[] ¢ - (15.180)

The eigenvalue equation is
[ e inla) = Gvale) (15.181)

We can now see why keeping ¢ finite as N — oo generates a true 1/N expansion. Had we
instead taken n? = 1, we would have ¢ = 1/N and the effective free energy F_;[\] would not
be independent of N.

Solution of the N — oo theory

When N — oo the functional integral is dominated by the saddle point in the action. Before we
solve for this saddle point, let us slightly extend our model to include a coupling to a magnetic
field. The augmented action is then

Ay = / dty {%(@na)? + A (nn® —gN) — VN h* n} : (15.182)

The /N factor preceding h - n ensures that the action will be proportional to N when |h| is
of O(N?). In the case of the antiferromagnet, where 7 is the Néel field, h corresponds to the
g = 7/a (zone corner) component of the physical magnetic field, i.c.a sublattice-staggered mag-
netic field. This is of course quite unphysical, however our purpose in introducing h is not to
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investigate the effects of an external field per se, but rather as an artifice by which we can couple
to any condensate, as we shall see presently.

To find the saddle point of F;[\], we should set its functional variation with respect to A(z)
to zero. We will assume that the saddle point occurs for real, constant A. We will justify this
by presenting such a solution to the equation éF,; = 0. Note that the saddle point lies off the
integration contour for A(z), which runs along the imaginary axis.

When ) is constant, the model may be solved by Fourier transform. We write

n(x) =

1 ,
> at(k) et (15.183)
VLV 4

with
(15.184)

i 9 o
=phec , V=L---Lg , k:<7T]0 T 7T]d>

I L, L
Expressed in terms of the Fourier modes,

{na(i)} \/vTOZ{ Z } | (15.185)

the Euclidean action is

~ k
AEZZZ{(H ) k)|* = VN bt (k) 7 ()}—qNVLo)\ . (15.186)
a=1 k
We now integrate out the {n%(k)}, yielding an effective free energy function F ;(\)
_ Fg(N) _ K 1 he (k) he (—k)
IO =S = P ory Zk:ln <A+ %) ST zk: GrE (15.187)

The order parameter m, which is the static Néel field in the case of the antiferromagnet and
the static magnetization in the case of the ferromagnet, is obtained by differentiating the free
energy with respect to the ¢ = 0 Fourier component of the field 2*(k). We therefore obtain

_m) 1 ONFg/kT)  O0f h
mT=UN  NLV  on T Ton 2) (15.188)

since h(0) = LoV h.
To find the saddle point in A, we set 9f /0\ = 0, yielding

1
g=m?>+ 23" > . (15.189)
k
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In the absence of an external field, we also have The second mean field equation,
2X\m=h=0 . (15.190)

This requires either (i) A = 0 or (ii) m = 0.

We now explore the solution to these equations as we vary dimensionality and temperature.

e d =1,T = 0: In this case the integral is infrared divergent when A = 0. The mean field
equation can always be solved with m = 0 for some finite A:

A

Bl p A2
= /(%)2 S E- L (1 + 29—A> , (15.191)

yielding
A% /2g
\ag) =
9) = plngfe) -1

which monotonically decreases on g € [0.00] from \(0) = A?/87¢q to (o) = 0.

(15.192)

e d > 1,T = 0: In this case there exists a quantum critical point at ¢ = ¢g.. The gap A
vanishes for g < g.. To find g., set

A
dk 1 . A Q h I
ngc/ AR L s (15.193)
(2m)d+tt k2 (2m)dtt d—1 | 7Q; schemell
where (), is the area of the d-dimensional unit sphere:
9 d/2
Qg =" (15.194)
r'(s)

The cutoff is taken to be isotropic in both frequency and momentum (scheme I) or isotropic
in momentum only (scheme II). In scheme II, the integral over the frequency component
k, extends over the range (—oo, 00), which is appropriate since the imaginary time vari-
able is not quantized on a lattice. This gives us an equation for the critical coupling g,.
The cutoff A is proportional to a~!, and it is convenient to write A = (r/a, where ( is a
dimensionless constant and a is the lattice spacing.

Recall that Haldane’s mapping for the cubic lattice Heisenberg model resulted in an O(3)
nonlinear sigma model with coupling g = 2v/da?"!/S. The critical value for the spin
quantum number S, is then found to be

-1
5 - Vd ¢ ~{Qd+1 scheme I (15.195)

cTd—1 2i72q | 7Qy schemell |
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Ford =2and ¢ = N~! = %, one finds S, = 1.35( (scheme I) or S, = 2.12( (scheme II).
Depending on the value of ¢, then, the critical S may be either smaller or greater than the
smallest value permitted by quantum mechanics, i.e. S = 3. If S, < 1, then we conclude
the model is Néel-ordered at zero temperature. Indeed numerical work convincingly
shows that the ground state for S = 1 is Néel-ordered, and rigorous proofs exist which
show that long-ranged Néel order exists for S > 1.

One might suspect, given eqn. 15.149, that by extending the range of the interactions
one can push g above g, and obtain a quantum-disordered ‘spin-liquid” ground state for
the S = 1 antiferromagnet on a square lattice. For example, if one includes next-nearest
neighbor antiferromagnetic coupling J, as well as nearest neghibor antiferromagnetic
coupling J;, one has

2v/d a! 1
_ 2vdaT? (15.196)

S VI-2L/TL
which is increased above its value when .J; = 0. In fact, the search for spin liquid states
has been an arduous one. On the square lattice, one generally finds that frustrating
further-neighbor couplings push the system into another ordered state, for example one
with four sublattice antiferromagnetic order. On lattices which are highly geometrically
frustrated, such as the Kagomé and pyrochlore lattices, the S = 1 antiferromagnet is gen-
erally believed to have a quantum-disordered spin liquid ground state, i.e. the ground
state has no long-ranged order and breaks no lattice translation or point group symme-

tries.

d > 2, T > 0: In this case there is a finite temperature phase transition. Defining the
Matsubara wavevectors x,, = 27mn/ Ly, we use the result

H(0) | [dr Im H(x +i0%)

1
— H(—ik,) = 15.197
Ly HZ (i) Ly + m exp(kLg) —1 (15.197)

—00

to obtain the finite temperature mean field equation,

A
o, dk 2/Lg ctnh (3 Lo\/k? + 2g))
g=m-+g < + (15.198)
(2m)? | k* + 29X VE2+ 29X
The equation for 7. is obtained by setting A = m? = 0:

A
dk 2 1
q= Q/W {W + T ctnh (%kLo,c)} , (15.199)

which is to be solved for 7. = hc/k,Ly ., assuming g < g, i.e. that the " = 0 (ground) state
is ordered.
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15.6.3 Correlation functions

The correlation functions are obtained via

*f g
ne b — = — e ab
(A% (k) AP (—k)), = — LoV T~ T 5 (15.200)

hence the full correlator is given by

ik-x
— a b — @b 9 € ab
Culs) = (O () = momd + 7153

. A | (15.201)
Y P
IR 7 (27)7 kg + k% + 29\

where in the second line we take the thermodynamic limit, set 7" — 0, and adopt cutoff scheme
I, appropriate for lattice systems. In the latter case, at large distances we obtain the Ornstein-
Zernike form,

—lz[/¢
C.p(z) — Cp(00) ~ g (15.202)

~
a a |$‘d/2

with ¢ = (2g\)~/2. At the quantum critical point, where A vanishes, one finds C(z) ~ |z|*~%.
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