 Argue: Edge Particle Transport is crucial

— ‘Disruptive’ scenarios secondary outcome, largely consequence of edge

cooling, following fueling vs. increased particle transport

— 7, reflects f imit § icle transport

* AClassic Experiment (Greenwald, et. al.)

P ' — Density decays without disruption after
T it shallow pellet injection
— ] P Nt
3
O — n asymptote scales with I, d——»
— - T G I ," ] - . )
Me || — Density limit enforced by transport-
% o3 55 ) X — induced relaxation
Time (s
(Alcator C) — Relaxation rate not studied Cf)

TR0

 —
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* More Evidence for Role of Edge Transport
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— Post-pellet density decay time vs j/7.

— Increase in relaxation time near (usual)

A it limit: J/ 7~ 1+
5 Cthed (Freckestions 71
0 e T iy (wu..; s 2 z ]_/ﬁ . 7 B
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Greenwald “Limit”
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particle confinement (ITG turbulence
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Density limit €-> Fluctuation Structure

Deep' Probe-Scan Profile Tigng
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normalized density is incregsed

C-Mod carried out

SOL density profiles

increases in the far-SOL
profiles even with mode
as shown in Fig. 9. At

This picture is supported
strong transport under tl

toward ng.
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FIG. 17. Edge temperature profiles show the pmgrefsive edge cooling as the

down at the end of a plafma shot is often’ at the rate required
to stay just below the density limit.”
sheds particles during ramp-down to keep n/ng; just below 1

experiments to xixeasure the change
in edge temperature alopg with any changes in fluctuations
that accompany the approach to the densﬁty limit.*1%4 well
before the limit was reached, changes iriI the time-averaged
were observed, with progressive
density and ovex{all flattening of the

at is, the discharge

t increases in the separatrix density

the same time, khe amplitude, fre-
quency, and wvelocity of blob producndm increased, '™

by fluid nmdeis.twhmh predict very

ese conditions.
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moved inward, with the fegion of colder plasma, intermittent
fluctuations and blob creftion**”
aratrix and intruding onto regions of ciiosed field lines as
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Recent Experiments - 1

| (Y. Xu et al., NF, 2011) LRC = Lew
== “n }—I’I,I,:x'ifjgm o _ Na Vi'
((‘; | <n>=2.0x1 0 LRCvsn > 25 ; C'a(‘(‘k(/e‘b'“-'-‘o
N | , | \‘., ) * Decrease in maximum correlation value of LRC
£ oo fo\ i /r'*x:g 7 (i.e. ZF strength) as line averaged density 71
-e.2f \/ \/ kil increases at the edge (1/a=0.95) in both
AT ‘ TEXTOR and TJ-II.
' ;2f:-£‘§ oo 0 oo 200
(a) lag {us) * Athigh density ({(n.) > 2 x 10'° m™3), the
s : ] LRC (also associated with GAMs) drops
- 1 rapidly with increasing density.
> a0 ®H @ ® oo ' N <
oS . * The reduction in LRC due to increasing density
ey o] is also accompanied by a reduction in edge
5 - mean radial electric field (Relation to ZFs).
I a5 E oo
(b) Line average density (10'% m'®)

Is density Timit retated to edge shear decay?

ver abss M- Rdosq 2057

C. ’“W 20068
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Recent Experiments - 2

(Schmid, Mans et al., PRL, 2017) — stellarator experiment

(net oa cQ«tV\S'd'j N 2 uP)

1.00 F

Eddy Tilt
(@) = &n i
- \ " ’I' \Y
7 4 e .
/) X LY &
- ~ L’
C o
F (b s H
L - = He
i = Ne
~ R
k ) o Kr
T
E 5 ¥ :L';._‘__

* Experimental verification of the importance of
collisionality for large-scale structure formation in TJ-K.

* Analysis of the Reynolds stress shows a decrease in

coupling between density and potential for increasing
collisionality — hinders zonal flow drive (Bispectral

study) Collivissl by — enndy

0.01

0.1

1.0 100

A <~

* Decrease of the zonal flow contribution to the total

turbulent spectrum with collisionality C.

a) Increase in decoupling between density (red) and potential (blue) coupling with collisionality C.
b) Increase in ZF contribution to the spectrum in the adiabatic limit (C—s0)

C < adiabaticity kZV2 /iy )




Basic RESUItS * Fluctuation Properties

 OH, I, ~150kA, By = 13T, q =3.5 - 4 B
EDD {a}
* n=0.25 -09 ng (Vo) ol.
° i hase 0.6ng
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Recent Studies, Hong, et. al. (NF 2018)

fi, S =2 (L fi, fng = (L6 fio e e (L8

* Joint pdf of ., V, for 3 densities, 7 - n,
* T —Tsep =—1lcm

* Note:

— Tilt lost, symmetry restored as i —» ng =»Weakened shear flow ‘

— Consistent with drop in Pg, production by Reynolds stress

—d

-




Key Parameter: Electron Adiabaticity

3 — kﬁv?h
I o * Electron adiabaticity a = oy, Cmerges as interesting
v ei
e v H s alt
T3 ® local parameter. a~3 — 0.5 during 7 scan!
Bl ¥ '
= .
1 ¥
- d * Particle flux 1 and Reynolds power P, =
| P Re
— (V9)0,(V,.Vy) | as o drops below unity.
0
SO || LLN—
10
P Re ) {cl
& b
- i e
E1s o;
5N ” :
1 : .
.
0.5 ; 5
0 1 2 3 ) : 0 1 ,}
k;‘;v;"’,;'u;un -2 G i &

adiaba’rirify

N.B. Plasma beta remained very low —b lrvis t+hes RBM,
/\_/LA_—/\/\./“‘
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Synthesis of the Experiments

Shear layer collapse and turbulence and D (particle transport) rise as ﬁi ~# 1.
G

—>Key microphysics of density Timit 17
kv -
ZFcollapseasa=Mdropsfroma>1t0a<1. (e" voa 2ZF
lw[ve dgmﬁéc%}
-> Effect owproduction
Degradation in particle confinement at density limit in L-mode is due to breakdown
of self-regulation by zonal flow

Note that § in these experiments is too small for conventional Resistive Ballooning
Modes (RBM) explanation.




The Key Questions

* What physics governs shear layer collapse (or

maintanance) at high density?

< ‘Inverse process’ of familar L>H transition !?

ie. LS>H: {shear layer - barrier
e ] turbulence

strong (—{ shear layer,
turbulence turbulence

Density Limit:
=» In particular, what is the fate of shear flow for

: . 11,2172
_dewnam%aeetreﬂ%lwvmfw%ﬁ—?—

Me e \rfc(\e(\-ﬂ'\/ -aﬁ'"\"vﬁ Ca”&u/\q},\t? .




Step Back: Zonal Flows Ubiquitous! Why?

* Direct proportionality of wave group velocity and wave energy density flux

to Reynolds stress €-> spectral correlation (kxky)

Causality <> Eddy Tilting ' A

O |

— wg=—Pky/k? : (Rossby)

> Yoy = 2B keky /D)’ ] VY VY oY t
SoMe

~ o~ f_\-/
> (Vny) == kxky|¢k|2 e

S0: V3> 0(B8>0) €D kyk, >0 (V7)) <0 ' —>

<=
1

*Outgoing waves generate a flow convergence! = Shear layer spin-up

‘¢



~ But NOT for hydro convective cells:

_11/2
¢ w, = ['2“,)(;:;] - for convective cell of H-W
1Fs

Ky pZ ~ ~ , .
* Vpr=—3 ;[f; wy €?7?7> (V) = —(k,-ky); direct link broken!
- Energy flux NOT simply proportional to Momentum flux =
- Eddy tilting ((k,k)) does not arise as direct consequence of causality
= ZF generation not ‘natural’ outcome in hydro regime! L5—

= Physical picture of shear flow collapse emerges
M —_— \

|
T



- Dispersion Relation fora < 1and a > 1

o . 1 a(1l+k0) | [diwa  (a(1+ k222
Dispersion relation:  w==| — iw + 41; ;l — ( a(l+kip 5))
2 k1p3 k1 p3 k3 p2
2
1%
@=——v}
Vei
k||Vthe
vellwl . % . .
Adiabatic Limit: Hydro Limit:
(> 1and @ > |w|) (a<1land @ < |w|)
w* L [ wa
Wadiabatic = 1+ A_LP“ +1 Fy Whydrodynamic == - 9 ;li Pf (1 + l)
Wave + inverse dispersion Convective Cell
(Classic Drift Wave)

key: a <1 - drift wave converts to convective cell

/A

|
&



ZF Collapse €-> PV Conservation and PV Mixing?

Dy to

to tlz Shrt How reconcile?
8 Rossby waves: Quantitatively
o) 7& * PV =V?@® + By is conserved from 6, to 0,. Total PV flux I, = (Bi,h) — p2(5,V2¢)
/ 4 N _
r:"—f-h”:(g ),\ »—Total vorticity 20+ @ frozen in— Change
" / in mean vorticity ( leads to change in local b s, )
\‘\-n P vorticity @ — Flow generation (Taylor’s ID) Adiabatic limit @ »> 1:

Density
.

Drift waves:

* mHW,q=Inn—-V2¢ =Inny+h+ ¢ —
V2¢ conserved along the line of density
gradient.

* Change in density from position 1 to position
2-> change in vorticity = Flow generation
(Taylor ID)

Radius

*+Particle flux and vorticity flux are tightly
coupled (both prop. to 1/a)

Hydrodynamic limit @ «< 1 :
- Particle flux proportional to 1/Va.

- Residual vorticity flux proportional to
Va.

PV mixing still possible without ZF
formation - Particles carry PV flux

Branching ratio changes with a!
]

o
Fbu', Fludas
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