23. (a)
$$
E_0 = \frac{1}{2}\hbar\omega_0 = \frac{1}{2}kx_0^2
$$
 so $x_0 = \sqrt{\hbar\omega_0/k}$

(b)
$$
E_1 = \frac{3}{2} \hbar \omega_0 = \frac{1}{2} k x_0^2
$$
 so $x_0 = \sqrt{3 \hbar \omega_0 / k}$

$$
E_2 = \frac{5}{2} \hbar \omega_0 = \frac{1}{2} k x_0^2
$$
 so $x_0 = \sqrt{5 \hbar \omega_0 / k}$

24.
$$
x_{\text{av}} = \int_{-\infty}^{\infty} |\psi(x)|^2 x \, dx = A^2 \int_{-\infty}^{\infty} e^{-2ax^2} x \, dx = 0
$$

because the integrand is an odd function of *x* (the integral from $-\infty$ to 0 exactly cancels the integral from 0 to $+\infty$).

$$
(x^2)_{\text{av}} = \int_{-\infty}^{\infty} |\psi(x)|^2 x^2 dx = A^2 \int_{-\infty}^{\infty} e^{-2ax^2} x^2 dx = 2A^2 \int_{0}^{\infty} e^{-2ax^2} x^2 dx = \frac{2A^2}{\sqrt{8a^3}} \int_{0}^{\infty} e^{-u^2} u^2 du
$$

with the substitution $u = x\sqrt{2a}$. The integral is a standard form found in tables and is equal to $\sqrt{\pi/4}$. Substituting $A = (\omega_0 m / \pi \hbar)^{1/4}$ and $a = \sqrt{km/2\hbar} = \omega_0 m / 2\hbar$, we find

$$
(x^{2})_{\text{av}} = 2\left(\frac{\omega_{0}m}{\pi\hbar}\right)^{1/2} \frac{1}{2\sqrt{2}} \left(\frac{2\hbar}{\omega_{0}m}\right)^{3/2} \frac{\sqrt{\pi}}{4} = \frac{\hbar}{2\omega_{0}m}
$$

$$
\Delta x = \sqrt{(x^{2})_{\text{av}} - (x_{\text{av}})^{2}} = \sqrt{\hbar/2m\omega_{0}}
$$

25. (a) Because the oscillating particle moves with equal probability in the positive and negative *x* directions, $p_{av} = 0$.

(b)
$$
U_{av} = \frac{1}{2}k(x^2)_{av} = \frac{1}{2}k\frac{\hbar}{2\omega_0 m} = \frac{1}{2}\omega_0^2 m \frac{\hbar}{2\omega_0^2 m} = \frac{1}{4}\hbar \omega_0
$$

$$
K_{\rm av} = E - U_{\rm av} = \frac{1}{2} \hbar \omega_0 - \frac{1}{4} \hbar \omega_0 = \frac{1}{4} \hbar \omega_0
$$

$$
(p2)av = 2mKav = 2m\left(\frac{1}{4}\hbar\omega_0\right) = \frac{\hbar\omega_0 m}{2}
$$

(c)
$$
\Delta p = \sqrt{(p^2)_{\text{av}} - (p_{\text{av}})^2} = \sqrt{\hbar \omega_0 m/2}
$$

26.
$$
E_0 = 1.24 \text{ eV} = \frac{1}{2} \hbar \omega_0
$$
 so $\hbar \omega_0 = 2.48 \text{ eV}$

To
$$
n = 2
$$
 state:
\n
$$
\Delta E = E_2 - E_0 = \frac{5}{2} \hbar \omega_0 - \frac{1}{2} \hbar \omega_0 = 2 \hbar \omega_0 = 2(2.48 \text{ eV}) = 4.96 \text{ eV}
$$
\nTo $n = 4$ state:
\n
$$
\Delta E = E_4 - E_0 = \frac{9}{2} \hbar \omega_0 - \frac{1}{2} \hbar \omega_0 = 4 \hbar \omega_0 = 4(2.48 \text{ eV}) = 9.92 \text{ eV}
$$

27. $P(x) dx = |\psi(x)|^2 dx = A^2 e^{-2ax^2} dx$ so at $x = 0$ $P(0) dx = A^2 dx$

At the classical turning points $x = \pm x_0$, $K = 0$ so $E = U$ or $\frac{1}{2} \hbar \omega_0 = \frac{1}{2} k x_0^2$

$$
P(\pm x_0)dx = A^2 e^{-2(\sqrt{km}/2\hbar)(\hbar\omega_0/k)}dx = A^2 e^{-1}dx = e^{-1}P(0)dx = 0.368P(0)dx
$$

28. (a) If $E = 0$, then $p = 0$ and we would know the momentum exactly. Thus $\Delta p = 0$, which means $\Delta x = \infty$. But that would be inconsistent with a particle that is bound to a finite region of space.

(b)

$$
E = \frac{1}{2}\hbar\omega_0 = \frac{1}{2}\hbar\sqrt{\frac{k}{m}} = \frac{1}{2}\hbar c\sqrt{\frac{k}{mc^2}} = 0.5(197 \text{ eV} \cdot \text{nm})\sqrt{\frac{3.5 \times 10^3 \text{ eV/nm}^2}{938 \times 10^3 \text{ eV}}} = 0.19 \text{ eV}
$$

This is less than the binding energy, so this motion is not sufficient to dissociate the molecule.

(c) At the turning point of the motion, $E = \frac{1}{2} kx_0^2$, so

$$
x_0 = \sqrt{\frac{2E}{k}} = \sqrt{\frac{2(0.19 \text{ eV})}{3.5 \times 10^3 \text{ eV/nm}^2}} = 0.010 \text{ nm}
$$

This motion is not negligible at the atomic level.

32.
$$
x < 0
$$
: $\psi_0 = A' e^{ik_0 x} + B' e^{-ik_0 x}$ with $k_0 = \sqrt{\frac{2mE}{\hbar^2}}$
\n $x > 0$: $\psi_1(x) = C' e^{ik_1 x} + D' e^{-ik_1 x}$ with $k_1 = \sqrt{\frac{2m(E - U_0)}{\hbar^2}}$

If the particles are incident from them negative *x* direction, then *D*′ (which is the coefficient of the term that represents a wave in the region of positive *x* traveling toward the origin) must be set to 0. We then apply the continuity conditions on ψ and $d\psi/dx$ at $x = 0$:

$$
\psi_0(0) = \psi_1(0): \qquad A' + B' = C'
$$

$$
\left(\frac{d\psi_0}{dx}\right)_{x=0} = \left(\frac{d\psi_1}{dx}\right)_{x=0} : \qquad k_0(A' - B') = k_1 C'
$$

39. (a) The particle has no preferred direction of motion, so it is equally likely to be moving in the positive and negative *x* directions. We therefore expect that $p_{av} = 0$. (b) Because the potential energy is zero inside the well, the kinetic energy is equal to the total energy:

$$
K = E_n
$$
 or $\frac{p^2}{2m} = \frac{h^2 n^2}{8mL^2}$ so $p^2 = \frac{h^2 n^2}{4L^2}$

For a given level *n*, p^2 is constant so $(p^2)_{av}$ has that same value.

(c)
$$
\Delta p = \sqrt{(p^2)_{av} - (p_{av})^2} = \sqrt{\frac{h^2 n^2}{4L^2} - 0} = \frac{hn}{2L}
$$

42. (a) The *x* and *y* motions are independent, and each contributes an energy of $\hbar \omega_0 (n + \frac{1}{2})$, but the integer *n* is not necessarily the same for the two independent motions. Thus the total energy is

$$
E = \hbar \omega_0 (n_x + \frac{1}{2}) + \hbar \omega_0 (n_y + \frac{1}{2}) = \hbar \omega_0 (n_x + n_y + 1)
$$

(b)

(c) The level with energy $N\hbar\omega_0$ has *N* different possible sets of quantum numbers n_x, n_y . Both n_x and n_y range from 0 to *N*−1 but with their sum fixed to *N*. The number of possible values of n_x is then *N* (the values are 0, 1, 2, …, *N*-2, *N*-1), and for each value of n_x the value of n_y is fixed. The total degeneracy of each level is thus $N = n_x + n_y + 1$.

43. (a) With $\Delta x = \sqrt{(x^2)_{av} - (x_{av})^2}$, clearly $x_{av} = 0$ for this wave function. Then

$$
(x^{2})_{\text{av}} = \int_{-\infty}^{+\infty} x^{2} | \psi(x) |^{2} dx = 2b^{-1} \int_{0}^{+\infty} x^{2} e^{-2x/b} dx = 2b^{-1} \frac{2}{(2/b)^{3}} = \frac{b^{2}}{2}
$$

So $\Delta x = b/\sqrt{2} = 0.71b$.

(b) The maximum probability density occurs at $x = 0$, where $P(x) = |\psi(x)|^2 = b^{-1}$. We now find the location where $P(x)$ drops to half that value, that is, where $e^{-2|x|/b} = 0.5$, or $-2|x|/b = \ln(0.5)$:

$$
|x| = -(b/2) \ln(0.5)
$$
 or $x = \pm 0.347b$

Our estimate for Δx is then the distance between the two points where the probability is half its maximum value, so $\Delta x = 0.69b$, which agrees very well with the result of the more rigorous calculation from part (a).