PHYSICS 211B : CONDENSED MATTER PHYSICS
HW ASSIGNMENT #3

(1) Define the operator
1
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where [¢(x), W(alr:’)]$ = 6(x — ') for bosons (—) and fermions (+) . Here each x; € R

(a) Show that IT,; is a projector onto the totally symmetric and totally antisymmetric parts
of the N-body Hilbert space for bosons and fermions, respectively.

(b) Show that one can also write
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where A is defined to be the subset of R4 for which
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(2) Consider a one-dimensional electron gas with spin-independent interactions
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Find the Hartree-Fock energies (k).

(3) For spinless electrons interacting via a potential u(x), find the Hartree-Fock energies
(k). Show that when (k) = const. that there is no interaction contribution to (k). Inter-
pret this physically.

(4) Consider a polarized electron gas (three dimensions, Coulomb interactions) in which
N, denotes the number of electrons with spin polarization o.

(a) Begin with the Hamiltonian
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where n, = N,/V is the background number density and where u(r) = (e?/r) e~9". is the
Yukawa potential. At the appropriate time, you may take the Q — 0 limit in order to recover the
jellium system. Using the relation
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show that one may write
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You may assume periodic boundary conditions in a L x L x L box of volume V = L?in the
limit L — oo. The allowed k values are then quantized according to k = 2% (n,,n,,n,)

Yy
wheren, , . € Z.

(b) Find the ground state energy to first order in the interaction potential as a function of
N = N, + N, and the magnetization M = N, — N, . You should assume a wavefunction
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where n, = k2, /67* = N,/V is the number density of electrons of spin polarization o.
Along the way, show that
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where nk o = (Y] CL o o | V). Express your result for the energy as E(n,(, V), where
¢ = (ny —ny)/(ny + n) is the dimensionless magnetization and n = N/V =n, +n, .

(c) Prove, to this order in the interaction, that the ferromagnetic state (M = N) has a lower
energy than the unmagnetized state (M = 0) provided ry exceeds a critical value rg ;. Find
that critical value 7 ;.

(d) Define £({) = E/N with ¢ = M/N. Show that ¢”(0) < 0 when r, exceeds a critical
value rg 5. Find r 5. You should find ry ; < r,,. What happens for ¢ € [rg 4,7 5]?



