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It is shown that ion temperature gradient driven turbulence supports fluctuations with broader
radial scales than those inferred previously on the basis of mixing length arguments derived
from the eigenfunction with lowest radial eigenmode number. These fluctuations of greater
radial extent are more strongly excited and are shown to result in fluctuation levels and
transport coefficients that can be considerably larger than those previously predicted. It is
expected that transport of this nature would maintain ion temperature and density profiles
near marginal stability in neutral beam heated and ion cyclotron resonance heated plasmas.

I. INTRODUCTION

Evidence that anomalous ion transport is an important
aspect of confinement in both Ohmic and auxiliary heated
tokamaks has been accumulating.'™ In D-III, for example,
departures from neoclassical ion thermal conductivity, both
with regard to the radial dependence and magnitude of y,,
have been observed.! In Alcator-C, such anomalous ion en-
ergy losses have been linked to confinement saturation in
Ohmic discharges, with the additional observation that in
pellet injection where the density gradient steepens, ion heat
conduction decreases.” Confinement saturation has been
shown to coincide with the incidence of fluctuations propa-
gating in the ion diamagnetic direction.” Moreover, these
fluctuations are observed to decrease with density gradient
steepening caused by pellet injection.®> Confinement models
based on ion temperature gradient turbulence®> have been
quite successful in explaining these observations. Notably,
the predicted ion thermal conductivity has strong 7; depen-
dence (y; <. p?[In(1+7%,)1*(1 +9,)°L,/ L,7*, where
5; = d In T,/d In n,). This strong dependence is responsible
for the sensitivity of confinement to the density profile and
enforces proximity to marginal values of 7, as well. Further-
more, fluctuations due to ion temperature gradient driven
turbulence propagate in the ion diamagnetic direction. Fin-
ally, theoretical conductivities have performed well in trans-
port codes, such as those modeling discharges with auxiliary
heating.®

The tendency of ion temperature gradient driven turbu-
lence to enforce proximity to marginal profiles does not ob-
viate the need for nonlinear theory. On the contrary, the
scalings and magnitudes of the large transport coefficients
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that underlie the notion of marginal stability must be de-
duced from nonlinear theory. Previous theory has assumed
that the radial correlation length of the turbulence is given
(approximately) by the width of the lowest-order (£=0)
radial eigenmode (¢is the radial eigenmode number). This
assumption naturally affects the magnitude of diffusivities,
since the excitation (linear growth) is a function of radial
mode structure. Moreover, this approximation fixes the ra-
dial width over which fluctuations mix the ion pressure, and
thus determines the fluctuation level consistent with a given
growth rate. More subtly, restricting the characterization of
turbulence to a single radial eigenmode implies that turbu-
lent fluctuations are modeled by a single radial wavenumber
for each poloidal wavenumber.

From linearized fluid equations, it is easily shown that
higher-order radial eigenmodes are both broader and more
strongly excited than the lowest-order eigenmode. Both
these features tend to result in larger predicted fluctuation
levels and transport coefficients. The larger growth rate sug-
gests that fluctuations with broader mode widths should pre-
dominate in determination of the radial fluctuation scale. In
fact, this is observed in simulations of ion temperature gradi-
ent driven turbulence, where broader fluctuation scales
characterize the turbulence in both growing and saturated
phases.” It should be pointed out that the simulations, which
include kinetic effects (ion Landau damping) not accounted
for in the fluid equations, restrict the range in eigenmode
number ¢ for which there is instability. Nevertheless, nu-
merical solution of kinetic equations shows that fluctuations
with eigenmode numbers in the range 1<¢< ~ 10 remain
both broader and more strongly driven than the £= 0 fluctu-
ation. In this paper, we discuss the treatment of broader radi-
al fluctuation scales in the theoretical analysis of ion tem-
perature gradient driven turbulence and present evidence
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from particle simulation that supports the theoretical asser-
tions. .

The simplest estimates of the effect of broader mode
structure on fluctuation levels and diffusivities incorporate
the growth rates and radial fluctuation scales of linear theory
in mixing length analyses. However, there is no reason, a
priori, to assume that linear eigenmode structure and growth
rates characterize the fluctuations and relaxation times asso-
ciated with finite amplitude turbulence. To this end, an anal-
ysis of the renormalized equations of ion temperature gradi-
ent driven turbulence is presented. The natural radial
fluctuation scales and diffusivities consistent with a station-
ary turbulence level are determined by an eigenmode calcu-
lation in which D, the turbulent diffusivity, is treated as the
eigenvalue.® It is shown that the more strongly driven,
broader radial fluctuations anticipated from linear theory
give rise, in the nonlinear regime, to transport coefficients
that are considerably higher than those of previous theory,
typically by an order of magnitude. The results of the nonlin-
ear eigenmode analysis indicate that the scales characteristic
of turbulent fluctuations do not strongly differ from those
inferred from linear theory for higher-order eigenmodes.
The evidence from particle simulations supports the conclu-
sions of theory: higher eigenmodes dominate the radial fluc-
tuation spectrum in the linear phase and these broader struc-
tures persist in the nonlinear phase. The scalings of linear
growth rate and mode width with respect to shear, gradient
drive, and mode number carry over directly to the scalings
typical of the saturated state, further supporting the notion
that the presence of broader radial mode structure strongly
affects fluctuation levels and transport.

Both fluid and kinetic theories are utilized in this paper.
Since fluid theory is simpler and more transparent, the basic
theoretical analysis will be presented using fluid equations
valid for %; > 7,... Kinetic theory is necessary in order to
determine the stability threshold for higher radial eigen-
modes which, because of greater radial extent, are more sen-
sitive toion Landau damping. As noted above, kinetic effects
are found to restrict the range of unstable eigenmodes to
0< < ~ 10; the trend of enhancement of transport for fluctu-
ations with 1<#< ~ 10 over those with ¢#= 0 persists. The
validity of fluid theory is checked by comparing mixing
length diffusivities generated from fluid and kinetic theories.
The two theories show close agreement for /<4 with the
kinetic diffusivity peaking at slightly higher values (£~7)
while the fluid diffusivity continues to increase.

The results of this paper are summarized by writing y;
~C-T>*?B 7 %(1 + 7,)?, where the constant multiplier Cis
an order of magnitude greater, when proper account of more
extended radial fluctuations is taken. As already noted, ion
temperature gradient driven turbulence tends to enforce
marginal stability. This follows more from the strong depen-
dence of y, on 7; than from the magnitude of C. However,
the larger multiplier is significant, because with it, the re-
gime of marginal stability is extended toward the edge,
where the tendency of cooler temperatures to lower y, is
offset by the increased multiplier. The scaling of the multi-
plier with respect to L, is also affected by more extended
fluctuation structure. Assuming fluctuations with =0
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only, C~L ~'. With the inclusion of higher-order eigen-
modes, C tends to increase with L. The organization of this
paper is as follows: In Sec. I, simulation results are present-
ed that show extended mode structure for both linearly un-
stable and saturated cases. Next, the basic fluid model is
introduced in Sec. I, along with the linear characteristics of
higher eigenmodes. Renormalized fluid theory is then pre-
sented in Sec. IV, and the results of the numerical solution of
the eigenvalue problem are given. Section IV includes mix-
ing length estimates for the diffusivity, which are calculated
from both kinetic and fluid theory and compared to the re-
sults of the nonlinear calculation.

Il. SIMULATIONS

Particle simulations have the virtue that the type of fluc-
tuation structure that characterizes the turbulence as deter-
mined by balances of driving, dissipation, and nonlinear
transfer is naturally selected by the physics incorporated
into the simulation. Simulations thus indicate if the linear
tendency to greater excitation with higher eigenmode num-
ber actually results in more extended fluctuations and in-
creased excitation. Particle simulations of ion temperature
gradient driven turbulence have been performed using a 2}-
D particle code with full ion dynamics and adiabatic elec-
trons in a sheared slab.’ In these simulations, unstable 7,-
mode fluctuations were allowed to grow out of noise to finite
amplitudes and saturate. Two types of simulations were per-
formed: those in which unstable fluctuations were character-
ized by a single poloidal wavenumber k,, and those with
multiple k,’s unstable. In both types of simulation, careful
filtering in wavenumber space was used to limit the fluctu-
ations to either even parity or odd parity with respect to the
rational surface.” In the first case, the single mode grew lin-
early and saturated. Saturation was typically accompanied
by strong ion temperature profile flattening ( the density pro-
file was relatively unchanged), suggesting a quasilinear re-
laxation process. Some cascading occurred as well, however,
since additional wavenumbers were excited nonlinearly. The
radial structure of fluctuations corresponding to the unsta-
ble wavenumber was observed both before and after satura-
tion. It was noted that radial structure in the saturated state
was essentially unaltered from the linear phase. The radial
fluctuation structure was noticeably broader than that pre-
dicted for the ¢= 0 eigenmode on the basis of linear theory.
Figure 1 shows the radial structure at saturation of the even
mode corresponding to k,p, =0.3, 5, =4,L,/L, =28,
and T,/T; = 1, and compares it with #= 0 and ¢= 2 linear
eigenmode structures. It is clear that the /=2 mode is
strongly excited. It is also observed that prior to saturation,
this mode grows at a rate consistent with the /=2 growth
rate and oscillates at the /= 2 frequency. Figure 2 shows the
radial structure of an odd mode corresponding to
kp, =03n, =10,L /L, =11.2,and T,/T, = 1. Here it
is apparent from the comparisons with linear eigenmodes
that modes corresponding to #= 1, /=3, and ¢= 5 are si-
multaneously excited. The measured potential fluctuation
levels at saturation yield the following scalings:
ep/T,<L,/L, and ed/T, < (1 +74,)"/% Irrespective of
mode parity, the fluctuation level increases with decreasing
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FIG. 1. Particle simulation results for one single even parity mode unstable
with k,p, =03, 5,=4,L./L, =28, and T, = T, showing the real and
imaginary parts of the potential fluctuation (solid and broken lines, respec-
tively): (a) snapshot of the spatial structure of the potential fluctuation in
the simulation at saturation; (b) fundamental even eigenmode from linear
theory (radial mode number £= 0); (c) eigenmode from linear theory with
radial mode number #= 2.

shear strength and has a weaker dependence on 7, than ex-
pected. The saturation scaling with 7; appears to bear re-
semblance with predictions made for the toroidal %; mode.'®
However, the simulations are for slab geometry for which
the linear growth rate is known to have stronger scalings
with respect to 7,. Moreover, saturation in the simulations
occurs by temperature profile flattening over the width of
the highest radial eigenmode excited. This quasilinear mech-
anism is likely to have a strong effect on the scaling.
Simulation runs with unstable fluctuations correspond-
ing to multiple poloidal wavenumbers were studied in order
to verify that negative interference between fluctuations of
different wavenumber could not in some way suppress high-
er-order radial structures. Again it was found that broader
structure persisted both in linear phases and nonlinear
phases. It was observed in a run with ; = 10, L,/L, = 10,
and T./T;, =1 that fluctuations of a given wavenumber
were dominated by radial structure associated with a partic-
ular eigenmode number ¢ Thus fluctuations in the spectrum
at k,p, =0.1 had a radial structure characterized by /=5,
whereas at k,p, =0.5, /=1 typified the radial structure.
This observation suggests that some nonlinear coupling of
radial modes occurs. The nonlinear coupling of radial eigen-
modes will be considered analytically in the future. Note
that the above result is obtained for a borderline “flat den-
sity” case (7, =L,/L,). While this case is not specifically
treated in the fluid theory presented in Sec. III, it is clear
from the simulations that conclusions concerning radial
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FIG. 2. Particle simulation results for one single odd parity mode unstable
withk, p, =0.3,9, =10, L,/L, = 11.2,and T, = T showing the real and
imaginary parts of the potential fluctuation (solid and broken lines, respec-

‘tively): (a) snapshot of the spatial structure of the potential fluctuation at

saturation (w.?=9.0); (b) spatial structure of the fluctuation with
o = — 1.420. obtained by interferometry from the simulation data; (c)
spatial structure of the fluctuation with @ = — 1.94w. by interferometry;
(d) eigenmode from linear theory with £=1 and @ = — 0.995w.; (e)
eigenmode from linear theory with £=3 and w = — 1.61@.; (f) eigen-
mode from linear theory with #/=5and o = — 2.1@..

fluctuation scales apply to both the flat density case and the
usual peaked profile case.

It is clear from the simulation of cases involving both a
single unstable wavenumber fluctuation and those of multi-
ple wavenumbers that broader radial fluctuation structure
than that associated with the lowest-order radial eigenmode
characterizes ;-mode turbulence. This fact, which is inde-
pendent of the mechanism of saturation, establishes the need
for inclusion of higher-order radial wavenumbers in the the-
ory of ion temperature gradient driven turbulence.

lil. BASIC EQUATIONS AND LINEAR THEORY

A fluid description of ion temperature gradient turbu-
lences is contained in equations for vorticity v? :;5, parallel
(ion) velocity by, and pressure p, where ¢ is the electrostatic
potential. Assuming a sheared slab geometry, these equa-
tions are

g;(‘ — V)¢ — b XV, (V2 §)
+ Yy 0y + vp(l +(1—J:_ﬂvf)vy $=0,
(1)
g;i)" +bXVIVD, —uVi D, = -V, $—V, b,
%’Z—+vp£¥i)_vy$+i’xv$'v ==YV,
Terryetal. 2022



where v, = — (c¢T,/eB)d In n/dx is the diamagnetic ve-
locity, 7=T,/T,, u=p o,./c is the ion viscosity, and
Y = I'/7, where I is the ratio of specific heats. The adiabatic
compression term in the pressure equation YV serves to
exchange energy between the driven pressure fluctuations
and fluctuations in the parallel velocity which experience
dissipation at high k through the “viscosity” term uV}d,.*
This term effectively plays the role of Landau damping in the
fluid theory by providing dissipation at large k£, where ions
are resonant in a kinetic description. Near the critical 7,
where modes are marginally stable, kinetic effects play an
important role.’"'? Thus the fluid model is valid only for
7> ;e - 1t is also assumed that L2 < L,L , where L,, L,
and L are the scale lengths of density gradient, temperature
gradient, and magnetic shear. The case where L2 > L. L, is
the “flat density” case which, while also amenable to fluid
theory, will be considered elsewhere.

From the linear growth rate and radial eigenmode width
it is possible to make some inferences concerning the fluctu-
ation level in the steady state. The linear growth rate and
mode width are obtained from solution of the linear eigen-
mode equation, which is derived by linearizing and combin-

ing the three fluid equations, Egs. (1): |

1-Q
[+ A +7n)/7]

(X*/p*)(L2:/L?)\.
+ 2P = )¢k=0, )

where Fourier transformation in time and the periodic y
variable has been performed, Q=w/w., and the adiabatic
coupling term has been neglected in the linear theory. The
solution of Eq. (2) is given in terms of Hermite polynomials,
¢, = exp( — ix*/2p?x,) H,[(ix*/p3x,)"/*], where £ the
radial eigenmode number, is an integer and x,=QL_/L,.
The mode width is A;>= —Im[(2px,)""] and the
eigenmode frequency () is given by solution of the linear
dispersion relation

2d2" 2 2
ps;;‘i¢k+(—k ps+

1+, L
92(k2p§+1)+n(k2p§-(-i3’—'l )
.

—14+i(2¢/+ 1
( )L

s

L. =0 3
7. -0

5

+i2+ D1 +7,)

The two roots of this dispersion relation correspond to shear
damped Pearlstein~Berk drift waves and the unstable 7;
mode. The exact root of the 7; mode is

Q=[1/2(b+1)][4 - A7 =4+ D2+ DT +9)(L, /L) ], 4)

where A=1-b(1+75,)/7—iRQ¢+1)L,/L, and
b = k?p?. An approximate idea of how Im ) varies with ¢
can be obtained by Taylor expanding the radical for small
L,/L,. Toorder (L,/L,)? the expansion yields
Q2+ 1) 4+ 9L, /L7
Im Q=
[1—b(147,)/7]

(1 26+ 1)2(L3./L§)CZ) 5)
[1—b(t+9)/7)* )
where C2=1 4+ (147)03+b)/7 +(1+79)°

X (2 4 b)/7. For b(1 + 5,)/7 much less than unity and
small ¢ Eq. (5) gives Im Q=2/+ 1)(1+%,;) L,/L,,
which is the formula typically cited. For ¢>0, Im £ in-
creases linearly for small #and turns over for higher #(at
20+ 1=3""2L/L,[14+ (1 +75)(3+b)/7+ (1 +7,)?
X (2 4 b)/7*]). This is consistent with the behavior of the
exact root, whose variation as a function of ¢is illustrated in
Fig. 3. From Eq. (5), the mode width is

A = (FLE DA+ )TN

"—ps( [1—b(1+7)/7] )

[1 Qe+ DA/ e?
[1—b(1+75,)/7]*

L;
? (L X )] '
(6)
For small Z, A, increases with #as ¢'/2. The fact that both
growth rate and mode width increase with ¢implies that
turbulent diffusion at saturation is probably a strongly in-
creasing function of £ This situation differs from that en-

countered with drift waves, where higher-order eigenmodes
are less localized, but are also less strongly excited. In the
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drift wave case, turbulent diffusivities actually decrease with
increasing eigenmode number. For the 7, mode, the increase
of growth rate with increasing radial eigenmode number can
be attributed to its sonic, negative compressibility character.
The growth rate is given approximately by Im £

=k, C,(1+7,)"%, where k =A.k,/L,. Thus larger
mode width corresponds to larger parallel wavenumber and
stronger growth. In drift waves, by contrast, sound waves
mediate the coupling to the dissipation (ion Landau damp-
ing) so that broader radial modes experience stronger dissi-
pation. It is worth noting that 7, modes'? are similar to 7,
modes in regard to higher eigenmode structure. Since the
mathematical structure of 7, modes is equivalent to that of
7, modes (with the roles of electrons and ions reversed), 7,
modes with larger eigenmode number will also be more
strongly driven. However, 77, modes, like 77, modes, are sub-

FIG. 3. Growth rate as a function of ¢from the solution of the fluid equa-
tions [Eq. (4)] with L,/L, =15,k p, =0.07,and T,/T, = 2.
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ject to Landau damping (electron Landau damping in the
case of 7, modes). This restricts the number of unstable
higher-order eigenmodes and places a bound on the radial
fluctuation scale.

Numerical solution of linearized kinetic equations for
the 7, instability indicates that the role and effect of higher
radial eigenmodes are essentially the same in a kinetic analy-
sis as in fluid theory, with the range in £ of unstable modes
somewhat reduced. The Kinetic eigenvalue equation is

d? A(x,ﬂ))
a_ | AxiE) =0
( S+ SE D e =o, ™

where

AxQ) =(1+natiy [(1 +7Q ?i)ro
T T

—%"—[Po _25(T, — I‘o>]]§.~ Z(&)
+m: Do [1+8 Z5D],

D(x,Q) = [ LY 7-1(1 ~ %-)]g Z(&)
T

+ 7, r—lg?[l +§i Z(;,)]](ro_rl)

+ 7,776 Z($) [Fo—26(T—T)],
and

Q =w/wer, @« = (cT,/eB)k,/Lr,
/0. = (@/@e7)n,/T=Q,/T,

[, =T,(b) = I,(b)exp( —b) [1; (b) is the modified Bessel
function],

b= (kypi)z’ pi= Vti/wci! P? = TP%,
&= /U Vin2),

Z is the plasma dispersion function, and x is in units of p, (x/
ps —x). Kinetic analysis shows that the mode width is a
function of the eigenmode number ¢ with only weak depen-
dence on other parameters such as L, /L and 7,. Figure 4
shows the linear growth rate as a function of ¢for two differ-
ent values of 7;. As in the fluid case, the kinetic growth rate
increases for small £ peaks and then decreases until it be-
comes negative at higher values of £ The values of ¢at which
the growth rate peaks and becomes negative are lower in
kinetic analysis than in fluid theory. Numerical solutions
showthatfor L,/L, = 11.2and 5, = 10, the growth rate for
1<#<8 remains above that of the /=0 mode with the
growth rate peaking at ¢#= 3. Similarly, for L,/L, = 28 and
77; = 4, the growth rate for 1<#<9 remains above the £=0
growth rate with a peak at ¢£= 3. In general, for weaker
shear, it is found that a larger number of higher eigenmodes
are unstable with growth rates which exceed the /=0
growth rate.

The scaling of the growth rate with respect to shear
changes markedly for higher eigenmode numbers. For
/=0, the growth rate decreases for decreasing shear
strength while for higher ¢, the opposite holds. The ¢value at
which the shear scaling changes is found to increase for de-
creasing 7,. This behavior is summarized in Fig. 5, which
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0.06

0.02} -

FIG. 4. Growth rate from numerical solution of the kinetic equations as a
function of #for L,/L; = 112 and two values of 7,. The solid line is for
71, = 10 and the broken line is for 7, = 4.

shows the growth rate as a function of ¢ for various values of
L,/L,.Itis clear that Im Q « L ~ ! only for the #£= 0 eigen-
mode. From the numerical solutions of the kinetic equa-
tions, it can be concluded that for values of 7; consistent
with experiment, and for realistic shear, consideration of the
first few nonzero radial eigenmodes is sufficient to determine
the effect of extended fluctuations on transport. Conclusions
drawn from fluid theory should also be valid for these low
mode numbers.

The results of linear theory showing larger growth rates
and broader mode widths provide strong indication that
fluctuation levels and transport coefficients increase when
proper account is taken of extended fluctuation structure. In
the next section, a nonlinear analysis is presented in order to
support this assertion.

0.24

FIG. 5. Growth rate from numerical solution of the kinetic equations as a
function of ¢ for three values of the shear, L,/L, = 10, 25, and 50, and
7; = 4.0. Growth rate decreases with decreasing shear strength for £=0
while for > 0 it increases for decreasing shear strength.
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IV. NONLINEAR EIGENMODE ANALYSIS

Mixing length theory has been shown to give qualita-
tively correct fluctuation levels and transport coefficients for
7; turbulence.* However, it is important to verify that esti-
mates obtained from mixing length analysis are consistent
with more rigorous nonlinear treatments, which introduce
no a priori scale assumptions. To this end we consider a non-
linear analysis®'* of the renormalized equations for ion tem-
perature gradient driven turbulence. The full equations are
derived in Ref. 14. These equations are

1+ 7,

%(1 —V)é, + iw.e(l + vi)«}sk + iky By
3 3

. 3 3 -
-9, 9w 9595
o Hi o 10 + o B ™ Py
Jd N . J ad
9 By + uk? by + ik Ky B =—2-D, 2 5, (8
37 D T BEY D+ ik b+ iky i 7 Dk 5 B (8)
Py 1+7 4 , ad a
] Yk, b, =—D, —p,,
dat @ T i +1 I P ax < ox Pr

[k3/Chy + k) 1k 21 |

Awk+k'

Vi=ga—kr m=%
is the eddy diffusivity,
B = z( [K3/CKy + k;)Z]kflvl&k,P)

K Ay 4 g

is the turbulent back reaction to the eddy diffusivity,
D, =32, k"¢ |*/Aw, , ;. is the turbulent diffusivity of
pressure and velocity, and Aw, | .. is the nonlinear eddy
decay rate.* In this renormalization, both driven vorticity
and driven potential are retained, with the effects of the lat-
ter being related to the former. Consequently, the eddy diffu-
sivity contains a diffusivity of vorticity which is equal to D,
and a contribution from the driven potential. These two con-
tributions combine to produce the form of g, given above.
Approximately, u, =(k2/(k2),..)D,, so that u, is less
than D, for fluctuations that are driven at low k (and that
cascade to higher wavenumbers where dissipation damps
the fluctuation energy). In addition to the nonlinear effects
represented in D, , 14, , and B, , Egs. (8) contain the physics
of the pressure gradient source and saturation by parallel
viscosity which mocks up Landau damping. -

A nonlinear eigenmode equation is obtained by combin-
ing Eqgs. (8). The diffusivity D, is treated as an eigenvalue to
be determined by solution of the eigenmode equation. The
other diffusivities 12, and B, are expressedin terms of D, by
their defining relations. The mode width of the eigenfunc-
tion obtained from the solution is the nonlinear radial fluctu-
ation scale. At saturation (¥ = 0), the eigenmode equation
is

PP _ N_’(l — |2?® + iBS |2]”* — iMS |z|4/3)¢
az 9 1+ iSN |z[23 ke

(9)
where
%= (1= ilz]*/NS)$, 2=k p}"?,
k= (+n)/r, S=L,/L,,
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and k, is the Fourier transform variable conjugate to x, i.e.,
d/0x—ik,, x—id/dk,. Thenormalizationsoftheeigenval-
ues N, M, and B are obtained from the ¢£= 0 mixing length
scaling of turbulent diffusion with respect to the parameters
x and § (Ref. 4). The mode width Az is normalized so that
Az = 1is the nonlinear eigenmode width. The back reaction
B has an additional scaling with the square of the normal-
ized mode width Az as a result of |V, #|> dependence.

The eigenmode equation, Eq. (9}, is solved numerically
for a single eigenvalue ¥, where B /N and M /N are taken as
constants of order unity or smaller. Although the back reac-
tion is frequently neglected in theoretical calculations, the
relations following Eqgs. (7) clearly show that it is of the
order of p, /Az*. As stated previously, u, is a significant
fraction of D,.. Accordingly, B is retained in the numerical
solution of Eq. (9). In choosing the ratio B /N, the normal-
ized mode width present in S, is assumed to be of order unity
for /= 0. This assumption is verified a posteriori from the
numerical solutions. It is found that above some critical
eigenmode number, the turning point is dominated by the
balance of the B and M terms in the potential, and does not
involve the term 1 — |z|?/?. Since this latter term is essential
to the character of the %; branch of the dispersion relation,
fluctuations in which the B and M terms dominate are not
nonlinear 7, modes but are rather more akin to nonlinear
vortices. Hence the results of the nonlinear eigemode satura-
tion calculation are not relevant above this critical eigen-
mode number. The critical eigenmode number increases
with increasing shear, i.e., for L, /L, = 25, it is found to be
¢=4. Since kinetic effects restrict the range of eigenmode
numbers, the numerical results are given only for these com-
paratively low eigenmode numbers.

The results of the numerical solution are summarized in
Fig. 6. The nonlinear mode width for /= 0 is found to be
comparable to the linear eigenmode width. The diffusivities
are expressed as the mixing length diffusivity for #=0 [D,
= w.p2(1 + 9,)°L,/L,7, (Ref. 4)] times a multiplicative
factor. For ¢= 0, the factor is 3.26. For ¢= 1, the factor
increases to 20; for /= 2, it is 40. The mode width Az is seen
to decrease as ¢ increases. Since Az « k 3 and &, is the Four-
ier transform variable conjugate to x, a decrease in Az signi-
fies an increase in the mode width Ax as increases. Hence
nonlinear eigenmode analysis clearly demonstrates that a
marked increase in fluctuation level and transport occurs for
the less localized fluctuations corrsponding to higher nonlin-
ear eigenmodes.

The solution of the nonlinear eigenmode equation
shows that the nonlinear mode width is in good agreement
with the linear mode width. Moreover, the nonlinear diffu-
sivity for /= 0 is well approximated by the mixing length
diffusivity. It is therefore useful and desirable to calculate
mixing length estimates of fluctuation amplitudes and diffu-
sivities for ¢> 0. Mixing length estimates of fluctuation am-
plitudes at saturation are based on the notion that the cas-
cade can be approximated by a nonlinear mixing of
expansion free energy from the gradient source over a char-
acteristic fluctuation scale in the gradient direction. In its
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FIG. 6. Nonlinear diffusivity D, normalized by w.p?(1 + 0,)’L,/L,7 asa
function of #obtained from numerical solution of the renormalized eigen-
mode equation for L /L, = 15.

simplest form, mixing length theory balances the linear
growth rate with turbulent diffusion over the linear mode
width. In the simplest renormalized treatment of the nonlin-
ear equations, the convective nonlinearity is everywhere re-
placed by a radial diffusion:
fdy(ls xV&-V)exp(iky) —>—§-—Dk —‘-9—- R
ax ax

where the diffusion coefficient D, is the same given immedi-
ately following Eqgs. (8). The mixing length balance then
implies that Im Q, = D,/A%. From the linear growth rate
and mode width, we infer that

L
D, = w. p2(2¢+ 1)*(1 )2
k wp(+)(+1’)L,T2

L2 L3
x[l —2(2¢+ 1)22—;CZ+0(L§)] , (10

5 5

where b<1 has been assumed. Setting ¢£= 0 recovers pre-
vious results.* Note, however, that in going from ¢=0 to
¢= 1, there is nearly an order of magnitude increase in the
diffusion coefficient, with further increase for higher values
of the radial eigenmode number.

It is also possible to obtain a mixing length diffusivity
from kinetic theory by using the growth rates and mode
widths obtained from shooting code solutions. For compari-
son, Fig. 7 shows the diffusivities of kinetic theory, fluid
theory [using the more exact Im ) obtained from Eq. (4)
rather than the approximate one given by Eq. (5)], and the
nonlinear analysis as a function of ¢for L,/L, =28 and
7, = 4. It is seen that all theories agree very well for the low
values of /considered. For higher values of the eigenmode
number, the agreement becomes worse, for the reasons
which have already been discussed at some length.

The large anomalous ion thermal conductivity resulting
from excitation of even the lowest (£5#0) radial eigenmodes
strongly enforces proximity to marginal stability through
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FIG. 7. Comparison of mixing length diffusivities obtained from the growth
rates and mode widths of kinetic and fluid theories with the diffusivity ob-
tained from numerical solution of the renormalized eigenmode equation for
L/L,=28,%,=4andT,=T,

brapid relaxation of unstable temperature profiles. Note that

the strong /dependence effectively allows y, to remain large,
even in regions where the ion temperature is lower. It is also
interesting to speculate on scaling of the diffusion coeflicient
implied in Eq. (10). For ¢=0, D, «< L,/L_; however, for
higher values of ¢ the higher-order terms in L, /L become
important and can alter the simple scaling inferred when
¢=0. This is underscored by evaluating D, at the mode
number giving maximum diffusion, ie., (26+1) =L,/
2L, C. In that case, D, = 0.125w.p%(1 + ,)*L,/L,7*C>
Note that the L, /L, scaling of the £= 0 theory is altered to
become an L, /L, scaling. As this result is based on a weak
shear expansion, caution should be exercised in extrapolat-
ing to stronger shear cases. Nevertheless, it is clear that scal-
ings in the weak shear limit are altered. Indeed, a scaling of
D, with L; to some positive power is consistent with the
kinetic growth rate (Fig. 4), which shows stronger excita-
tion and a larger range of unstable eigenmodes for decreas-
ing shear strength. Note that by including the effects of high-
er eigenmodes, the scaling postulated in earlier theory is
justified.’

The fluctuation level consistent with mixing length dif-
fusion, Eq. (10), is readily found from the formula for D,,
assuming that the eddy decay rate Aw, . . is approximately
the diffusion time D, /A%. This yields

A _|ep gﬁ,_((2/+1)(1+77:))3/2
ng T, L, T
3 L; L;
X|1-=Qe+ 1)’ —=c*+ 0|}, 1
[ 2( +1) % + (Li)] (1)

once again showing that a strong increase occurs in going
from £= 0to ¢/= 1. This result is consistent with the conclu-
sions of the nonlinear eigenmode calculation, particularly in
showing significant increases in the diffusivities for higher
radial modes.
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V. CONCLUSIONS

Higher radial eigenmodes are more strongly driven than
the #= 0 eigenmode typically used to characterize the radial
mode structure of ion temperature gradient driven turbu-
lence. The results of particle simulations show that these
more extended fluctuations characterize the potential in the
saturated state. From nonlinear eigenmode analysis of the
renormalized equations, it is shown that consideration of
these eigenmodes leads to diffusivities and fluctuation levels,
which are typically much larger than those obtained with the
lowest eigenmode number structure. Mixing length esti-
mates of the diffusivity based on both kinetic and fluid theo-
ries are also calculated and shown to be in good agreement
with the diffusivity of the renormalized nonlinear eigenmode
equation. The scaling of the diffusivity with respect to shear
is also considered. For weak shear, qualitatively consistent
scalings from linear theory and mixing length estimates sug-
gest that D increases with L,. The large value of thermal
conductivity inferred from these considerations suggests
that, in practice, 7; cannot greatly exceed the instability
threshold. Thus the system can be expected to be tied dy-
namically to marginally stable 7, profiles in neutral beam
injection and ion cyclotron resonance heated plasmas.
Moreover, the enhancement of y; allows the domain of qua-
simarginality to extend to regions of colder plasma. Finally,
we speculate that 7;-mode turbulence may constitute a
“marginal stability” link between the hot core and cooler
edge plasma. Such links are thought to be the dynamical
underpinning of profile consistency'> phenomena. Given
these conclusions, a nonlinear kinetic calculation of ion tem-
perature gradient driven turbulence is desirable.
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