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Rosenbluth’s nonlinear, approximate tokamak equations of motion are generalized to three dimensions. The
equations describe magnetohydrodynamics in the low B, incompressible, large aspect ratio limit.
Conservation laws are derived and a well-known form of the energy principle is recovered from the
linearized equations. The equations are solved numerically to study kink modes in tokamaks with
rectangular cross section. Fixed-boundary kink modes, for which the plasma completely fills the conducting
chamber, are considered. These modes, which are marginally stable to lowest order in circular tokamaks,
become unstable with large growth rates, comparable to the growth rates of free boundary kink modes. The
unstable modes are found using linearized, two-dimensional equations. The linear results are used as initial
values in the nonlinear, threc-dimensional computations. The nonlinear results show that the magnetic field
is perturbed only slightly, while a large amount of plasma convection takes place carrying plasma from the

center of the chamber to the walls.

I.. INTRODUCTION

The magnetohydrodynamic stability of plasmas to
small perturbations has been the subject of a great deal
of research. There has been comparatively little in-
vestigation of the nonlinear evolution of instabilities.
Recently, Rosenbluth derived approximate nonlinear
equations of motion for tokamaks. These equations are
a great simplification of the primitive magnetohydrody-
namic equations: The plasma is described by only two
variables, which are functions of time and two spatial
coordinates. These equations give an approximate de-
scription of kink modes in tokamaks with circular cross
section, Numerical solutions by White ef al.' have
yielded interesting and important results, such as the

formation of “bubbles” in sufficiently unstable tokamaks.

It is also of interest to investigate tokamaks with a
noncircular cross section, It is conjectured that elon-
gating the cross section will permit tokamaks to confine
a higher plasma pressure for a given magnetic field
strength,

In order to treat tokamaks with noncircular cross
sections it is necessary to have three dimensional equa-
tions. We derive three dimensional, nonlinear, ap-
proximate tokamak equations of motion which general-
ize Rosenbluth’s work. These equations also involve
only two variables and are much simpler than the prim-
itive equations.

From the linearized form of the equations we can ob-
tain the approximate energy principle given by Laval ef
al.? The linearized equations can be Fourier analyzed
in one dimension, to yield two-dimensional equations of
motion. We have integrated these equations numerical-
ly, as an initial value problem, to find linearly unstable
modes. We find, as suggested by results of Laval,?®
that fixed-boundary kink modes in noncircular tokamaks
can have large growth rates. In circular tokamaks,
such modes are stable or marginally stable in our ap-
proximation.* We find, however, that the stability con-
dition is less stringent than the Kruskal-Shafranov con-
dition ¢>1 for the cases we have considered. Thus,
these modes are favorable for confinement.
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The linear modes are used as starting perturbations
in three-dimensional, nonlinear computations, The re-
sults show a striking contrast between small magnetic
field perturbations and a substantial amount of plasma
convection, which can carry plasma from the center of
the chamber to the walls.

I1. EQUATIONS OF MOTION

We consider a large aspect ratio tokamak, The ap-
proximation consists of ordering all quantities in the
aspect ratio and dropping all toroidal effects, as well
as terms of the same order as the toroidal terms. The
equations then represent a long, thin plasma cylinder
with periodic end conditions. (Fig., 1.)

The magnetohydrodynamic equations which we shall
need are

V.B=0, VxB=j,

%?:VKVKB’ ngij_Vp'

We make use of a large aspect ratio tokamak order-
ing. Introduce coordinates x, vy, z, where z varies
along the length of the plasma, and x, y are coordinates
in a cross section. Scale lengths over which plasma
properties vary are longer in z than in x and y by a fac-
tor of the aspect ratio. The z component of the mag-
netic field is larger than the x and y components by the
same factor. We make the following ordering, in
terms of the small quantity ¢:

FIG. 1. Geometry and computation mesh of a rectangular
tokamak,
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Toroidal effects enter the equations of motion in order
€, although the toroidal variation of B, due to poloidal

currents in the plasma is indicated as being of order e,

We introduce a stream function A (the 2z component of
the vector potential) to represent the x, y, components
of the magnetic field,

B-VAx%+B,z, 1

where Z is the unit vector in the z direction. The di-
vergence of B is then

V.B=8B,/sz~ed .
We neglect €’ terms so that within our approximation B

is divergence-free.

Examination of the momentum equation shows that we
can neglect the z component of the force, so that v, can
be set to zero,

v,=0. (@)

The flux equation can be integrated by introducing the
vector potential for B:

9
;ZA:va+V¢> ,

where ¢ is a gauge potential. The x and y components
of this equation, which give the variation of B,, must
be € according to our ordering; the variable part of
B, is of order €. We obtain

%AXE:—B,V+V¢N£=0 .
This shows we can introduce a stream function U for
V(¢ = BzU):
v=VUxzZ, V.v=0, 3)

Because of the large, constant, longitudinal magnetic
field, the flow is incompressible. Using this result in
the z component of the flux equation, we find

8A

- al
g:VUxVA-Z+B,;z—, (4)

which can be expressed as

8A
—— oV
Py B U
or as
2A a8l
Bt TV VA=Bo

Taking the curl of B yields the current
8A

j‘=—VfA’ j.L':VB‘ Z+Vj.5; ] (5)
where
~ 9
VJ_=V—ZE s (6)

135 Phys. Fluids, Vol. 19, No. 1, January 1976

. 8% 2®
Vi= . 7
1 axz + 8y (7

The z derivatives in the Laplacian are of higher order
and can be dropped. This is a great advantage in solv-
ing the equations numerically.

Substituting j into the momentum equation we find that

dv

3 -~
pd—t:B,B—ZVJ_Axz—VfAVJ_A—VL(p+§Bi). (8)

For simplicity, we consider constant density, setting

p=1.

We can now eliminate both the pressure and the spatial-
ly varying part of B, by taking the curl. The result can
be written, along with the flux equations, as

Va
3B;U=_v.vva+B-VVfA, (9)
9A
W—BDVU. (10)

These are our nonlinear, three-dimensional approxi-
mate tokamak equations of motion, giving the rate of
change of vorticity and magnetic flux.

In the following we shall consider plasmas bounded by
a conducting wall, The boundary conditions are
n.B=n-v=0,
where f is normal to the wall, or
A=U=0 (11

at the wall. For the case of plasma surrounded by a
vacuum, the boundary conditions are more complex and
will be given elsewhere.

fll. CONSERVATION LAWS

The equations we have derived conserve energy and
magnetic flux. The linearized equations yield the ener-
gy theorem of Laval et al.?

The nonlinear energy theorem takes a particularly
simple form, Multiplying the vorticity equation (9) by
U,

vy

Uat

==Uv-VV2U + UB: VV3A

=V.(-UViUVv+UV2AB)-V2A(B- VU)

__%A,
= WV*A .

In the last line, we have set the divergence term
equal to zero, because it makes no contribution when
we integrate over the plasma volume and apply the
boundary condition U =0. We have also made use of the
flux equation (10). Integrating this equation, we have
the energy theorem

]
3 J dx dydz[(V .U +(V_A4)%]=0. (12)
The two terms clearly represent kinetic and potential

energy. Because the flow is incompressible, the pres-
sure and (B,)? do not contribute to the energy.
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The conservation of flux implies the existence of
magnetic surfaces. Given a function S moving with the
fluid, which satisfies

2iv.vs=0, (13)

then we can show from the flux equation (10) that
%(B-vs)w-v(s-vs):o. (14)

If S represents magnetic surfaces satisfying
B.VSs=0 (15)

initially, then this relation will continue to hold as the
plasma moves about. Note that if A is independent of z,
as we shall assume in finding equilibrium states, then
S is a function of A.

Let us now consider the linearized equations. The
equilibrium conditions are, from (9) and (10),

8A
H—U—O.

If the equilibrium is independent of z, we have

24 _o

v VEA=-j(A).

Expanding about an equilibrium specified by A, we
add small perturbations A, and U;:

A=A0+A1, U-_—Ul.
The equations of motion become
9A
#:BO-VUI, (18)
2
%[—]LzBO-VVfA+Vj0xVA1-i. 1

Differentiating the vorticity equation with respect to
time and substituting for 84,/8¢ from the flux equation
gives

2
—z VAU, =B+ VVi(By VU +V jox V(By VUY) -5 . (18)

From this we can easily derive an energy principle.
Multiplying by U, assuming a time dependence exp(y t),
integrating over the plasma volume, and integrating by
parts yields the energy principle

[ av(ewr- [ aviE. @, vo)y

+(Bo- VUV joxVU . £] . 19)

Finally, we show how the nonlinear equations are
simplified if we assume helical symmetry, This means
that if we introduce polar coordinates 7, 6 for %, y so
that

3 _k 8
8z m 80’

the flux equation then becomes
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Therefore the flux ¢ is conserved,

Y=A- Bkr®/2m (20)
Z—fw.vwzo. (21)

Also, the gradient along B of a helically symmetric
function f becomes

B-Vf=VfxVi.z
and the vorticity equation is simplified to

aviU
at

==V. V(VEU)+VVEY X V. Z . (22)

These are the helically symmetric equations given by
Rosenbluth.

Having derived the tokamak equations of motion and
discussed some of their consequences, we now investi-
gate some solutions.

IV. EQUILIBRIUM

We apply the equations to the study of tokamaks with
noncircular cross sections. For simplicity, we re-
strict the problem to rectangular cross sections. In
that case the numerical method can be based on a sim-
ple rectangular mesh,

In this paper we examine the stability of a special
class of equilibrium solutions, as in Bateman et al,®
and Wooten et al.,® although their results do not apply
to the incompressible limit described by our equations.

The equilibrium is given by

X Ty
A:Aocos7 cos 3~

[
nof o

a a
——Z-SxSE, - =y=

(23)
The current is proportional to A, and like A, vanishes
at the walls. The constant A, determines the current
flowing in the plasma and hence, the stability of the
plasma. The walls enclosing the plasma have width a,
height b, and length L.

The basic measure of magnetohydrodynamic stability
is the rotational transform, or its inverse ¢, which is
defined as

B, § _ds B, dv

=7 Y1val "L dA

Here, Vis the area contained within a contour of con-
stant A. For the equilibrium A, we have

_ _ab f af___ A
V= Iydx— 2 ) o8 ((Aocos(wx/a)) ax,

where we have substituted for y from the equation for
A(x, y). Differentiating V with respect to A gives a re-
sult which can be transformed into an elliptic integral.
We find

_ 4abB, . _A
q-= mK(Sln(P) , coso= A (24)

where K is an elliptic integral of the first kind. The
graph of ¢ as a function of x shows that g is fairly con-
stant over a large area of the plasma, while becoming

H. R. Strauss 136



2.0r
LS|
s 1.0
~
(=
S
O 1 1 1 I3 1 A S J I
2 4 .6 .8 1.0
2x/a
FIG. 2. Inverse rotational transform ¢ as a function of dis-

tance from the magnetic axis, 2x/a,

infinite at the boundary. This is due to the sharp cor-
ners in the boundary which force magnetic field lines to
become straight. The effect is quite localized near the
edge of the plasma (Fig. 2).

Values of ¢ less than unity are associated with insta-
bility. The plasma is more unstable in the center,
where the values of ¢ are lower.

V. NUMERICAL METHODS

The same numerical methods” were applied to the
two-dimensional linear equations and the three-dimen-
sional nonlinear equations.

We used a simple Eulerian treatment of the equations,
based on a rectangular mesh. The spatial derivatives
were put into standard, second-order accurate finite
difference form. For example,

54 -[AU+1) - AU -1)]/2DX .

The variables A and U are functions of the mesh points
(I, J, K). To advance the solution in time, the leapfrog
method was used. This replaces a first-order time
derivative by a second-order accurate finite time dif-
ference:

af
at

becomes
FHNL, I, K) = fY L, J, K) =2DTg M1, J, K)
where the superscripts refer to time levels.

The equations are complicated by the presence of the
Laplace operator. In order to find U and thus the ve-
locity, it is necessary to solve Poisson’s equation at
every time step. This is accomplished efficiently by a
direct method using fast Fourier transforms. About
half of the computation time was spent solving Poisson’s
equation. Fortunately, the Poisson equation is only
two-dimensional!

The numerical stability can be estimated by consider-
ing the linearized equation with B constant,

A _ o
E———B-VU, W-B- VA .
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The difference form of these equations can then be Fou-
rier analyzed. For a mode varying as exp(ékx) and with

AN«rl = )LAN’

we find a Courant condition for numerical stability in
form

B.(DT/DX)+ B,(DT/DY)+ B(DT/DZ)<1. (25)

Since the perturbation of B tended to be small, there
was no need to vary DT.

To avoid storing the vorticity as well as U, we inte-
grated the vorticity equation,
144 9A

—=F+B,—z+quU,

= VEF=[viA, Al-[V3U, U], (26)

where

We added a viscosity u to damp the highest Fourier
harmonics. This term was handled using the Dufort-
Frankel technique. A similar resistivity was added to
Eq. (10). However, these damping terms were not re-
quired for numerical stability.

We also solved the magnetic surface equation (13) in
order to study the flow. Because S developed large
gradients, it was found desirable to introduce some
smoothing to suppress the highest harmonics. This
was also done in calculating the current from Eq. (5).

In the nonlinear calculations, it was found that the
solutions had half-wavelength symmetry. The solution
at z=L/2 was equal to the solution at z=0, but rotated
180°. Taking advantage of this symmetry reduced the
storage requirements by half,

VI. LINEAR STABILITY

We now apply our equations to study the linear sta-
bility of the equilibria described in Sec. III. Starting
with an arbitrary initial perturbation we integrate the
linear equations forward in time. If the equilibrium is
unstable, the unstable modes will grow exponentially
and the mode with the largest growth rate will dominate
the solution after a sufficiently long time.

The linear equations (16) and (17) can be Fourier an-
alyzed in 2, since the equilibrium is independent of z,
The linear perturbations have the form

A=A sinkz+ A coskz, U =U,sinkz+U,coskz. (27)

Both components are required. This gives four coupled
linear equations for A,, A,, U,, and U,.

The results show that the internal kink mode can be
unstable, with large growth rates comparable to the
free boundary kink modes. The growth rates are given
in units of (B,/L)™, the inverse of the longitudinal Alf-
vén trangit time, and are of order unity. In Figs. 3
and 4 we show results for the case b/a=2, The un-
stable modes shown have what may be called an m=1,
n=1 structure, as can be seen from Figs. 4 and 5.
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c FIG. 3. A linearly unstable
mode at z=0, with b/a=2,
q;=0.838, and growth rate
0. 423,

T

|

 @®

U
C
LINEAR GR. RATE =.423
Q0 =.838 B/A=2

The growth rate increases as we increase the plasma
current., We measure the current in terms of g, the
inverse rotational transform in the center of the plas-
ma, given by Eq. (24). As ¢, decreases, the unstable
mode fills more of the plasma, as shown in Fig. 5.

In Fig. 6 we plot the growth rate as a function of g,.
The two curves show the influence of the finite differ-
ence grid. Increasing the number of mesh peints shifts
the marginal stability point to larger ¢,, presumably
because the more localized structure is better re-
solved. The onset of instability occurs for ¢,<1, so
these modes are favorable for confinement.

It is of interest to consider the equation describing
plasma flow (12). Linearizing, and taking S, equal to
Ay, we find

88, _ - RO _84 L9
ot =0 V=B VU= - B o

For a mode with growth rate y, Fourier analysis in z
yields

40
(24

FIG. 4. The same mode at
z=L/4.,

LINEAR GR. RATE = .423
Q0 =.838 B/A=2
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OO
OO |

LINEAR GR. RATE =.275
Q0=.860 B/A=2

FIG. 5, Effect of in-
creasing equilibrium
current: the growth
rate increases and the
mode structure spreads

O Q out.
QS

AC
LINEAR GR. RATE =.782
Q0 =637 B/A=2

Ss :AS+ (zﬂ/Y)Uc 3

where v is in units of (B, /LY. Typically, U,Z A,; so
for small growth rate, 6S/S> 0A/A. This effect is
quite evident in the nonlinear results,

Vil. NONLINEAR MOTION

The linearly unstable modes can be used as initial
perturbations in three-dimensional nonlinear computa-
tions using Eqs. (9) and (10). The quantities A and U
by themselves do not show the plasma motion, so we
have also integrated the auxiliary equation (13), which
describes the convection of a quantity S with the fluid.
In the unperturbed initial state, S is proportional to A2,
In addition, we examined the longitudinal current den-
sity j, as calculated from Eq. (5).

Some sample results are shown in Figs, 7-12,
Contour plots of 4, S, U, and j are given for z2=0 and
z=1L/4. The solutions for z=1/4 are basically the
same as the solutions at z=0, but rotated 90°.

There is a striking difference in the time develop-

o

>

FIG. 6, Growth rate in
units of the longitudinal
Alfvén time, pl/2L/B,.

GROWTH RATE

o

B/A=2
e |6 x 20 MESH
D--D 12 x 16
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T=.60 T-1.80
A(Z=0) U(z=0) A(Z=0) u(Zz=0)
J(Z=0) S{Z=0) J(Z=0) S(Z=0)

NONLINEAR qgo=.82 b/a=2

FIG. 7. A nonlinear calculation. The plane 2=0 is shown at
time 7'=0.6 in units p“zL/B,. The four plots show the mag-
netic vector potential A, the longitudinal current density J, the
flow streamlines U, and magnetic surfaces S. The g value on
axis of the starting equilibrium is 0, 82; the width of the cross
section is twice the height,

ment of A and S. The perturbations of A, and conse-
quently the perturbations of the magnetic field, are
limited in amplitude and confined to the center of the
plasma. On the other hand, the contours of S are
strongly perturbed, showing convection of the plasma
from the center of the chamber to the walls. The con-
tours of U are the streamlines of the flow, according
to Eq. (3). The linear flow pattern of Figs. 4 and 5 is
maintained in the early stage of the nonlinear calcula-
tion, causing plasma to flow outward toward the wall
(Figs. 7 and 8). Then, the flow pattern U is itself con-
vected outward, as in Figs. 9 and 10. This produces
a pinching of the flux surfaces S in the center, as well
as a continued outward flow to the wall (Figs. 11 and
12). Calculation of the energy, Eq. (12), showed that
the kinetic energy in the calculation just discussed was
less than 2% of the magnetic potential energy.

A(Z=L/4) u(zZ=Ls4)
J(Z=L/4) S(Z=L/4)

NONLINEAR g,=.82 b/a=2

FIG. 8. The plane z=L/4 at the same time as Fig. 7. The
perturbations are rotated at quarter turn,
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NONLINEAR qy=.82 b/a=2

FIG. 9, The same as Fig, 7 but at time T=1.8., Convection

is shown by the contours of S.

It is remarkable that the contours of A are disturbed
so little, while the contours of S and j are strongly per-
turbed. The difference between A and j can be under-
stood by Fourier analyzing Eq. (5) in x and y. For the
m, n component we have

Fmn=—72[(m/a)2 + (n/ B)*]A .

The factor in brackets strongly attenuates the short
wavelength perturbations of j, so that A seems almost
unchanged.

It is also possible that numerical diffusion has al-
lowed the plasma to slip through the magnetic field to
some extent. This effect can only be assessed by the
use of more refined numerical methods in which the
magnetic field lines are rigorously constrained to lie on
magnetic surfaces, i.e., B+ VS=0 exactly.

VIIl. CONCLUSIONS

We have presented a set of equations describing mag-
netohydrodynamic motion in a large aspect ratio toka-
mak. The equations are much simpler than the full set

T=1.80
=
AZ-L/4) U(Z=L/4)

J(Z=L/s4) S(Z=Ls4)

NONLINEAR g, =.82 b/a=2

FIG. 10, The plane z=L/4 at T=1,8; similar to Fig, 9.
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T7=3.00

T=3.00

A(Z=0)
/“’/’—\\w
AN
J(Z=0) $(z=0) S(Z=Ls4)
NONLINEAR g, =.82 b/a=2 NONLINEAR q,=.82 b/a=2
FIG. 11, The same as Fig. 7 at time T=3,0. Substantial con-

vection has taken place, as shown by S. The poloidal magnetic
field is tangent to the contours of A, which are hardly per-
turbed, The currentJ shows greater perturbation. The flow
pattern of U itself convects toward the wall.

of magnetohydrodynamic equations. Numerical solution
of the equations has confirmed the existence of fast-
growing fixed-boundary kink modes in noncircular toka-
maks. The onset condition for instability, in the cases
we have investigated, is less stringent than the Krus-
kal-Shafranov condition ¢>1. The nonlinear develop-
ment of these instabilities was also investigated numer-
ically. The results show that small magnetic field per-
turbations are accompanied by substantial plasma con-
vection.
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