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Finite-larmor-radius magnetohydrodynamic equations for microturbulence
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A set of nonlinear fluid equations which includes the effect of finite ion Larmor radius is derived to
describe microturbulence [k, p,~O(1), kK, R~O(1), n,/ny~p,/L,, and B,/B,~p,/R ] in an
inhomogeneous plasma with a strong magnetic field of general geometry. Here p, is the ion
Larmor radius at the electron temperature, L, is the density gradient scale length, R is the radius
of curvature of the magnetic line of force, k is the wave vector, and n,/n, and B,/B, are relative

levels of density and magnetic field perturbations.

There is increasing evidence that an inhomogeneous
plasma in a strong magnetic field such that p,/L =e¢,«1
(where p, and L, are the ion Larmor radius and the scale
length of the perpendicular inhomogeneity, respectively) is
imbedded with intrinsic turbulence both in density' and
magnetic field.” The wavenumber spectrum is anisotropic
such that k, »k, where subscripts 1 and || designate direc-
tions perpendicular and parallel to the magnetic field.> Ob-
servations commonly reveal that k| scales withp,”'orp,” ',
wherep, [ = (T./m;)"*/w,,; ] is the ion Larmor radius at the
electron temperature 7, while k;, although often not mea-
surable, is believed to scale with R ~', where R is a typical
inhomogeneous scale length in the parallel direction.

It has been recognized® that when k, ~p,”', mode
couplings produce fully nonlinear effects even at fluctuation
levels as small as n,/n,~¢,, where subscripts 1 and 0 indi-
cate the perturbed and unperturbed quantities. The nonlin-
earity originates from the convective derivative of the EXB
fluid velocity. A similar fully nonlinear effect also appears in
the magnetic field perturbation B,/B,~¢ €, due to the bend-
ing of the magnetic field lines,* where €, = L, /L, (~a/qR
in tokamak ordering, where a is the minor radius and g is the
safety factor). Our purpose in this paper is to derive fully
nonlinear fluid equations with two orderings, p,/L, and
L, /L, which are appropriate to study the turbulence often
observed in a plasma with a strong magnetic field.

To take into account the effects of finite Larmor radius
at w €w,; the most appropriate method is to use the gyrokine-
tic equations.’ However, the resultant mode coupling equa-
tions are often too complex to be useful. In addition, the two-
component approach, which is inevitable in this method,
makes the derivation of the nonlinear mode coupling equa-
tions unnecessarily complicated. In this respect the magne-
tohydrodynamic equations are more convenient to use be-
cause only the pressure, current density, and velocity field of
the *““one” fluid enter as the kinematic variables. Strauss® has
derived magnetohydrodynamic equations with the tokamak
ordering, a/R <1 by constructing an equation for the vorti-
city. These equations are useful in studying nonlinear prob-
lems including the effects of the curvature and shear of the
toroidal field.
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Attempts have been made to include the effect of the ion
Larmor radius in the Strauss equations by adding the ion
diamagnetic drift to the convective derivative of the ion
equation of motion.”'® A method alternative to this is to
include a perpendicular current which originates from the
difference between the EXB drifts of ions and electrons.!!
Both methods can be shown to give the same result to order
(k. p;)*. However the latter method retains the favorable
property of the magnetohydrodynamic equations in that the
perpendicular velocity is given only by one fluid velocity,
EXB. Hence we adapt the latter method.

By recognizing that the curl of the magnetohydrodyna-
mic equation of motion produces an equation which is equi-
valentto V,+J, + V,+J;, = 0 we replace the equation of mo-
tion by V-J = 0, where J, is given by the guiding-center drift
current (curvature, VB, and polarization current) plus the
above-mentioned E X B current.

The electromagnetic field variables are the parallel
component of the vector potential 4, and the scalar poten-
tial ¢. Since J, ~¢,€, J|, only J; appears as the source of the
electromagnetic field. The zeroth and the first moments of
the electron drift kinetic equation produce the continuity
equation for the electron J; and Ohm’s law. The parallel ion
inertia current (which can be ignored in most cases) and the
appropriate equations of state for electrons and ions close the
set of equations.

We first introduce two small parameters:

€ =p,/L, (1)
and

62:L1/L“- (2)
Ordinarily

61(62_’\’_\/?]. (3)

We take coordinate z in the local direction of the unper-
turbed magnetic field and define b as the unit vector in the
local direction of the total magnetic field, then

J“ =Jz + 0(6162))
A=A, + Ole e, (4}

while
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B, B
d 4 2o y 9 I
oz B, dy B,
where B, represents the shear field and
B, (x,t) =V, A, X2+ Ole,6) (6)

is the perturbed magnetic field. Equation (5) shows that if
k B, /By~k,, or if B, /B,~€,€,, the nonlinear term be-
comes of the same order as the linear term. Hence we retain
the B,-V term allowing B, /B,~O (€,€,). The convective
derivative due to the EXB drift, v,

d J d V¢ Xi
L_2 yyy=2 WXy )
dat ot at B,
also gives a full nonlinear effect if ed /T,~¢,; thus we retain
the vV term allowing e /T, ~e¢,.
Since the guiding-center current is a valid description to
O(e€,), V-J = O gives at O (€3 €,)
B‘V( Jzi + Jze)
mny, d

_.V2 +
B2 dt i Bg o,

VB, X% B,XR
+ 3 (VPL, 1;0 +Vpy BOR)

i=ie

7, =bib) = o 2 v.)+0ee)

(VVig X2}V In(po + pi)

il

=-V,J, (8)

whereR/R? = (i-V)IA)0 is the curvature of the unperturbed
magnetic field, p; and Pp are the perturbed and unperturbed
pressure of the jth species, and b-V and d /dt are given by Egs.
(5) and (7). The second term on the right-hand side originates
from the difference of E X B drift between electrons and ions,
due to the fact that the ion sees the electrostatic field which is
reduced by p?V?¢ . We note that this term can also be con-
structed from the divergence of the polarization current in
which the convective derivative due to the ion diamagnetic
drift is retained. However, with the convective derivative in
the first term given only by the E X B drift, this term should
be retained explicitly as shown.

The Maxwell equations become, then,
bV(Vi4,) = eV, .. ©)
Equation (9) with (8) relates A4, and ¢ to the plasma pressure

p, and py.

By taking the first moment (with respect to v) of the
electron drift kinetic equation, and by ignoring the inertia
term, we obtain the parallel component of Ohm’s law.* To
order € €,, the equation becomes

nJ,. =

1~
b V(pye +poc)- (10)

Here 7 is the resistivity, and J,, is the 2 component of the
electron current. In Eq. (10), we note that d4, /3t becomes
dA,/dt if VA, X2-V¢ is taken out of the second term and
combined with d4, /dt.

Depending on the choice of the equations of state, a
relation between the pressure p and the number density # is
needed. This may be obtained from the zeroth moment of the
electron drift kinetic equation, which gives to the order €3 ¢,

e%(nl + ng) + engVevy =bVJ, +V,J,,. (11)
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Here V-J, is the electron portion of the right-hand side of
Eq. (8).

We note here that from the convective derivative term
of Eq. (11) the present ordering forces k, p.ed /T,~O (€,¢€,).
This is an electromagnetic ordering which allows either a
longer wavelength (k, p, <1) or a smaller amplitude
(e¢ /T, < €,). On the other hand, the electrostatic ordering is
ed /T,~n,/ny~0 (€,) with k, p,~O(1).? In this case Eq.
(10) gives the Boltzmann distribution, #,/n, = e¢ /T, while
Eq. (11)is balanced by the first term of Eq. (8) in the order 2.
This gives the Hasegawa-Mima equation.’

We need equation(s) of state to eliminate the pressure.
One common choice is isotropic incompressible ions,

By _ dpu _ dp

= =— =0, (12)
dt dt dt

and isotropic, isothermal electrons,®

dp“e _ dple _ T

dt  dt e

For simplicity, if we assume the ion motions to be two di-
mensional in the perpendicular plane; J,; may be ignored

(13)

compared with J,,. Then, Eq. (13) and the Maxwell equation
give
L 2 et 9P.
bV(Vid,)= — L2 —. (14)
T, dt

Equations (8)—(10), (12), and (13) form the complete set of
equations we desire. We note that the nonlinear terms ap-
pears only through d /dt, b-V, and through the second term
in Eq. (8).

Different physical problems can be treated by modify-
ing the equation(s) of state. For example, when the isother-
mal condition is not applicable, one can use the Braginskii
formula,'? or when trapped particles become important one
can use two equations of state for trapped and untrapped
particles.

The local dispersion relation for a case J, = 7 = 0 may
be obtained from Egs. (8), (10), (12), and (13). For a simple
curved field line,

VoRXBY) g5 VB0 _ O L

R*Bj B dy RB,
where the x axis is taken in the direction of the radius of
curvature and that of the pressure gradient. If we define the
electron and the ion drift wave frequency,

(15)

and

or= 2" Inp,, (16)

the local dispersion relation becomes

(w+w*)[w2—w‘?w—k202 - —ZIi—
e i z¥A m’Rki
J ad
X | T, —1 T, —1 )]
( ax nPot dx 1P
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kZ 2 —1
L/ wr)[ki o+ w:*(R 9 lnp,n) ]
) ox

(17)

where v, is the Alfvén speed. Equation (17} is the dispersion
relation for coupled ballooning and drift modes and agrees
with that obtained by Strauss.'* If one uses the equation of
state for electrons in which V,-v,, #0 is included an addi-
tional term, p,V, -v,,, appears in Eq. (13). This term modi-
fies the dispersion relation obtained here. In particular a
term which is proportional to the product of curvatures ap-
pears. This has also been noticed recently by Diamond. "
A set of nonlinear fluid equations is derived which is
suitable to describe magnetohydrodynamic modes with fi-
nite-ion-Larmor-radius corrections. The equations are sim-
ple enough to be numerically soluble yet contain all the basic
dynamics in a inhomogeneous plasma at low frequencies.
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Lower-hybrid waves at two different frequencies /| and £, are launched simultaneously from two
localized antennas, and a third wave is observed to arise near the plasma edge at the frequency
f =/, — f1. This phenomenon can be explained by an echo effect near the plasma surface.

Lower-hybrid waves are important in thermonuclear
fusion research primarily because of their possible applica-
tions to plasma current drive and heating in tokamaks. They
can be launched by imposing a macroscopic electric field
near the plasma surface with metal waveguide arrays at high
power density (~ 10 kW/cm?). Reactor studies' show that in
a tokamak fusion reactor with lower-hybrid-wave current
drive and heating, about 1 % of the total first wall area will
be used for wave launching. In other words, there will be
more than one antenna, possibly driven at different frequen-
cies; and it is interesting to examine how these waves, from
various antennas, interact with each other. In this letter we
present experimental data showing that lower-hybrid waves
launched from two separate antennas at different frequen-
cies f, and f, can excite a third wave at the beat frequency
f> — fi- This third wave has a parallel phase velocity near the
electron thermal velocity so that it is strongly damped near
the plasma surface via electron Landau damping. With re-
spect to controlled thermonuclear reaction (CTR) applica-
tions including current-drive and plasma core heating, this
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nonlinear process may represent a source of operating ineffi-
ciency.

The experiment was performed in the Princeton ACT-1
device? working with a hydrogen plasma and the following
parameters: magnetic field on axis ~2.8 kG, neutral pres-
sure S107° Torr (gauge), plasma density varying from
3X 10® cm~* to 10'° cm ™2, and electron temperature ~ 1-2
eV. The plasma was produced by a heated tungsten filament
as described previously.” Figure 1(a) is a schematic drawing
of the experimental setup. The lower-hybrid waves were
launched from electrostatic plates at the plasma edge. Two
of 12 plates were driven at two frequencies f, and f,. The
excited lower-hybrid waves propagate along resonance
cones as shown in Fig. 1(b}. In addition to the excited waves
at frequencies f, and £, the probe picks up a signal at the beat
frequency f = f, — f, near the plasma edge. In order to avoid
mixing effects inside the probe sheath, the driving signals
were kept at very low power levels (approximately 1 mW).
The probes detect the beat signal only when £, > f;. When we
switch the two oscillators, the signal disappears as shown in
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