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Turbulent equipartition is investigated for the nonlinear evolution of pressure driven flute modes o
a plasma in an inhomogeneous magnetic field. The Rayleigh-Taylor instability is recovered by line
stability analysis, and occurs when the pressure profile is more peaked than the profile of the magne
field. Numerical solutions of the model equations on a bounded domain with sources and sinks sh
that the flux-driven turbulent fluctuations give rise to up-gradient transport, a “pinch flux,” of heat o
particles. The averaged equilibrium density and temperature profiles approachn , B and T , B2y3,
as predicted by turbulent equipartition. [S0031-9007(98)07538-3]
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Cross-field transport is one of the most important an
most difficult areas of fusion research. Even basic tran
port phenomena such as profile resilience and the parti
pinch, have no generally accepted explanations [1]. It
however, recognized that low-frequency electrostatic tu
bulence accounts for the major part of the transport.

Whereas collisional transport is directed down-gradien
taking the plasma closer to the homogeneous thermal eq
librium, turbulent transport may be directed up-gradien
This is referred to as “pinch flux.” The particle pinch is
well documented in tokamak plasmas [1] as the dens
peaks in the center, although the particle sources are u
ally situated near the wall. Also, the heat pinch has be
demonstrated [2], and transient transport studies in partic
lar provide clear evidence for nonlocal effects and u
gradient heat fluxes [3].

Recently, a new approach has been suggested for p
dicting the quasisteady profiles in tokamak plasmas [4–
It is based on the existence of Lagrangian invariants in t
presence of turbulence. The basic assumption is that tur
lent mixing causes equipartition of these invariants over t
accessible phase space, a state denoted turbulent equ
tition (TEP) [4]. Since the Lagrangian invariants depen
on the magnetic fieldB, a homogeneous distribution of
these invariants implies that ifB is inhomogeneous so are
the density and the temperature. Therefore, the fluxes t
drive the plasma towards TEP may be up-gradient. We
known cases of TEP occur in geophysical convection, a
for instance, in the troposphere, or in the convection zo
of the sun (see, e.g., the discussion in Refs. [6,8]).

In a two-dimensional plasma model the correspondin
mechanism is easily understood. If the magnetic fieldB ­
ẑBsx, yd is inhomogeneous, theE 3 B drift vE ­ sẑ 3

=fdyB is compressible, and the relation= ? sBvEd ­ 0
implies that nyB is a Lagrangian invariant. Another
Lagrangian invariant is given by the specific entropyT3y2y
n. This gives the TEP profilesn , B and T , B2y3.
If the diamagnetic driftvd ­ 2sẑ 3 =pdyneB is also
taken into account, these quantities are no longer ex
0031-9007y98y81(19)y4148(4)$15.00
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invariants; however, in the Rayleigh-Taylor instabilit
(RTI), which generates the turbulence, theE 3 B drift
dominates [9].

Previously, the TEP profilen , B was obtained in
a numerical experiment using random, externally im
posed potential fluctuations, and only taking theE 3 B
drift into account [10]. Here we present simulations o
TEP with self-consistent, flux-driven electrostatic turbu
lence. The density and temperature profiles develop s
consistently under the influence of external heating.

A basic requirement of our model is that it mus
describe the fluid drifts accurately in the presence of
inhomogeneous magnetic fieldB ­ ẑBsx, yd. It must also
describe the adiabatic compression and heating of a fl
parcel that is displaced into a region of largerB. (These
requirements are not met in the commonly used flu
mode models where the magnetic field inhomogene
is represented by an “artificial gravity.”) We use th
equations proposed by Isichenko and Yankov [11] f
the electrons, together with the ion vorticity equation fo
cold ions. The system of equations is closed by assum
quasineutrality.

Briefly, the derivation is as follows. We use the drif
approximation with typical frequencies much lower tha
the cyclotron frequencies, and neglect the electron iner
Inserting the electron fluid velocityv ­ vE 1 vd into the
continuity equation,≠ny≠t 1 = ? snvd ­ 0, we obtain

≠n
≠t

1

Ω
f,

n
B

æ
2

Ω
p,

1
eB

æ
­ 0 , (1)

where the Poisson bracket is defined byh f, gj ­
≠xf≠yg 2 ≠xg≠yf, e is the elementary charge,f is
the electrostatic potential, and the pressure is given
p ­ nT , with T the electron temperature. The third term
in Eq. (1) comes from the diamagnetic drift.

The electron temperature equation is obtained fro
Braginskii’s transport equations [12] in the form
s3ny2d s≠y≠t 1 v ? =dT 1 nT= ? v ­ 2= ? q, where
q is the heat flux. Neglecting viscous effects, th
© 1998 The American Physical Society
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remaining diamagnetic part ofq can be written as
q ­ 2s5nTy2eBdẑ 3 =T . Using v ­ vE 1 vd , we
obtain

3
2

≠T
≠t

1
1

T1y2

(
f,

T3y2

B

)
2

1
nT3y2

(
nT7y2,

1
eB

)
­ 0 .

(2)
Equations (1) and (2) can also be obtained by taki
moments of the gyrokinetic equation [11].

Because of the diamagnetic drift, neither of the qua
tities nyB or T3y2yn is an exact Lagrangian invarian
of Eqs. (1) and (2). However, as shown in Ref. [11
there exist two other Lagrangian invariantsL6 ­
6s5y2d1y2 lnsnyBd 1 lnsT3y2ynd. They are advected
with the velocities v6 ­ v 7 s5y2d1y2s1yeBdẑ 3 =T ,
which are neither fluid nor guiding center velocities. A
spatially homogeneous distribution ofL1 andL2 gives

nsx, yd
Bsx, yd

­ const,
T3y2sx, yd

Bsx, yd
­ const. (3)

Hence, we expect the turbulence to drive the profil
toward those in Eq. (3).

In general, theE 3 B drift dominates in the linear RTI,
for instance, both in the present model and in the rath
different one considered in Ref. [9]. In this case,nyB
andT3y2yn are approximate Lagrangian invariants, whic
again give the TEP profiles in Eq. (3). We therefor
expect that these profiles apply to a broad class of flu
mode models, even if they have no exact invarian
corresponding toL6.

Equations (1) and (2) govern the electron dynamic
To close the set of equations we use the quasineutra
condition (ne ø ni ø n) and the ion vorticity equation,
obtained by taking the curl of the ion equation o
motion. In the limit of cold ions, it readssdydtd fsv 1

vcidyng ­ 0. Here dydt ­ ≠y≠t 1 vi ? =, ẑv ­ = 3

vi is the vorticity, andvci is the ion cyclotron frequency.
Considering the lowest order drift approximation, the io
velocity is simply given by theE 3 B drift, and v ­
=2fyB . Also, using Eq. (1), we obtain

≠=2f

≠t
1

(
f,

=2f

B

)
2

eB2

miN

(
nT ,

1
eB

)
­ 0 . (4)

Here B and n are assumed to deviate only slightly from
the constant reference levelsB andN , to be introduced
below.

Equations (1), (2), and (4) constitute a closed set
equations for low-frequency flute-type perturbations in
plasma with a nonuniform magnetic field. The equatio
conserve the energy

W ­
Z "

miN

2B2 s=fd2 1
3
2

nT

#
dx dy , (5)

which contains both kinetic and thermal energy.
To simplify the equations we will assume that the field

n, T , andB deviate only slightly from constant referenc
levelsN , T , andB , with, e.g.,n ­ N f1 1 ñsx, y, tdg
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and similarly for temperature and magnetic field. Her
ñ, T̃ , and B̃ are all of ordere ø 1. Inserting these
expressions into Eqs. (1), (2), and (4), and keeping lowe
order terms, we obtain

≠n
≠t

1 hf, n 2 Bj 1 hn 1 T , Bj ­ 0 , (6)

≠T
≠t

1

(
f, T 2

2
3

B

)
1

(
2
3

n 1
7
3

T , B

)
­ 0 , (7)

≠=2f

≠t
1

£
f, =2f

§
1 fn 1 T , Bg ­ 0 . (8)

For convenience we dropped the tilde. The potential
normalized byTye, the time byv

21
ci ­ miyeB , and the

space variables byr ­ sT ymid1y2yvci .
Equations (6) and (7) possess the Lagrangian inva

ants l6 ­ 6s5y2d1y2sn 2 Bd 1 3Ty2 2 n, correspond-
ing to the invariantsL6 of Eqs. (1) and (2). They are
advected with the velocitiesv6 ­ ẑ 3 = hf 2 n 2 f1 6

s5y2d1y2gTj. Thus, the TEP profiles aren 2 B ­ const
and 3Ty2 2 B ­ const, corresponding to Eq. (3). Note
that Eqs. (6)–(8) are scale invariant whenB, n, andT are
multiplied andt is divided by the same constant.

To lowest nontrivial order, and using mass conserv
tion, the energy (5) in the fully nonlinear equations re
duces to the heat

R
Tdx dy, which is trivially conserved

according to Eq. (7). Equations (6)–(8) also conserve t
energylike integral

E ­
Z "

1
2

s=fd2 1 sn 1 T dB

#
dx dy . (9)

The first term is the kinetic energy, while the second ter
has the form of potential energy. It represents the sm
part of the thermal energy which can be converted in
kinetic energy when fluid parcels are displaced to a regio
with weaker magnetic field.

In order to investigate the linear stability we conside
a slab model. We linearize Eqs. (6)–(8) around th
background profilesn0sxd, T0sxd, andBsxd, and assume a
waveform expsik ? r 2 ivtd in the local approximation.
The dispersion relation reads

ck2

"
c2 1

10
3

cB0 1
5
3

sB0d2

#
1

cB0

√
n0

0 1 T 0
0 2

5
3

B0

!
1

5
3

sB0d2sn0
02B0d ­ 0 ,

(10)
where we have introducedc ­ vyky , and the prime
denotes differentiation with respect tox. The long
wavelength solution of the dispersion relation isc2 ø
2B0sn0

0 1 T 0
0 2

5
3 B0dyk2. This is recognized as a specia

case of the RTI [9], with

B0

√
n0

0 1 T 0
0 2

5
3

B0

!
. 0 , (11)

as the condition for instability. The instability sets in if
the pressure profilen0 1 T0 is more peaked than5By3.
4149
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Thus, the TEP profilen 2 B ­ const andT 2 2By3 ­
const is marginally stable. From Eq. (10) it is also see
that the RTI is stabilized at short wavelengths (k ø
r21) even though finite Larmor radius effects were no
included, in contrast to conventional flute mode mode
employing an artificial gravity.

The quasilinear fluxes can be obtained as in Ref. [9
and we readily find that they are proportional to th
gradients of the Lagrangian invariants:Gn ~ 2sn0

0 2

B0d and q ~ 2sT 0
0 2 2B0y3d. The energy flux isQE ~

2sn0
0 1 T 0

0 2 5B0y3d. Thus, the particle fluxGn can be
negative if the density profile is flatter thanB, and the heat
flux q can be negative if the temperature profile is flatt
than2By3, while QE is always positive.

We have solved Eq. (6)–(8) numerically on a two
dimensional domain using a finite difference code. Diss
pative terms of the formm=2f, wheref denotesn, T ,
or =2f, were added to the right-hand side of each
the equations (6)–(8). The diffusivitiesm were chosen
to be of the order1023. The computational domain was
bounded inx and periodic iny, with the sizeLx ­ 5 and
Ly ­ 20. By prescribing≠xnjx­6Lxy2 ­ 0 the diffusive
particle flux at the walls was set to zero. The potentialf

was kept constant at the walls so that the velocity com
ponent perpendicular to the walls, and, consequently,
turbulent fluxes at the walls, vanished.

In the first experiment the turbulence is driven by
distributed heat source in a region nearx ­ 0, while
the temperature at both boundaries is fixed to zero. T
magnetic field is of the formB , 1ys3.5 1 xd and
the system is initialized with uniform profilesn ­ T ­ 0
and low amplitude random noise. The system starts
heat up and, as predicted, a RTI sets in. After a few hu
dred time units, large convective cells appear, in additi

FIG. 1. Isocontours of the temperature in the saturated sta
The system is heated at aboutx ­ 0 (see Fig. 2). Spacing
between contours isDT ­ 1.
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to the small scale turbulence (Fig. 1), and a statistic
equilibrium is approached. The unidirectional spectru
of, e.g., the squared potential fluctuations reveals a pow
law behaviork2a with a ø 2, and with the maximum
amplitude at the largest wavelength that fits into th
domain. Note that in this situation no inertial range
expected as the driving can be active on all scales. N
the walls the heat flux is purely diffusive, while stron
turbulent mixing is the dominant transport mechanism
the interior region, and there we expect TEP. In Fig. 2 w
show the temperature (with temporal evolution) and th
density profile averaged overy and 50 time units in the
equilibrium state. Both approach the TEP profiles
the quasistationary limit. Note that the RTI initially
develops only to the right of the heat source (shaded
Fig. 2), in accordance with the stability criterion (11)
During the nonlinear stage the turbulence spreads le
ward, and the temperature maximum is then found to t
left of the heat source. Thus, there is an up-gradient h
flux in the region21.5 . x . 20.2.

In the second experiment, the turbulence is driven
an imposed temperature difference between the wa
usingT jx­2Lxy2 ­ 10 andT jx­1Lxy2 ­ 0. The magnetic
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FIG. 2. Temperature (a) and density (b) profiles with TE
prediction (T 2 2y3 B ­ const andn 2 B ­ const) when the
system is heated in the shaded area. The magnetic field is gi
by B ­ 1ys3.5 1 xd. The temperature maximum is to the lef
of the heated area, demonstrating the heat pinch. The leftw
heat flux from the source to the wall atx ­ 22.5 is about 25%
of the total heating. The inset in (a) shows the temperatu
profile at times 2, 30, 70, and 250. Note that the RTI opera
only to the right initially.
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FIG. 3. Temperature (a) and density (b) profiles and TE
prediction (T 2 2y3 B ­ const and n 2 B ­ const). The
turbulence is driven by prescribingT s22.5d ­ 10 andTs2.5d ­
0 at the boundaries.

field is Bsxd ­ 20.15x. The temperature fluctuations
reach values of the order of the boundary temperatu
while the density and potential fluctuations are muc
smaller. As seen from Fig. 3, the temperature and dens
profiles away from the diffusive boundary layers agre
very well with the TEP predictionsT 2 2By3 ­ const
and n 2 B ­ const. A change of the diffusivitiesm
changes the size of the boundary layers and fluxe
while the profiles in the central region remain unchange
Note that particles are transported leftward as the dens
gradient develops, revealing the presence of a transi
particle pinch. A steady-state particle pinch is impossib
a priori in this experiment, since the setup guarantees th
the equilibrium particle flux vanishes. However, whe
we change the boundary conditions to allow particles
diffuse across the boundaries atx ­ 6Lxy2, a leftward
pinch flux appears.

If the imposed temperature difference between th
walls is increased, most of the additional temperatu
drop occurs over the diffusive boundary layers, while th
profile stays approximately the same in the central regio
This is an example of profile resilience.

We have also considered other situations, and,
general, find that the plasma relaxes toward the TE
profiles if the aspect ratio of the boxLyyLx . 2. For
a smaller aspect ratio, a zonal flow corresponding to
P
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y-independent potential appears. This may be describe
a tendency for the ion potential vorticity=2f 1 B 2 n
to be uniformly distributed. Detailed investigations o
this point and the influence of a shear flow on the TE
evolution, as well as details on the developing turbulen
will be presented in a forthcoming paper.

In conclusion, we verified that the nonlinear evolutio
of pressure driven electrostatic flute modes in a syst
with sources and sinks leads to a quasiequilibrium w
density and temperature profiles as predicted by the TE
i.e., with the Lagrangian invariantsnyB and T3y2yB
roughly constant. The instability gives rise to pinch fluxe
of heat and particles into the region with a strong
magnetic field. The physical mechanism of these flux
is the adiabatic compression of fluid parcels as th
are displaced into this region. The turbulent fluxes a
proportional to the gradients ofnyB and T3y2yB, rather
than to the gradients of the density and temperatu
themselves.

The results indicate that TEP profiles may also
the turbulent attractors in more complex and realis
models for toroidal plasma devices, which, howeve
should include the trapped particles [6].
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