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Equipartition and Transport in Two-Dimensional Electrostatic Turbulence
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Turbulent equipartition is investigated for the nonlinear evolution of pressure driven flute modes of
a plasma in an inhomogeneous magnetic field. The Rayleigh-Taylor instability is recovered by linear
stability analysis, and occurs when the pressure profile is more peaked than the profile of the magnetic
field. Numerical solutions of the model equations on a bounded domain with sources and sinks show
that the flux-driven turbulent fluctuations give rise to up-gradient transport, a “pinch flux,” of heat or
particles. The averaged equilibrium density and temperature profiles approach and T ~ B3,
as predicted by turbulent equipartition. [S0031-9007(98)07538-3]

PACS numbers: 52.35.Py, 52.25.Fi, 52.35.Ra, 52.65.-y

Cross-field transport is one of the most important andnvariants; however, in the Rayleigh-Taylor instability
most difficult areas of fusion research. Even basic trans(RTI), which generates the turbulence, tRex B drift
port phenomena such as profile resilience and the particikominates [9].
pinch, have no generally accepted explanations [1]. Itis, Previously, the TEP profiles ~ B was obtained in
however, recognized that low-frequency electrostatic tura numerical experiment using random, externally im-
bulence accounts for the major part of the transport. posed potential fluctuations, and only taking #ex B

Whereas collisional transport is directed down-gradientdrift into account [10]. Here we present simulations of
taking the plasma closer to the homogeneous thermal equl-EP with self-consistent, flux-driven electrostatic turbu-
librium, turbulent transport may be directed up-gradientlence. The density and temperature profiles develop self-
This is referred to as “pinch flux.” The particle pinch is consistently under the influence of external heating.
well documented in tokamak plasmas [1] as the density A basic requirement of our model is that it must
peaks in the center, although the particle sources are usdescribe the fluid drifts accurately in the presence of an
ally situated near the wall. Also, the heat pinch has beemhomogeneous magnetic fiedkl= 2B(x, y). It must also
demonstrated [2], and transient transport studies in particidescribe the adiabatic compression and heating of a fluid
lar provide clear evidence for nonlocal effects and up-arcel that is displaced into a region of larger (These
gradient heat fluxes [3]. requirements are not met in the commonly used flute

Recently, a new approach has been suggested for prexode models where the magnetic field inhomogeneity
dicting the quasisteady profiles in tokamak plasmas [4—7]is represented by an “artificial gravity.”) We use the
It is based on the existence of Lagrangian invariants in thequations proposed by Isichenko and Yankov [11] for
presence of turbulence. The basic assumption is that turbtike electrons, together with the ion vorticity equation for
lent mixing causes equipartition of these invariants over theold ions. The system of equations is closed by assuming
accessible phase space, a state denoted turbulent equipquasineutrality.
tition (TEP) [4]. Since the Lagrangian invariants depend Briefly, the derivation is as follows. We use the drift
on the magnetic field3, a homogeneous distribution of approximation with typical frequencies much lower than
these invariants implies that B is inhomogeneous so are the cyclotron frequencies, and neglect the electron inertia.
the density and the temperature. Therefore, the fluxes thétserting the electron fluid velocity = vg + v, into the
drive the plasma towards TEP may be up-gradient. Welleontinuity equationgn/dr + V - (nv) = 0, we obtain
known cases of TEP occur in geophysical convection, as, P 1

. . . . n n
for instance, in the troposphere, or in the convection zone — + {cp, —} - {p, —} =0, ()
of the sun (see, e.g., the discussion in Refs. [6,8]). ot B eB

In a two-dimensional plasma model the correspondingvhere the Poisson bracket is defined Ry,g} =
mechanism is easily understood. If the magnetic fRele d.fd,g — 0,89,f, e is the elementary chargep is
2B(x,y) is inhomogeneous, thE X B drift ve = (2 X  the electrostatic potential, and the pressure is given by
V@)/B is compressible, and the relatidh- (Bvg) =0  p = nT, with T the electron temperature. The third term
implies thatn/B is a Lagrangian invariant. Another in Eq. (1) comes from the diamagnetic drift.
Lagrangian invariant is given by the specific entrdpy?/ The electron temperature equation is obtained from
n. This gives the TEP profilea ~ B and T~ B*3.  Braginskii's transport equations [12] in the form
If the diamagnetic driftv, = —(¢ X Vp)/neB is also  (3n/2)(0/0t + v - V)T + nTV -v = -V - q, where
taken into account, these quantities are no longer exag is the heat flux. Neglecting viscous effects, the
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remaining diamagnetic part off can be written as and similarly for temperature and magnetic field. Here

q = —(51nT/2eB); X VT. Using v=vg + vy, we i, T, and B are all of ordere < 1. Inserting these
obtain expressions into Eqgs. (1), (2), and (4), and keeping lowest
3T N | 7302 R n 1 Y orderterr(;l:, we obtain
2o T |0 | T M s Tt {gn B+ {n +T.B}=0,  (6)
(2)
Equations (1) and (2) can also be obtained by taking 97

moments of the gyrokinetic equation [11]. ot
Because of the diamagnetic drift, neither of the quan- V2
tities n/B or T%2/n is an exact Lagrangian invariant

+ [¢.V2¢] +[n+ T.B]=0. (8
of Egs. (1) and (2). However, as shown in Ref. [11]’F 0t d d the tilde. Th Al
there exist two other Lagrangian invariants. = or convenience we dropped the tilde. The potential is

+(5/2)/2In(n/B) + In(T¥2/n). They are advected normalized by7T /e, the time byw_;' = m;/eB, and the

g — 1/2
with the velocities v= = v T (5/2)'/2(1/eB)z x VT, SPace variables by d— (T /mi)'2/ vei o
which are neither fluid nor guiding center velocities. A Eduations (6) and (7) possess the Lagrangian invari-

. o . = 1/2(,, — _ -
spatially homogeneous distribution bf. andL_ gives ants l. = *=(5/2)*(n — B) + 37/2 — n, correspond

2 2 7
+ ‘g{),T - 3B] + [37[ + 3T,B]ZO, (7)

ing to the invariantsL+ of Egs. (1) and (2). They are

3/2
nley) _ const T"ny) const (3) advected with the velocities. = 2 X V{¢ — n — [I =
B(x,y) B(x,y) (5/2)'/2]T}. Thus, the TEP profiles are — B = const
Hence, we expect the turbulence to drive the profilesind37/2 — B = const, corresponding to Eq. (3). Note
toward those in Eq. (3). that Egs. (6)—(8) are scale invariant whey, andT are

In general, théE X B drift dominates in the linear RTI, multiplied andr is divided by the same constant.
for instance, both in the present model and in the rather To lowest nontrivial order, and using mass conserva-
different one considered in Ref. [9]. In this casg,B  tion, the energy (5) in the fully nonlinear equations re-
and73/2/n are approximate Lagrangian invariants, whichduces to the heaf Tdx dy, which is trivially conserved
again give the TEP profiles in Eq. (3). We thereforeaccording to Eq. (7). Equations (6)—(8) also conserve the
expect that these profiles apply to a broad class of flutenergylike integral
mode models, even if they have no exact invariants 1
corresponding td. . E = / [— (Vo) + (n + T)B}dx dy . 9
Equations (1) and (2) govern the electron dynamics. i i 2 L _
To close the set of equations we use the quasineutralit%-he first term is the kln_etlc energy, while the second term
condition ¢, =~ n; ~ n) and the ion vorticity equation, Nas the form of potential energy. It represents the small
obtained by taking the curl of the ion equation of part pf the thermal energy which can be converted into
motion. In the limit of cold ions, it readé&d/dt)[(w + kl_net|c energy when'flu[d parcels are displaced to a region
wei)/n] =0. Hered/dt = d/ot + v; - V, 20 = V X with weaker magnetic field.

vi is the vorticity, andw,; is the ion cyclotron frequency. N order to investigate the linear stability we consider
Considering the lowest order drift approximation, the ion@ Slab model.  We linearize Egs. (6)—(8) around the
velocity is simply given by theE X B drift, and @ =  background profiles(x), To(x), andB(x), and assume a
V24 /B. Also, using Eq. (1), we obtain waveform exgik - r — iw?) in the local approximation.
The dispersion relation reads
V3¢ V2 eB? 1
— tyé. o~ nT,—1=0. (4) | 5 10 5 .,
dt B mi N eB ek’ &+ T cB + T (B |+
Here B andn are assumed to deviate only slightly from
the constant reference levels and NV, to be introduced o ;5 5, 0000 o
below. cB\ny + Ty — B |+ T (B)Y(ng=8) =0,
Equations (1), (2), and (4) constitute a closed set of (10)

equations for low-frequency flute-type perturbations in ayhere we have introduced = w/k,, and the prime
plasma with a nonuniform magnetic field. The equationsjenotes differentiation with respect to. The long
conserve the energy wavelength solution of the dispersion relation d& =~
m; N , 3 —B'(np + Ty — %B’)/_kz. This is recognized as a special
W= sz (Vo) + 5T |dxdy, (5  case of the RTI [9], with

which contains both kinetic and thermal energy. B'<n6 + T) — Bl B’) >0, (11)
To simplify the equations we will assume that the fields 3

n, T, andB deviate only slightly from constant reference as the condition for instability. The instability sets in if

levels N, T, and B, with, e.g.,n = N1 + 7i(x,y,1)]  the pressure profile, + T is more peaked thafiB/3.
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Thus, the TEP profilee — B = const andl" — 2B/3 =  to the small scale turbulence (Fig. 1), and a statistical
const is marginally stable. From Eq. (10) it is also seerequilibrium is approached. The unidirectional spectrum
that the RTI is stabilized at short wavelengths =  of, e.g., the squared potential fluctuations reveals a power
p 1) even though finite Larmor radius effects were notlaw behaviork™¢ with @ =~ 2, and with the maximum
included, in contrast to conventional flute mode modelsamplitude at the largest wavelength that fits into the
employing an artificial gravity. domain. Note that in this situation no inertial range is
The quasilinear fluxes can be obtained as in Ref. [9]expected as the driving can be active on all scales. Near
and we readily find that they are proportional to thethe walls the heat flux is purely diffusive, while strong
gradients of the Lagrangian invariant$, « —(ny —  turbulent mixing is the dominant transport mechanism in
B') and g = —(T, — 2B'/3). The energy flux isQy the interior region, and there we expect TEP. In Fig. 2 we
—(ny + T4 — 5B'/3). Thus, the particle fluX’, can be show the temperature (with temporal evolution) and the
negative if the density profile is flatter th&@y and the heat density profile averaged over and 50 time units in the
flux ¢ can be negative if the temperature profile is flatterequilibrium state. Both approach the TEP profiles in
than2B/3, while Qr is always positive. the quasistationary limit. Note that the RTI initially
We have solved Eg. (6)—(8) numerically on a two-develops only to the right of the heat source (shaded in
dimensional domain using a finite difference code. DissiFig. 2), in accordance with the stability criterion (11).
pative terms of the formuV2f, where f denotesn, T,  During the nonlinear stage the turbulence spreads left-
or V2¢, were added to the right-hand side of each ofward, and the temperature maximum is then found to the
the equations (6)—(8). The diffusivitieg were chosen left of the heat source. Thus, there is an up-gradient heat
to be of the orded0~3. The computational domain was flux in the region—1.5 > x > —0.2.
bounded inx and periodic iny, with the sizeL, = 5 and In the second experiment, the turbulence is driven by
L, = 20. By prescribingdn|,-+;,/» = 0 the diffusive an imposed temperature difference between the walls,
particle flux at the walls was set to zero. The potential usingT|,—-, » = 10andT|,—.,» = 0. The magnetic
was kept constant at the walls so that the velocity com-
ponent perpendicular to the walls, and, consequently, the a)
turbulent fluxes at the walls, vanished. Temperature
In the first experiment the turbulence is driven by a e e 2/3* B-Field
distributed heat source in a region near= 0, while
the temperature at both boundaries is fixed to zero. The
magnetic field is of the formB ~ 1/(3.5 + x) and
the system is initialized with uniform profiles= T = 0
and low amplitude random noise. The system starts to
heat up and, as predicted, a RTI sets in. After a few hun-
dred time units, large convective cells appear, in addition

b) 0.6,
— Density
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0.2
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FIG. 2. Temperature (a) and density (b) profiles with TEP
prediction " — 2/3 B = const andn — B = const) when the
system is heated in the shaded area. The magnetic field is given

by B = 1/(3.5 + x). The temperature maximum is to the left
of the heated area, demonstrating the heat pinch. The leftward
heat flux from the source to the wall at= —2.5 is about 25%
FIG. 1. Isocontours of the temperature in the saturated stat®f the total heating. The inset in (a) shows the temperature
The system is heated at abaut= 0 (see Fig. 2). Spacing profile at times 2, 30, 70, and 250. Note that the RTI operates
between contours iIAT = 1. only to the right initially.
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y-independent potential appears. This may be described as
Tomporatre a tendency for the ion potential vorticity>’¢ + B — n

e 2/3"Magnetic Field to be uniformly distributed. Detailed investigations of
this point and the influence of a shear flow on the TEP
evolution, as well as details on the developing turbulence,
will be presented in a forthcoming paper.

In conclusion, we verified that the nonlinear evolution
of pressure driven electrostatic flute modes in a system
with sources and sinks leads to a quasiequilibrium with
density and temperature profiles as predicted by the TEP,
i.e., with the Lagrangian invariants/B and 7%/2/B

2 1 (o] 1
X roughly constant. The instability gives rise to pinch fluxes
b) 04 of heat and particles into the region with a stronger
- magnetic field. The physical mechanism of these fluxes
Density . . . . .
Magnetic Field is the adiabatic compression of fluid parcels as they

are displaced into this region. The turbulent fluxes are
proportional to the gradients of/B and 73/2/B, rather
than to the gradients of the density and temperature
themselves.

The results indicate that TEP profiles may also be
the turbulent attractors in more complex and realistic
models for toroidal plasma devices, which, however,
RS P : J : should include the trapped particles [6].
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