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What is This Course About

Statistics −→ Extracting Information from Data

Age of Universe (Astrophysics)

Microarrays (Genetics)

Stock Markets (Finance)

Pattern Recognition (Artificial
Intelligence)

Climate Reconstruction
(Paleoclimatology)

Quality Control (Mass
Production)

Random Networks (Internet)

Inflation (Economics)

Phylogenetics (Evolution)

Molecular Structure (Structural
Biology)

Seal Tracking (Marine Biology)

Disease Transmission
(Epidemics)

Variety of different forms of data are bewildering
But concepts involved in their analysis show fundamental similarities
Imbed and rigorously study in a framework
Is there a unified mathematical theory?
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What is This Course About?

We may at once admit that any inference from the
particular to the general must be attended with
some degree of uncertainty, but this is not the
same as to admit that such inference cannot be
absolutely rigorous, for the nature and degree of
the uncertainty may itself be capable of rigorous
expression.

Ronald A. Fisher

The object of rigor is to sanction and legitimize
the the conquests of intuition, and there was never
any other object for it.

Jacques Hadamard
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What is This Course About?

Statistical Theory: What and How?

What? The rigorous study of the procedure of extracting information from
data using the formalism and machinery of mathematics.

How? Thinking of data as outcomes of probability experiments

Probability offers a natural language to describe uncertainty or partial
knowledge

Deep connections between probability and formal logic

Can break down phenomenon into systematic and random parts.

What can Data be?

To do probability we simply need a measurable space (Ω,F). Hence,
almost anything that can be mathematically expressed can be thought as
data (numbers, functions, graphs, shapes,...)
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What is This Course About?

The Job of the Probabilist

Given a probability model P on a measurable space (Ω,F) find the
probability P[A] that the outcome of the experiment is A ∈ F .

The Job of the Statistician

Given an outcome of A ∈ F (the data) of a probability experiment on
(Ω,F), tell me something interesting∗ about the (uknown) probability
model P that generated the outcome.

(∗something in addition to what I knew before observing the outcome A)
Such questions can be:

1 Are the data consistent with a certain model?
2 Given a family of models, can we determine which model generated

the data?

These give birth to more questions: how can we answer 1,2? is there a
best way? how much “off” is our answer?
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A Probabilist and a Statistician Flip a Coin

Example

Let X1, ...,X10 denote the results of flipping a coin ten times, with

Xi =

{
0 if heads ,

1 if tails
, i = 1, ..., 10.

A plausible model is Xi
iid∼ Bernoulli(θ). We record the outcome

X = (0, 0, 0, 1, 0, 1, 1, 1, 1, 1).

Probabilist Asks:

Probability of outcome as function of θ?

Probability of k-long run?

If keep tossing, how many k-long runs? How long until k-long run?
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A Probabilist and a Statistician Flip a Coin

Example (cont’d)

Statistician Asks:

Is the coin fair?

What is the true value of θ given X?

How much error do we make when trying to decide the above from X?

How does our answer change if X is perturbed?

Is there a “best” solution to the above problems?

How sensitive are our answers to departures from Xi
iid∼ Bernoulli(θ)

How do our “answers” behave as # tosses −→∞?

How many tosses would we need until we can get “accurate answers”?

Does our model agree with the data?
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The Basic Setup

Elements of a Statistical Model:

Have a random experiment with sample space Ω.

X : Ω→ Rn is a random variable, X = (X1, ...,Xn), defined on Ω

When outcome of experiment is ω ∈ Ω, we observe X(ω) and call it
the data (usually ω omitted).

Probability experiment of observing a realisation of X completely
determined by distribution F of X.

F assumed to be member of family F of distributions on Rn.

Goal

Learn about F ∈ F given data X.

Statistical Theory (Week 1) Introduction 9 / 16

The Basic Setup: An Ilustration

Example (Coin Tossing)

Consider the following probability space:

Ω = [0, 1]n with elements ω = (ω1, ..., ωn) ∈ Ω

F are Borel subsets of Ω (product σ-algebra)

P is the uniform probability measure (Lebesge measure) on [0, 1]n

Now we can define the experiment of n coin tosses as follows:

Let θ ∈ (0, 1) be a constant

For i = 1, ..., n let Xi = 1{ωi > θ}
Let X = (X1, ...,Xn), so that X : Ω→ {0, 1}n

Then FXi
(xi ) = P[Xi ≤ xi ] =


0 if xi ∈ (−∞, 0),

θ if xi ∈ [0, 1),

1 if xi ∈ [1,+∞).

And FX(x) =
∏n

i=1 FXi
(xi )
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Describing Families of Distributions: Parametric Models

Definition (Parametrization)

Let Θ be a set, F be a family of distributions and g : Θ→ F an onto
mapping. The pair (Θ, g) is called a parametrization of F.

Definition (Parametric Model)

A parametric model with parameter space Θ ⊆ Rd is a family of
probability models F parametrized by Θ, F = {Fθ : θ ∈ Θ}.

Example (IID Normal Model)

F =

{
n∏

i=1

∫ xi

−∞
1

σ
√

2π
e−

1
2σ

(yi−µ)2
dyi : (µ, σ2) ∈ R× R+

}

When Θ is not Euclidean, we call F non-parametric
When Θ is a product of a Euclidean and a non-Eucidean space, we
call F semi-parametric
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Parametric Models

Example (Geometric Distribution)

Let X1, ...,Xn be iid geometric(p) distributed: P[Xi = k] = p(1− p)k ,
k ∈ N ∪ {0}. Two possible parametrizations are:

1 [0, 1] 3 p 7→ geometric(p)

2 [0,∞) 3 µ 7→ geometric with mean µ

Example (Poisson Distribution)

Let X1, ...,Xn be Poisson(λ) distributed: P[Xi = k] = e−λ λ
k

k! , k ∈ N ∪ {0}.
Three possible parametrizations are:

1 [0,∞) 3 λ 7→ Poisson(λ)

2 [0,∞) 3 µ 7→ Poisson with mean µ

3 [0,∞) 3 σ2 7→ Poisson with variance σ2
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Identifiability

Parametrization often suggested from phenomenon we are modelling
But any set Θ and surjection g : Θ→ F give a parametrization.
Many parametrizations possible! Is any parametrization sensible?

Definition (Identifiability)

A parametrization (Θ, g) of a family of models F is called identifiable if
g : Θ→ F is a bijection (i.e. if g is injective on top of being surjective).

When a parametrization is not identifiable:

Have θ1 6= θ2 but Fθ1 = Fθ2 .
Even with ∞ amounts of data we could not distinguish θ1 from θ2.

Definition (Parameter)

A parameter is a function ν : Fθ → N , where N is arbitrary.

A parameter is a feature of the distribution Fθ
When θ 7→ Fθ is identifiable, then ν(Fθ) = q(θ) for some q : Θ→ N .
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Identifiability

Example (Binomial Thinning)

Let {Bi ,j} be an infinite iid array of Bernoulli(ψ) variables and ξ1, ..., ξn be
an iid sequence of geometric(p) random variables with probability mass
function P[ξi = k] = p(1− p)k ,k ∈ N ∪ {0}. Let X1, ...,Xn be iid random
variables defined by

Xj =

ξj∑
i=1

Bi ,j , j = 1, .., n

Any FX ∈ F is completely determined by (ψ, p), so [0, 1]2 3 (ψ, q) 7→ FX

is a parametrization of F. Can show (how?)

X ∼ geometric

(
p

ψ(1− p) + p

)
However (ψ, p) is not identifiable (why?).
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Parametric Inference for Regular Models

Will focus on parametric families F. The aspects we will wish to learn
about will be parameters of F ∈ F.

Regular Models

Assume from now on that in any parametric model we consider either:

1 All of the Fθ are continuous with densities f (x, θ)

2 All of the Fθ are discrete with frequency functions p(x, θ) and there
exists a countable set A that is independent of θ such that∑

x∈A p(x, θ) = 1 for all θ ∈ Θ.

Will be considering the mathematical aspects of problems such as:

1 Estimating which θ ∈ Θ (i.e. which Fθ ∈ F) generated X

2 Deciding whether some hypothesized values of θ are consistent with X

3 The performance of methods and the existence of optimal methods

4 What happens when our model is wrong?
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Examples

Example (Five Examples)

Sampling Inspection (Hypergeometric Distribution)

Problem of Location (Location-Scale Families)

Regression Models (Non-identically distributed data)

Autoregressive Measurement Error Model (Dependent data)

Random Projections of Triangles (Shape Theory)
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Overview of Stochastic Convergence

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne
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1 Motivation: Functions of Random Variables

2 Stochastic Convergence
How does a R.V. “Converge”?
Convergence in Probability and in Distribution

3 Useful Theorems
Weak Convergence of Random Vectors

4 Stronger Notions of Convergence

5 The Two “Big” Theorems
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Functions of Random Variables

Let X1, ...,Xn be i.i.d. with EXi = µ and var[Xi ] = σ2. Consider:

X̄n =
1

n

n∑

i=1

Xi

If Xi ∼ N (µ, σ2) or Xi ∼ exp(1/µ) then know dist[X̄n].

But Xi may be from some more general distribution

Joint distribution of Xi may not even be completely understood

Would like to be able to say something about X̄n even in those cases!

Perhaps this is not easy for fixed n, but what about letting n→∞?
↪→(a very common approach in mathematics)
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Functions of Random Variables

Once we assume that n→∞ we start understanding dist[X̄n] more:

At a crude level X̄n becomes concentrated around µ

P[|X̄n − µ| < ε] ≈ 1, ∀ ε > 0, as n→∞

Perhaps more informative is to look at the “magnified difference”

P[
√

n(X̄n − µ) ≤ x ]
n→∞≈ ? could yield P[X̄n ≤ x ]

More generally −→ Want to understand distribution of
Y = g(X1, ...,Xn) for some general g :

Often intractable
Resort to asymptotic approximations to understand behaviour of Y

Warning: While lots known about asymptotics, often they are
misused (n small!)
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Convergence of Random Variables

Need to make precise what we mean by:

Yn is “concentrated” around µ as n→∞
More generally what “Yn behaves like Y ” for large n means

dist[g(X1, ...,Xn)]
n→∞≈ ?

↪→ Need appropriate notions of convergence for random variables

Recall: random variables are functions between measurable spaces

=⇒ Convergence of random variables can be defined in various ways:

Convergence in probability (convergence in measure)

Convergence in distribution (weak convergence)

Convergence with probability 1 (almost sure convergence)

Convergence in Lp (convergence in the p-th moment)

Each of these is qualitatively different - Some notions stronger than others
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Convergence in Probability

Definition (Convergence in Probability)

Let {Xn}n≥1 and X be random variables defined on the same probability
space. We say that Xn converges in probability to X as n→∞ (and write

Xn
p→ X ) if for any ε > 0,

P[|Xn − X | > ε]
n→∞−→ 0.

Intuitively, if Xn
p→ X , then with high probability Xn ≈ X for large n.

Example

Let X1, . . . ,Xn
iid∼ U [0, 1], and define Mn = max{X1, ...,Xn}. Then,

FMn(x) = xn =⇒ P[|Mn − 1| > ε] = P[Mn < 1− ε]

= (1− ε)n n→∞−→ 0

for any 0 < ε < 1. Hence Mn
p→ 1.
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Convergence in Distribution

Definition (Convergence in Distribution)

Let {Xn} and X be random variables (not necessarily defined on the same
probability space). We say that Xn converges in distribution to X as

n→∞ (and write Xn
d→ X ) if

P[Xn ≤ x ]
n→∞−→ P[X ≤ x ],

at every continuity point of FX (x) = P[X ≤ x ].

Example

Let X1, . . . ,Xn
iid∼ U [0, 1], Mn = max{X1, ...,Xn}, and Qn = n(1−Mn).

P[Qn ≤ x ] = P[Mn ≥ 1− x/n] = 1−
(

1− x

n

)n n→∞−→ 1− e−x

for all x ≥ 0. Hence Qn
d→ Q, with Q ∼ exp(1).
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Some Comments on “
p→” and “

d→”

Convergence in probability implies convergence in distribution.

Convergence in distribution does NOT imply convergence in
probability

↪→ Consider X ∼ N (0, 1), −X + 1
n

d→ X but −X + 1
n

p→ −X .

“
d→” relates distribution functions

↪→ Can use to approximate distributions (approximation error?).

Both notions of convergence are metrizable

↪→ i.e. there exist metrics on the space of random variables and
distribution functions that are compatible with the notion of
convergence.

↪→ Hence can use things such as the triangle inequality etc.

“
d→” is also known as “weak convergence” (will see why).

Equivalent Def: X
d→ X ⇐⇒ Ef (Xn)→ Ef (X ) ∀ cts and bounded f
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Some Basic Results

Theorem

(a) Xn
p→ X =⇒ Xn

d→ X

(b) Xn
d→ c =⇒ Xn

p→ c, c ∈ R.

Proof

(a)Let x be a continuity point of FX and ε > 0. Then,

P[Xn ≤ x ] = P[Xn ≤ x , |Xn − X | ≤ ε] + P[Xn ≤ x , |Xn − X | > ε]

≤ P[X ≤ x + ε] + P[|Xn − X | > ε]

since {X ≤ x + ε} contains {Xn ≤ x , |Xn − X | ≤ ε}. Similarly,

P[X ≤ x − ε] = P[X ≤ x − ε, |Xn − X | ≤ ε] + P[X ≤ x − ε, |Xn − X | > ε]

≤ P[Xn ≤ x ] + P[|Xn − X | > ε]
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(proof cont’d).

which yields P[X ≤ x − ε]− P[|Xn − X | > ε] ≤ P[Xn ≤ x ].

Combining the two inequalities and “sandwitching” yields the result.

(b) Let F be the distribution function of a constant r.v. c ,

F (x) = P[c ≤ x ] =

{
1 if x ≥ c,

0 if x < c .

P[|Xn − c | > ε] = P[{Xn − c > ε} ∪ {c − Xn > ε}]
= P[Xn > c + ε] + P[Xn < c − ε]
≤ 1− P[Xn ≤ c + ε] + P[Xn ≤ c − ε]

n→∞−→ 1− F (c + ε︸ ︷︷ ︸
≥c

) + F (c − ε︸ ︷︷ ︸
<c

) = 0

Since Xn
d→ c .
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Theorem (Continuous Mapping Theorem)

Let g : R→ R be a continuous function. Then,

(a) Xn
p→ X =⇒ g(Xn)

p→ g(X )

(b) Yn
d→ Y =⇒ g(Yn)

d→ g(Y )

Exercise

Prove part (a). You may assume without proof the Subsequence Lemma:

Xn
p→ X if and only if every subsequence Xnm of Xn, has a further

subsequence Xnm(k)
such that P[Xnm(k)

k→∞−→ X ] = 1.

Theorem (Slutsky’s Theorem)

Let Xn
d→ X and Yn

d→ c ∈ R. Then

(a) Xn + Yn
d→ X + c

(b) XnYn
d→ cX
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Proof of Slutsky’s Theorem.

(a) We may assume c = 0. Let x be a continuity point of FX . We have

P[Xn + Yn ≤ x ] = P[Xn + Yn ≤ x , |Yn| ≤ ε] + P[Xn + Yn ≤ x , |Yn| > ε]

≤ P[Xn ≤ x + ε] + P[|Yn| > ε]

Similarly, P[Xn ≤ x − ε] ≤ P[Xn + Yn ≤ x ] + P[|Yn| > ε]

Therefore,
P[Xn ≤ x−ε]−P[|Yn| > ε] ≤ P[Xn +Yn ≤ x ] ≤ P[Xn ≤ x +ε]+P[|Yn| > ε]
Taking n→∞, and then ε→ 0 proves (a).

(b) By (a) we may assume that c = 0 (check). Let ε,M > 0:

P[|XnYn| > ε] ≤ P[|XnYn| > ε, |Yn| ≤ 1/M] + P[|Yn| ≥ 1/M]

≤ P[|Xn| > εM] + P[|Yn| ≥ 1/M]
n→∞−→ P[|X | > εM] + 0

The first term can be made arbitrarily small by letting M →∞.
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Theorem (General Version of Slutsky’s Theorem)

Let g : R× R→ R be continuous and suppose that Xn
d→ X and

Yn
d→ c ∈ R. Then, g(Xn,Yn)→ g(X , c) as n→∞.

↪→Notice that the general version of Slutsky’s theorem does not follow
immediately from the continuous mapping theorem.

The continuous mapping theorem would be applicable if (Xn,Yn)
weakly converged jointly (i.e. their joint distribution) to (X , c).

But here we assume only marginal convergence (i.e. Xn
d→ X and

Yn
d→ c separately, but their joint behaviour is unspecified).

The key of the proof is that in the special case where Yn
d→ c where c

is a constant, then marginal convergence ⇐⇒ joint convergence.

However if Xn
d→ X where X is non-degenerate, and Yn

d→ Y where
Y is non-degenerate, then the theorem fails.

Notice that even the special cases (addition and multiplication) of
Slutsky’s theorem fail of both X and Y are non-degenerate.
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Theorem (The Delta Method)

Let Zn := an(Xn − θ)
d→ Z where an, θ ∈ R for all n and an ↑ ∞. Let g(·)

be continuously differentiable at θ. Then, an(g(Xn)− g(θ))
d→ g ′(θ)Z .

Proof

Taylor expanding around θ gives:

g(Xn) = g(θ) + g ′(θ∗n)(Xn − θ), θ∗n between Xn, θ.

Thus |θ∗n − θ| < |Xn − θ| = a−1
n · |an(Xn − θ)| = a−1

n Zn
p→ 0 [by Slutsky]

Therefore, θ∗n
p→ θ. By the continuous mapping theorem g ′(θ∗n)

p→ g ′(θ).

Thus an(g(Xn)− g(θ)) = an(g(θ) + g ′(θ∗n)(Xn − θ)− g(θ))

= g ′(θ∗n)an(X − θ)
d→ g ′(θ)Z .

The delta method actually applies even when g ′(θ) is not continuous
(proof uses Skorokhod representation).
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Exercise: Give a counterexample to show that neither of Xn
p→ X or

Xn
d→ X ensures that EXn → EX as n→∞.

Theorem (Convergence of Expecations)

If |Xn| < M <∞ and Xn
d→ X , then EX exists and EXn

n→∞−→ EX .

Proof.

Assume first that Xn are non-negative ∀ n. Then,

|EXn − EX | =

∣∣∣∣
∫ M

0
P[Xn > x ]− P[X > x ]dx

∣∣∣∣

≤
∫ M

0
|P[Xn > x ]− P[X > x ]| dx

n→∞→ 0.

since M <∞ and the integration domain is bounded.

Exercise: Generalise the proof to arbitrary random variables.
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Remarks on Weak Convergence

Often difficult to establish weak convergence directly (from definition)

Indeed, if Fn known, establishing weak convergence is “useless”

Need other more “handy” sufficient conditions

Scheffé’s Theorem

Let Xn have density functions (or
probability functions) fn, and let X
have density function (or probability
function) f . Then

fn
n→∞−→ f (a.e.) =⇒ Xn

d→ X

The converse to Scheffé’s
theorem is NOT true (why?).

Continuity Theorem

Let Xn and X have characteristic
functions ϕn(t) = E[e itXn ], and
ϕ(t) = E[e itX ], respectively. Then,

(a) Xn
d→ X ⇔ φn → φ pointwise

(b) If φn(t) converges pointwise to
some limit function ψ(t) that is
continuous at zero, then:

(i) ∃ a measure ν with c.f. ψ

(ii) FXn

w→ ν.
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Weak Convergence of Random Vectors

Definition

Let {Xn} be a sequence of random vectors of Rd , and X a random vector

of Rd with Xn = (X
(1)
n , ...,X

(d)
n )T and X = (X (1), ...,X (d))T. Define the

distribution functions FXn(x) = P[X
(1)
n ≤ x (1), ...,X

(d)
n ≤ x (d)] and

FX(x) = P[X (1) ≤ x (1), ...,X (d) ≤ x (d)], for x = (x (1), ..., x (d))T ∈ Rd . We

say that Xn converges in distribution to X as n→∞ (and write Xn
d→ X)

if for every continuity point of FX we have

FXn(X)
n→∞−→ FX(x).

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let {Xn} be a sequence of random vectors of Rd , and X a random vector
of Rd . Then,

Xn
d→ X⇔ θTXn

d→ θTX, ∀θ ∈ Rd .

Statistical Theory (Week 2) Stochastic Convergence 17 / 21

Almost Sure Convergence and Convergence in Lp

There are also two stronger convergence concepts (that do not compare)

Definition (Almost Sure Convergence)

Let {Xn}n≥1 and X be random variables defined on the same probability

space (Ω,F ,P). Let A := {ω ∈ Ω : Xn(ω)
n→∞→ X (ω)}. We say that Xn

converges almost surely to X as n→∞ (and write Xn
a.s.−→ X ) if P[A] = 1.

More plainly, we say Xn
a.s.−→ X if P[Xn → X ] = 1.

Definition (Convergence in Lp)

Let {Xn}n≥1 and X be random variables defined on the same probability
space. We say that Xn converges to X in Lp as n→∞ (and write

Xn
Lp→ X ) if

E|Xn − X |p n→∞−→ 0.

Note that ‖X‖Lp := (E|X |p)1/p defines a complete norm (when finite)
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Relationship Between Different Types of Convergence

Xn
a.s.−→ X =⇒ Xn

p−→ X =⇒ Xn
d−→ X

Xn
Lp−→ X , for p > 0 =⇒ Xn

p−→ X =⇒ Xn
d−→ X

for p ≥ q, Xn
Lp−→ X =⇒ Xn

Lq−→ X

There is no implicative relationship between “
a.s.−→” and “

Lp→”

Theorem (Skorokhod’s Representation Theorem)

Let {Xn}n≥1,X be random variables defined on a probability space

(Ω,F ,P) with Xn
d→ X . Then, there exist random variables {Yn}n≥1,Y

defined on some probability space (Ω′,G,Q) such that:

(i) Y
d
= X & Yn

d
= Xn, ∀n ≥ 1,

(ii) Yn
a.s.−→ Y .

Exercise

Prove part (b) of the continuous mapping theorem.
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Recalling two basic Theorems

Multivariate Random Variables → “
d→ ” defined coordinatewise

Theorem (Strong Law of Large Numbers)

Let {Xn} be pairwise iid random variables with EXk = µ and E|Xk | <∞,
for all k ≥ 1. Then,

1

n

n∑

k=1

Xk
a.s.−→ µ

“Strong” is as opposed to the “weak” law which requires EX 2
k <∞

instead of E|Xk | <∞ and gives “
p→” instead of “

a.s.−→”

Theorem (Central Limit Theorem)

Let {Xn} be an iid sequence of random vectors in Rd with mean µ and
covariance Σ and define X̄n :=

∑n
m=1 Xm/n. Then,

√
nΣ−

1
2 (X̄− µ)

d→ Z ∼ Nd(0, Id).
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Convergence Rates

Often convergence not enough −→ How fast?
↪→[quality of approximation]

Law of Large Numbers: assuming finite variance, L2 rate of n−1/2

What about Central Limit Theorem?

Theorem (Berry-Essen)

Let X1, ...,Xn be iid random vectors taking values in Rd and such that
E[Xi ] = 0, cov[Xi ] = Id . Define,

Sn =
1√
n

(X1 + . . .+ Xn).

If A denotes the class of convex subsets of Rd , then for Z ∼ Nd(0, Id),

sup
A∈A
|P[Sn ∈ A]− P[Z ∈ A]| ≤ C

d1/4E‖Xi‖3

√
n

.
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Principles of Data Reduction

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne
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1 Statistics

2 Ancillarity

3 Sufficiency
Sufficient Statistics
Establishing Sufficiency

4 Minimal Sufficiency
Establishing Minimal Sufficiency

5 Completeness
Relationship between Ancillary and Sufficient Statistics
Relationship between completeness and minimal sufficiency
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Statistical Models and The Problem of Inference

Recall our setup:

Collection of r.v.’s (a random vector) X = (X1, ...,Xn)

X ∼ Fθ ∈ F

F a parametric class with parameter θ ∈ Θ ⊆ Rd

The Problem of Point Estimation
1 Assume that Fθ is known up to the parameter θ which is unknown

2 Let (x1, ..., xn) be a realization of X ∼ Fθ which is available to us

3 Estimate the value of θ that generated the sample given (x1, ..., xn)

The only guide (apart from knowledge of F) at hand is the data:

↪→ Anything we “do” will be a function of the data g(x1, ..., xn)

↪→ Need to study properties of such functions and information loss
incurred (any function of (x1, .., xn) will carry at most the same
information but usually less)
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Statistics

Definition (Statistic)

Let X be a random sample from Fθ. A statistic is a (measurable) function
T that maps X into Rd and does not depend on θ.

↪→ Intuitively, any function of the sample alone is a statistic.
↪→ Any statistics is itself a r.v. with its own distribution.

Example

t(X) = n−1
∑n

i=1 Xi is a statistic (since n, the sample size, is known).

Example

T (X) = (X(1), . . . ,X(n)) where X(1) ≤ X(2) ≤ . . .X(n) are the order
statistics of X. Since T depends only on the values of X, T is a statistic.

Example

Let T (X) = c, where c is a known constant. Then T is a statistic
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Statistics and Information About θ

Evident from previous examples: some statistics are more informative
and others are less informative regarding the true value of θ

Any T (X) that is not “1-1” carries less information about θ than X

Which are “good” and which are “bad” statistics?

Definition (Ancillary Statistic)

A statistic T is an ancillary statistic (for θ) if its distribution does not
functionally depend θ

↪→ So an ancillary statistic has the same distribution ∀ θ ∈ Θ.

Example

Suppose that X1, ...,Xn
iid∼ N (µ, σ2) (where µ unknown but σ2 known).

Let T (X1, ...,Xn) = X1 − X2; then T has a Normal distribution with mean
0 and variance 2σ2. Thus T is ancillary for the unknown parameter µ. If
both µ and σ2 were unknown, T would not be ancillary for θ = (µ, σ2).
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Statistics and Information about θ

If T is ancillary for θ then T contains no information about θ

In order to contain any useful information about θ, the dist(T ) must
depend explicitly on θ.

Intuitively, the amount of information T gives on θ increases as the
dependence of dist(T ) on θ increases

Example

Let X1, ...,Xn
iid∼ U [0, θ], S = min(X1, . . . ,Xn) and T = max(X1, . . . ,Xn).

fS(x ; θ) = n
θ

(
1− x

θ

)n−1
, 0 ≤ x ≤ θ

fT (x ; θ) = n
θ

(
x
θ

)n−1
, 0 ≤ x ≤ θ

↪→ Neither S nor T are ancillary for θ

↪→ As n ↑ ∞, fS becomes concentrated around 0

↪→ As n ↑ ∞, fT becomes concentrated around θ while

↪→ Indicates that T provides more information about θ than does S .
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Statistics and Information about θ

X = (X1, . . . ,Xn)
iid∼ Fθ and T (X) a statistic.

The fibres or level sets or contours of T are the sets

At = {x ∈ Rn : T (x) = t}.

↪→ T is constant when restricted to an fibre.

Any realization of X that falls in a given fibre is equivalent as far as T
is concerned
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Statistics and Information about θ

Look at the dist(X) on an fibre At : fX|T=t(x)

Suppose fX|T=t is independent of θ

=⇒ Then X contains no information about θ on the set At

=⇒ In other words, X is ancillary for θ on At

If this is true for each t ∈ Range(T ) then T (X) contains the same
information about θ as X does.

↪→ It does not matter whether we observe X = (X1, ...,Xn) or just T (X).
↪→ Knowing the exact value X in addition to knowing T (X) does not give

us any additional information - X is irrelevant if we already know T (X).

Definition (Sufficient Statistic)

A statistic T = T (X) is said to be sufficient for the parameter θ if for all
(Borel) sets B the probability P[X ∈ B|T (X) = t] does not depend on θ.
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Sufficient Statistics

Example (Bernoulli Trials)

Let X1, ...,Xn
iid∼ Bernoulli(θ) and T (X) =

∑n
i=1 Xi . Given x ∈ {0, 1}n,

P[X = x|T = t] =
P[X = x,T = t]

P[T = t]
=

P[X = x]

P[T = t]
1{Σn

i=1xi = t}

=
θΣn

i=1xi (1− θ)n−Σn
i=1xi(n

t

)
θt(1− θ)n−t

1{Σn
i=1xi = t}

=
θt(1− θ)n−t(n
t

)
θt(1− θ)n−t

=

(
n

t

)−1

.

T is sufficient for θ → Given the number of tosses that came heads,
knowing which tosses exactly came heads is irrelevant in deciding if
the coin is fair:

0 0 1 1 1 0 1 VS 1 0 0 0 1 1 1 VS 1 0 1 0 1 0 1
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Sufficient Statistics

Definition hard to verify (especially for continuous variables)

Definition does not allow easy identification of sufficient statistics

Theorem (Fisher-Neyman Factorization Theorem)

Suppose that X = (X1, . . . ,Xn) has a joint density or frequency function
f (x; θ), θ ∈ Θ. A statistic T = T (X) is sufficient for θ if and only if

f (x; θ) = g(T (x), θ)h(x).

Example

Let X1, ...,Xn
iid∼ U [0, θ] with pdf f (x ; θ) = 1{x ∈ [0, θ]}/θ. Then,

fX(x) =
1

θn
1{x ∈ [0, θ]n} =

1{max[x1, ..., xn] ≤ θ}1{min[x1, ..., xn] ≥ 0}
θn

Therefore T (X) = X(n) = max[X1, ...,Xn] is sufficient for θ.
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Sufficient Statistics

Proof of Neyman-Fisher Theorem - Discrete Case.

Suppose first that T is sufficient. Then

f (x ; θ) = P[X = x] =
∑

t

P[X = x,T = t]

= P[X = x,T = T (x)] = P[T = T (x)]P[X = x|T = T (x)]

Since T is sufficient, P[X = x|T = T (x)] is independent of θ and so
f (x ; θ) = g(T (x); θ)h(x). Now suppose that f (x ; θ) = g(T (x); θ)h(x).
Then if T (x) = t,

P[X = x|T = t] =
P[X = x,T = t]

P[T = t]
=

P[X = x]

P[T = t]
1{T (x) = t}

=
g(T (x); θ)h(x)1{T (x) = t}∑

y:T (y)=t g(T (y); θ)h(y)
=

h(x)1{T (x) = t}∑
T (y)=t h(y)

.

which does not depend on θ.
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Minimally Sufficient Statistics

Saw that sufficient statistic keeps what is important and leaves out
irrelevant information.

How much info can we through away? Is there a “necessary” statistic?

Definition (Minimally Sufficient Statistic)

A statistic T = T (X) is said to be minimally sufficient for the parameter θ
if for any sufficient statistic S = S(X) there exists a function g(·) with

T (X) = g(S(X)).

Lemma

If T and S are minimaly sufficient statistics for a parameter θ, then there
exists injective functions g and h such that S = g(T ) and T = h(S).
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Theorem

Let X = (X1, ...,Xn) have joint density or frequency function f (x; θ) and
T = T (X) be a statistic. Suppose that f (x; θ)/f (y; θ) is independent of θ
if and only if T (x) = T (y). Then T is minimally sufficient for θ.

Proof.

Assume for simplicity that f (x; θ) > 0 for all x ∈ Rn and θ ∈ Θ.
[sufficiency part] Let T = {T (y) : y ∈ Rn} be the image of Rn under T
and let At be the level sets of T . For each t, choose an element yt ∈ At .
Notice that for any x, yT (x) is in the same level set as x, so that

f (x; θ)/f (yT (x); θ)

does not depend on θ by assumption. Let g(t, θ) := f (yt ; θ) and notice

f (x; θ) =
f (xT (x); θ)f (x; θ)

f (xT (x); θ)
= g(T (x), θ)h(x)

and the claim follows from the factorization theorem.
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[minimality part] Suppose that T ′ is another sufficient statistic. By the
factorization thm: ∃g ′, h′ : f (x; θ) = g ′(T ′(x); θ)h′(x). Let x, y be such
that T ′(x) = T ′(y). Then

f (x; θ)

f (y; θ)
=

g ′(T ′(x); θ)h′(x)

g ′(T ′(y); θ)h′(y)
=

h′(x)

h′(y)
.

Since ratio does not depend on θ, we have by assumption T (x) = T (y).
Hence T is a function of T ′; so is minimal by arbitrary choice of T ′.

Example (Bernoulli Trials)

Let X1, ...,Xn
iid∼ Bernoulli(θ). Let x, y ∈ {0, 1}n be two possible outcomes.

Then
f (x; θ)

f (y; θ)
=
θΣxi (1− θ)n−Σxi

θΣyi (1− θ)n−Σyi

which is constant if and only if T (x) =
∑

xi =
∑

yi = T (y), so that T is
minimally sufficient.
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Complete Statistics

Ancillary Statistic → Contains no info on θ

Minimally Sufficient Statistic → Contains all relevant info and as little
irrelevant as possible.

Should they be mutually independent?

Definition (Complete Statistic)

Let {g(t; θ) : θ ∈ Θ} be a family of densities of frequencies corresponding
to a statistic T (X). The statistic T is called complete if∫

h(t)g(t; θ)dt = 0 ∀θ ∈ Θ =⇒ P[h(T ) = 0] = 1 ∀θ ∈ Θ.

Example

If θ̂ = T (X) is an unbiased estimator of θ (i.e. Eθ̂ = θ) which can be
written as a function of a complete sufficient statistic, then it is the unique
such estimator.
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Complete Statistics

Theorem (Basu’s Theorem)

A complete sufficient statistic is independent of every ancillary statistic.

Proof.

We consider the discrete case only. It suffices to show that,

P[S(X) = s|T (X) = t] = P[S(X) = s]

Define: h(t) = P[S(X) = s|T (X) = t]− P[S(X) = s]

and observe that:

1 P[S(x) = s] does not depend on θ (ancillarity)

2 P[S(X) = s|T (X) = t] = P[X ∈ {x : S(x) = s}|T = t] does not
depend on θ (sufficiency)

and so h does not depend on θ.
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Therefore, for any θ ∈ Θ,

Eh(T ) =
∑

t

(P[S(X) = s|T (X) = t]− P[S(X) = s])P[T (X) = t]

=
∑

t

P[S(X) = s|T (X) = t]P[T (X) = t] +

+P[S(X) = s]
∑

t

P[T (X) = t]

= P[S(X) = s]− P[S(X) = s] = 0.

But T is complete so it follows that h(t) = 0 for all t. QED.

Basu’s Theorem is useful for deducing independence of two statistics:

No need to determine their joint distribution

Needs showing completeness (usually hard analytical problem)

Will see models in which completeness is easy to check
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Completeness and Minimal Sufficiency

Theorem (Lehmann-Scheffé)

Let X have density f (x; θ). If T (X) is sufficient and complete for θ then T
is minimally sufficient.

Proof.

First of all we show that a minimally sufficient statistic exists. Define an
equivalence relation as x ≡ x′ if and only if f (x; θ)/f (x′; θ) is independent
of θ. If S is any function such that S = c on these equivalent classes, then
S is a minimally sufficient, establishing existence (rigorous proof by
Lehmann-Scheffé (1950)).
Therefore, it must be the case that S = g1(T ), for some g1. Let
g2(S) = E[T |S ] (does not depend on θ since S sufficient). Consider:

g(T ) = T − g2(S)

Write E[g(T )] = E[T ]− E {E[T |S ]} = ET − ET = 0 for all θ.
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(proof cont’d).

By completeness of T , it follows that g2(S) = T a.s. In fact, g2 has to be
injective, or otherwise we would contradict minimal sufficiency of S . But
then T is 1-1 a function of S and S is a 1− 1 function of T . Invoking our
previous lemma proves that T is minimally sufficient.

One can also prove:

Theorem

If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.
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Focus on Parametric Families

Recall our setup:

Collection of r.v.’s (a random vector) X = (X1, ...,Xn)

X ∼ Fθ ∈ F

F a parametric class with parameter θ ∈ Θ ⊆ Rd

The Problem of Point Estimation
1 Assume that Fθ is known up to the parameter θ which is unknown

2 Let (x1, ..., xn) be a realization of X ∼ Fθ which is available to us

3 Estimate the value of θ that generated the sample given (x1, ..., xn)

The only guide (apart from knowledge of F) at hand is the data:

↪→ Anything we “do” will be a function of the data g(x1, ..., xn)

So far have concentrated on aspects of data: approximate distributions +
data reduction...... But what about F?
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Focus on Parametric Families

We describe F by a parametrization Θ 3 θ 7→ Fθ:

Definition (Parametrization)

Let Θ be a set, F be a family of distributions and g : Θ→ F an onto
mapping. The pair (Θ, g) is called a parametrization of F.

↪→ assigns a label θ ∈ Θ to each member of F

Definition (Parametric Model)

A parametric model with parameter space Θ ⊆ Rd is a family of
probability models F parametrized by Θ, F = {Fθ : θ ∈ Θ}.
So far have seen a number of examples of distributions...
...have worked out certain properties individually

Question

Are there more general families that contain the standard ones as special
cases and for which a general and abstract study can be pursued?

Statistical Theory (Week 4) Special Models 4 / 26



The Exponential Family of Distributions

Definition (Exponential Family)

Let X = (X1, ...,Xn) have joint distribution Fθ with parameter θ ∈ Rp. We
say that the family ofdistributions Fθ is a k-parameter exponential family if
the joint density or joint frequency function of (X1, ...,Xn) admits the form

f (x; θ) = exp

{
k∑

i=1

ci (θ)Ti (x)− d(θ) + S(x)

}
, x ∈ X , θ ∈ Θ,

with supp{f (·; θ)} = X is independent of θ.

k need not be equal to p, although they often coincide.

The value of k may be reduced if c or T satisfy linear constraints.

We will assume that the representation above is minimal.

↪→ Can re-parametrize via φi = ci (θ), the natural parameter.
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Motivation: Maximum Entropy Under Constraints

Consider the following variational problem:

Determine the probability distribution f supported on X with maximum
entropy

H(f ) = −
∫
X

f (x) log f (x)dx

subject to the linear constraints∫
X

Ti (x)f (x)dx = αi , i = 1, ..., k

Philosophy: How to choose a probability model for a given situation?

Maximum entropy approach:

In any given situation, choose the distribution that gives highest
uncertainty while satisfying situation–specific required constraints.
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Proposition.

The unique solution of the constrained optimisation problem has the form

f (x) = Q(λ1, ..., λk) exp

{
k∑

i=1

λiTi (x)

}

Proof.

Let g(x) be a density also satisfying the constraints. Then,

H(g) = −
∫
X

g(x) log g(x)dx = −
∫
X

g(x) log

[
g(x)

f (x)
f (x)

]
dx

= −KL(g‖ f )−
∫
X

g(x) log f (x)dx

≤ − log Q

∫
X

g(x)dx︸ ︷︷ ︸
=1

−
∫
X

g(x)

(
k∑

i=1

λiTi (x)

)
dx
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But g also satisfies the moment constraints, so the last term is

= − log Q −
∫
X

f (x)

(
k∑

i=1

λiTi (x)

)
dx =

∫
X

f (x) log f (x)dx

= H(f )

Uniqueness of the solution follows from the fact that strict equality can
only follow when KL(g‖ f ) = 0, which happens if and only if g = f .

The λ’s are the Lagrange multipliers derived by the Lagrange form of
the optimisation problem.

These are derived so that the constraints are satisfied.

They give us the ci (θ) in our definition of exponential families.

Note that the presence of S(x) in our definition is compatible:
S(x) = ck+1Tk+1(x), where ck+1 does not depend on θ.
(provision for a multiplier that may not depend on parameter)
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Example (Binomial Distribution)

Let X ∼Binomial(n, θ) with n known. Then

f (x ; θ) =

(
n

x

)
θx(1−θ)n−x = exp

[
log

(
θ

1− θ
)

x + n ln(1− θ) + log

(
n

x

)]

Example (Gamma Distribution)

Let X1, ...,Xn
iid∼Gamma with unknown shape parameter α and unknown

scale parameter λ. Then,

fX(x;α, λ) =
n∏

i=1

λαxα−1
i exp(−λxi )

Γ(α)

= exp

[
(α− 1)

n∑
i=1

log xi − λ
n∑

i=1

xi + nα log λ− n log Γ(α)

]
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Example (Heteroskedastic Gaussian Distribution)

Let X1, ...,Xn
iid∼ N (θ, θ2). Then,

fX(x; θ) =
n∏

i=1

1

θ
√

2π
exp

[
− 1

2θ2
(xi − θ)2

]

= exp

[
− 1

2θ2

n∑
i=1

x2
i +

1

θ

n∑
i=1

xi − n

2
(1 + 2 log θ) + log(2π)

]

Notice that even though k = 2 here, the dimension of the parameter space
is 1. This is an example of a curved exponential family.

Example (Uniform Distribution)

Let X ∼ U [0, θ]. Then, fX (x ; θ) = 1{x∈[0,θ]}
θ . Since the support of f , X ,

depends on θ, we do not have an exponential family.
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The Exponential Family of Distributions

Proposition

Suppose that X = (X1, ...,Xn) has a one-parameter exponential family
distribution with density or frequency function

f (x; θ) = exp [c(θ)T (x)− d(θ) + S(x)]

for x ∈ X where

(a) the parameter space Θ is open,

(b) c(θ) is a one-to-one function on Θ,

(c) c(θ), c−1(θ), d(θ) are twice differentiable functions on Θ.

Then,

ET (X) =
d ′(θ)

c ′(θ)
& Var[T (X)] =

d ′′(θ)c ′(θ)− d ′(θ)c ′′(θ)

[c ′(θ)]3
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Proof.

Define φ = c(θ) the natural parameter of the exponential family. Let
d0(φ) = d(c−1(φ)), where c−1 is well-defined since c is 1-1. Since c is a
homeomorphism, Φ = c(Θ) is open. Choose s sufficiently small so that
φ+ s ∈ Φ, and observe that the m.g.f. of T is

E exp[sT (X)] =

∫
esT (x)eφT (x)−d0(φ)+S(x)dx

= ed0(φ+s)−d0(φ)

∫
e(φ+s)T (x)−d0(φ+s)+S(x)dx︸ ︷︷ ︸

=1

= exp[d0(φ+ s)− d0(φ)],

By our assumptions we may differentiate w.r.t. s, and, setting s = 0, we
get E[T (X)] = d ′0(φ) and Var[T (X)] = d ′′0 (φ). But

d ′0(φ) = d ′(θ)/c ′(θ) and d ′′0 (φ) = [d ′′(θ)c ′(θ)− d ′(θ)c ′′(θ)]/[c ′(θ)]3

and so the conclusion follows.
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Exponential Families and Sufficiency

Exercise

Extend the result to the the means, variances and covariances of the
random variables T1(X), ...,Tk(X) in a k-parameter exponential family

Lemma

Suppose that X = (X1, ...,Xn) has a k-parameter exponential family
distribution with density or frequency function

f (x; θ) = exp

[
k∑

i=1

ci (θ)Ti (x)− d(θ) + S(x)

]

for x ∈ X . Then, the statistic (T1(x), ...,Tk(x)) is sufficient for θ

Proof.

Set g(T(x); θ) = exp{∑i Ti (x)ci (θ) + d(θ)} and h(x) = eS(x)1{x ∈ X},
and apply the factorization theorem.
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Exponential Families and Completeness

Theorem

Suppose that X = (X1, ...,Xn) has a k-parameter exponential family
distribution with density or frequency function

f (x; θ) = exp

[
k∑

i=1

ci (θ)Ti (x)− d(θ) + S(x)

]

for x ∈ X . Define C = {(c1(θ), ..., ck(θ)) : θ ∈ Θ}. If the set C contains
an open set (rectangle) of the form (a1, b1)× . . .× (ak , bk) then the
statistic (T1(X), ...,Tk(X)) is complete for θ, and so minimally sufficient.

The result is essentially a consequence of the uniqueness of
characteristic functions.

Intuitively, result says that a k-dimensional sufficient statistic in a
k-parameter exponential family will also be complete provided that
the effective dimension of the natural parameter space is k.
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Sampling Exponential Families

The families of distributions obtained by sampling from exponential
families are themselves exponential families.

Let X1, ...,Xn be iid distributed according to a k-parameter
exponential family. Consider the density (or frequency function) of
X = (X1, ...,Xn),

f (x; θ) =
n∏

j=1

exp

[
k∑

i=1

ci (θ)Ti (xj)− d(θ) + S(xj)

]

= exp

 k∑
i=1

ci (θ)τi (x)− nd(θ) +
n∑

j=1

S(xj)


for τi (X) =

∑n
j=1 Ti (Xj) the natural statistics, i = 1, ..., k .

Note that the natural sufficient statistic is k-dimensional ∀ n.

What about the distribution of τ = (τ1(X), ..., τk(X))?
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The Natural Statistics

Lemma

The joint distribution of τ = (τ1(X), ..., τk(X)) is of exponential family
form with natural parameters c1(θ), ..., ck(θ).

Proof. (discrete case).

Let Ty = (x : τ1(x) = y1, ..., τk(x) = yk) be the level set of y ∈ Rk .

P[τ (X) = y] =
∑
x∈Ty

P[X = x] = δ(θ)
∑
x∈Ty

exp

 k∑
i=1

ci (θ)τi (x) +
n∑

j=1

S(xj)


= δ(θ)S(y) exp

[
k∑

i=1

ci (θ)yi

]
.
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The Natural Statistics

Lemma

For any A ⊆ {1, ..., k}, the joint distribution of {τi (X); i ∈ A} conditional
on {τi (X); i ∈ Ac} is of exponential family form, and depends only on
{ci (θ); i ∈ A}.

Proof. (discrete case).

Let Ti = τi (X). Have P[T = y] = δ(θ)S(y) exp
[∑k

i=1 ci (θ)yi

]
, so

P[TA = yA|TAc = yAc ] =
P[TA = yA,TAc = yAc ]∑

w∈Rl P[TA = w,TAc = yAc ]

=
δ(θ)S((yA, yAc )) exp

[∑
i∈A ci (θ)yi

]
exp

[∑
i∈Ac ci (θ)yi

]
δ(θ) exp

[∑
i∈Ac ci (θ)yi

]∑
w∈Rl S((w, yAc )) exp

[∑
i∈A ci (θ)wi

]
= ∆({ci (θ) : i ∈ A})h(yA) exp

[∑
i∈A ci (θ)yi

]
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The Natural Statistics and Sufficiency

Look at the previous results through the prism of the canonical
parametrisation:

Already know that τ is sufficient for φ = c(θ).

But result tells us something even stronger:

that each τi is sufficient for φi = ci (θ)

In fact any τA is sufficient for φA, ∀ A ⊆ {1, ..., k}
Therefore, each natural statistic contains the relevant information for
each natural parameter

A useful result that is by no means true for any distribution.
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Groups Acting on the Sample Space

Basic Idea

Often can generate a family of distributions of the same form (but with
different parameters) by letting a group act on our data space X .

Recall: a group is a set G along with a binary operator ◦ such that:

1 g , g ′ ∈ G =⇒ g ◦ g ′ ∈ G

2 (g ◦ g ′) ◦ g ′′ = g ◦ (g ′ ◦ g ′′), ∀g , g ′, g ′′ ∈ G

3 ∃ e ∈ G : e ◦ g = g ◦ e = g , ∀g ∈ G

4 ∀g ∈ G ∃ g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = e

Often groups are sets of transformations and the binary operator is the
composition operator (e.g. SO(2) the group of rotations of R2):[

cosφ − sinφ
sinφ cosφ

] [
cosψ − sinψ
sinψ cosψ

]
=

[
cos(φ+ ψ) − sin(φ+ ψ)
sin(φ+ ψ) cos(φ+ ψ)

]
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Groups Acting on the Sample Space

Have a group of transformations G , with G 3 g : X → X
gX := g(X ) and (g2 ◦ g1)X := g2(g1(X ))

Obviously dist(gX ) changes as g ranges in G .

Is this change completely arbitrary or are there situations where it has
a simple structure?

Definition (Transformation Family)

Let G be a group of transformations acting on X and let {fθ(x); θ ∈ Θ} be
a parametric family of densities on X . If there exists a bijection h : G → Θ
then the family {fθ}θ∈Θ will be called a (group) transformation family.

Hence Θ admits a group structure Ḡ := (Θ, ∗) via:

θ1 ∗ θ2 := h(h−1(θ1) ◦ h−1(θ2))

Usually write gθ = h−1(θ), so gθ ◦ gθ′ = gθ∗θ′
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Invariance and Equivariance

Define an equivalence relation on X via G :

x
G≡ x ′ ⇐⇒ ∃ g ∈ G : x ′ = g(x)

Partitions X into equivalence classes called the orbits of X under G

Definition (Invariant Statistic)

A statistic T that is constant on the orbits of X under G is called an
invariant statistic. That is, T is invariant with respect to G if, for any
arbitrary x ∈ X , we have T (x) = T (gx) ∀g ∈ G .

Notice that it may be that T (x) = T (y) but x , y are not in the same
orbit, i.e. in general the orbits under G are subsets of the level sets of an
invariant statistic T . When orbits and level sets coincide, we have:

Definition (Maximal Invariant)

A statistic T will be called a maximal invariant for G when

T (x) = T (y) ⇐⇒ x
G≡ y
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Invariance and Equivariance

Intuitively, a maximal invariant is a reduced version of the data that
represent it as closely as possible, under the requirement of remaining
invariant with respect to G .

If T is an invariant statistic with respect to the group defining a
transformation family, then it is ancillary.

Definition (Equivariance)

A statistic S : X → Θ will be called equivariant for a transformation
family if S(gθx) = θ ∗ s(x), ∀ gθ ∈ G & x ∈ X .

Equivariance may be a natural property to require if S is used as an
estimator of the true parameter θ ∈ Θ, as it suggests that a
transformation of a sample by gψ would yield an estimator that is the
original one transformed by ψ.
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Invariance and Equivariance

Lemma (Constructing Maximal Invariants)

Let S : X → Θ be an equivariant statistic for a transformation family with
parameter space Θ and transformation group G . Then, T (X ) = g−1

S(X )X
defines a maximally invariant statistic.

Proof.

T (gθx)
def
= (g−1

S(gθx) ◦gθ)x
eqv
= (g−1

θ∗S(x) ◦gθ)x = [(g−1
S(x) ◦g−1

θ )◦gθ]x = T (x)

so that T is invariant. To show maximality, notice that

T (x) = T (y) =⇒ g−1
S(x)x = g−1

S(y)y =⇒ y = gS(y) ◦ g−1
S(x)︸ ︷︷ ︸

=g∈G

x

so that ∃g ∈ G with y = gx which completes the proof.
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Location-Scale Families

An important transformation family is the location-scale model:

Let X = η + τε with ε ∼ f completely known.

Parameter is θ = (η, τ) ∈ Θ = R× R+.

Define set of transformations on X by gθx = g(η,τ)x = η + τx so

g(η,τ) ◦ g(µ,σ)x = η + τµ+ τσx = g(η+τµ,τσ)x

set of transformations is closed under composition

g(0,1) ◦ g(η,τ) = gη,τ ◦ g(0,1) = g(η,τ) (so ∃ identity)

g(−η/τ, τ−1) ◦ g(η,τ) = g(η,τ) ◦ g(−η/τ, τ−1) = g(0,1) (so ∃ inverse)

Hence G = {gθ : θ ∈ R× R+} is a group under ◦.
Action of G on random sample X = {Xi}ni=1 is g(η,τ)X = η1n + τX.

Induced group action on Θ is (η, τ) ∗ (µ, σ) = (η + τµ, τσ).
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Location-Scale Families

The sample mean and sample variance are equivariant, because with
S(X) = (X̄ ,V 1/2) where V = 1

n−1

∑
(Xj − X̄ )2:

S(g(η,τ)X) =

(
η + τX,

{
1

n − 1

∑
(η + τXj − (η + τX ))2

}1/2
)

=

(
η + τ X̄ ,

{
1

n − 1

∑
(η + τXj − η − τ X̄ )2

}1/2
)

= (η + τ X̄ , τV 1/2) = (η, τ) ∗ S(X)

A maximal invariant is given by A = g−1
S(X)X the corresponding

parameter being (−X̄/V 1/2,V−1/2). Hence the vector of residuals is
a maximal invariant:

A =
(X− X̄1n)

V 1/2
=

(
X1 − X̄

V 1/2
, . . . ,

Xn − X̄

V 1/2

)
Statistical Theory (Week 4) Special Models 25 / 26

Transformation Families

Example (The Multivariate Gaussian Distribution)

Let Z ∼ Nd(0, I ) and consider X = µ + ΩZ ∼ N (µ,ΩΩT)

Parameter is (µ,Ω) ∈ Rd × GL(d)

Set of transformations is closed under ◦
g(0,I ) ◦ g(µ,Ω) = gµ,Ω ◦ g(0,I ) = g(µ,Ω)

g( − Ω−1µ,Ω−1) ◦ g(µ,Ω) = g(µ,Ω) ◦ g(−Ω−1µ,Ω−1) = g(0,I )

Hence G = {gθ : θ ∈ R× R+} is a group under ◦ (affine group).

Action of G on X is g(µ,Ω)X = µ + ΩX.

Induced group action on Θ is (µ,Ω) ∗ (ν,Ψ) = (ν + Ψµ,ΨΩ).
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Point Estimation for Parametric Families

Collection of r.v.’s (a random vector) X = (X1, ...,Xn)

X ∼ Fθ ∈ F

F a parametric class with parameter θ ∈ Θ ⊆ Rd

The Problem of Point Estimation
1 Assume that Fθ is known up to the parameter θ which is unknown

2 Let (x1, ..., xn) be a realization of X ∼ Fθ which is available to us

3 Estimate the value of θ that generated the sample given (x1, ..., xn)

So far considered aspects related to point estimation:

Considered approximate distributions of g(X1, ...,Xn) as n ↑ ∞
Studied the information carried by g(X1, ..,Xn) w.r.t θ

Examined general parametric models

Today: How do we estimate θ in general? Some general recipes?
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Point Estimators

Definition (Point Estimator)

Let {Fθ} be a parametric model with parameter space Θ ⊆ Rd and let
X = (X1, ...,Xn) ∼ Fθ0 for some θ0 ∈ Θ. A point estimator θ̂ of θ0 is a
statistic T : Rn → Θ, whose primary purpose is to estimate θ0

Therefore any statistic T : Rn → Θ is a candidate estimator!

↪→ Harder to answer what a good estimator is!

Any estimator is of course a random variable

Hence as a general principle, good should mean:

dist(θ̂) concentrated around θ

↪→ An ∞-dimensional description of quality.

Look at some simpler measures of quality?
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Concentration around a Parameter

D
ensity

D
ensity
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Bias and Mean Squared Error

Definition (Bias)

The bias of an estimator θ̂ of θ ∈ Θ is defined to be

bias(θ̂) = Eθ[θ̂]− θ
Describes how “off” we’re from the target on average when employing θ̂.

Definition (Unbiasedness)

An estimator θ̂ of θ ∈ Θ is unbiased if Eθ[θ̂] = θ, i.e. bias(θ̂) = 0.

Will see that not too much weight should be placed on unbiasedness.

Definition (Mean Squared Error)

The mean squared error of an estimator θ̂ of θ ∈ Θ ⊆ R is defined to be

MSE (θ̂) = Eθ
[
(θ̂ − θ)2

]
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Bias and Mean Squared Error

Bias and MSE combined provide a coarse but simple description of
concentration around θ:

Bias gives us an indication of the location of dist(θ̂) relative to θ
(somehow assumes mean is good measure of location)
MSE gives us a measure of spread/dispersion of dist(θ̂) around θ
If θ̂ is unbiased for θ ∈ R then Var(θ̂) = MSE (θ̂)
for Θ ⊆ Rd have MSE (θ̂) := E‖θ̂ − θ‖2.

Example

Let X1, ...,Xn
iid∼ N(µ, σ2) and let µ̂ := X . Then

Eµ̂ = µ and MSE (µ) = Var(µ) =
σ2

n
.

In this case bias and MSE give us a complete description of the
concentration of dist(µ̂) around µ, since µ̂ is Gaussian and so completely
determined by mean and variance.
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The Bias-Variance Decomposition of MSE

E[θ̂ − θ]2 = E[θ̂ − Eθ̂ + Eθ̂ − θ]2

= E
{

(θ̂ − Eθ̂)2 + (Eθ̂ − θ)2 + 2(θ̂ − Eθ̂)(Eθ̂ − θ)
}

= E(θ̂ − Eθ̂)2 + (Eθ̂ − θ)2

Bias-Variance Decomposition for Θ ⊆ R

MSE (θ̂) = Var(θ̂) + bias2(θ̂)

A simple yet fundamental relationship

Requiring a small MSE does not necessarily require unbiasedeness

Unbiasedeness is a sensible property, but sometimes biased estimators
perform better than unbiased ones

Sometimes have bias/variance tradeoff
(e.g. nonparametric regression)
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Bias–Variance Tradeoff
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Consistency

Can also consider quality of an estimator not for given sample size, but
also as sample size increases.

Consistency

A sequence of estimators {θ̂n}n≥1 of θ ∈ Θ is said to be consistent if

θ̂n
P→ θ

A consistent estimator becomes increasingly concentrated around the
true value θ as sample size grows (usually have θ̂n being an estimator
based on n iid values).

Often considered as a “must have” property, but...

A more detailed understanding of the “asymptotic quality” of θ̂
requires the study of dist[θ̂n] as n ↑ ∞.
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Consistency: X1, ..., Xn ∼ N (0, 1), plot X̄n for n = 1, 2, ...
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Plug-In Estimators

Want to find general procedures for constructing estimators.
↪→ An idea: θ 7→ Fθ is bijection under identifiability.

Recall that more generally, a parameter is a function ν : F → N
Under identifiability ν(Fθ) = q(θ), some q.

The Plug-In Principle

Let ν = q(θ) = ν(Fθ) be a parameter of interest for a parametric model
{Fθ}θ∈Θ. If we can construct an estimate F̂θ of Fθ on the basis of our
sample X, then we can use ν(F̂θ) as an estimator of ν(Fθ). Such an
estimator is called a plug-in estimator.

Essentially we are “flipping” our point of view: viewing θ as a
function of Fθ instead of Fθ as a function of θ.

Note here that θ = θ(Fθ) if q is taken to be the identity.

In practice such a principle is useful when we can explicitly describe
the mapping Fθ 7→ ν(Fθ).
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Parameters as Functionals of F

Examples of “functional parameters”:

The mean: µ(F ) :=

∫ +∞

−∞
xdF (x)

The variance: σ2(F ) :=

∫ +∞

−∞
[x − µ(F )]2dF (x)

The median: med(F ) := inf{x : F (x) ≥ 1/2}
An indirectly defined parameter θ(F ) such that:∫ +∞

−∞
ψ(x − θ(F ))dF (x) = 0

The density (when it exists) at x0: θ(F ) :=
d

dx
F (x)

∣∣∣∣
x=x0
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The Empirical Distribution Function

Plug-in Principle

Converts problem of estimating θ into problem of estimating F . But how?

Consider the case when X = (X1, ..,Xn) has iid coordinates. We may
define the empirical version of the distribution function FXi

(·) as

F̂n(y) =
1

n

n∑
i=1

1{Xi ≤ y}

Places mass 1/n on each observation

SLLN =⇒ F̂n(y)
a.s.−→ F (y) ∀y ∈ R

↪→ since 1{Xi ≤ y} are iid Bernoulli(F (y)) random variables

Suggests using ν(F̂n) as estimator of ν(F )
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The Empirical Distribution Function

Seems that we’re actually doing better than just pointwise convergence...

Theorem (Glivenko-Cantelli)

Let X1, ..,Xn be independent random variables, distributed according to F .
Then, F̂n(y) = n−1

∑n
i=1 1{Xi ≤ y} converges uniformly to F with

probability 1, i.e.
sup
x∈R
|F̂n(x)− F (x)| a.s.−→ 0

Proof.

Assume first that F (y) = y1{y ∈ [0, 1]}. Fix a regular finite partition
0 = x1 ≤ x2 ≤ . . . ≤ xm = 1 of [0,1] (so xk+1 − xk = (m − 1)−1). By
monotonicity of F , F̂n

sup
x
|F̂n(x)− F (x)| < max

k
|F̂n(xk)− F (xk+1)|+ max

k
|F̂n(xk)− F (xk−1)|
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Adding and subtracting F (xk) within each term we can bound above by

2 max
k
|F̂n(xk)− F (xk)|+ max

k
|F (xk)− F (xk+1)|+ max

k
|F (xk)− F (xk−1)|︸ ︷︷ ︸

=maxk |xk−xk+1|+maxk |xk−xk−1|= 2
m−1

by an application of the triangle inequality to each term. Letting n ↑ ∞,
the SSLN implies that the first term vanishes almost surely. Since m is
arbitrary we have proven that, given any ε > 0,

lim
n→∞

[
sup
x
|F̂n(x)− F (x)|

]
< ε a.s.

which gives the result when the cdf F is uniform.

For a general cdf F , we let U1,U2, ...
iid∼ U [0, 1] and define

Wi := F−1(Ui ) = inf{x : F (x) ≥ Ui}.
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Observe that
Wi ≤ x ⇐⇒ Ui ≤ F (x)

so that Wi
d
= Xi . By Skorokhod’s representation theorem, we may thus

assume that
Wi = Xi a.s.

Letting Ĝn be the edf of (U1, ...,Un) we note that

F̂n(y) = n−1
n∑

i=1

1{Wi ≤ y} = n−1
n∑

i=1

1{Ui ≤ F (y)} = Ĝn(F (y)), a.s.

in other words F̂n = Ĝn ◦ F , a.s.

Now let A = F (R) ⊆ [0, 1] so that from the first part of the proof

sup
x∈R
|F̂n(x)− F (x)| = sup

t∈A
|Ĝn(t)− t| ≤ sup

t∈[0,1]
|Ĝn(t)− t| a.s.→ 0

since obviously A ⊆ [0, 1].
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Example (Mean of a function)

Consider θ(F ) =
∫ +∞
−∞ xdF (x). A plug-in estimator based on the edf is

θ̂ := θ(F̂n) =

∫ +∞

−∞
h(x)dF̂n(x) =

1

n

n∑
i=1

h(Xi )

Example (Variance)

Consider now σ2(F ) =
∫ +∞
−∞ (x − µ(F ))2dF (x). Plugging in F̂n gives

σ2(F̂n) =

∫ +∞

−∞
x2dF̂n(x)−

(∫ +∞

−∞
xdF̂n(x)

)2

=
n∑

i=1

X 2
i −

(
1

n

n∑
i=1

Xi

)2

Exercise

Show that σ2(F̂n) is a biased but consistent estimator for any F .
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Example (Density Estimation)

Let θ(F ) = f (x0), where f is the density of F ,

F (t) =

∫ t

−∞
f (x)dx

If we tried to plug-in F̂n then our estimator would require differentiation of
F̂n at x0. Clearly, the edf plug-in estimator does not exist since F̂n is a step
function. We will need a “smoother” estimate of F to plug in, e.g.

F̃n(x) :=

∫ ∞
−∞

G (x − y)dF̂n(y) =
1

n

n∑
i=1

G (x − Xi )

for some continuous G concentrated at 0.

Saw that plug-in estimates are usually easy to obtain via F̂n

But such estimates are not necessarily as “innocent” as they seem.
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The Method of Moments

Perhaps the oldest estimation method (Karl Pearson, late 1800’s).

Method of Moments

Let X1, ...,Xn be an iid sample from Fθ, θ ∈ Rp. The method of moments
estimator θ̂ of θ is the solution w.r.t θ to the p random equations∫ +∞

−∞
xkj dF̂n(x) =

∫ +∞

−∞
xkj dFθ(x), {kj}pj=1 ⊂ N.

In some sense this is a plug-in estimator - we estimate the theoretical
moments by the sample moments in order to then estimate θ.

Useful when exact functional form of θ(F ) unavailble

While the method was introduced by equating moments, it may be
generalized to equating p theoretical functionals to their empirical
analogues.
↪→ Choice of equations can be important
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Motivational Diversion: The Moment Problem

Theorem

Suppose that F is a distribution determined by its moments. Let {Fn} be a
sequence of distributions such that

∫
xkdFn(x) <∞ for all n and k. Then,

lim
n→∞

∫
xkdFn(x) =

∫
xkdF (x), ∀ k ≥ 1 =⇒ Fn

w→ F .

BUT: Not all distributions are determined by their moments!

Lemma

The distribution of X is determined by its moments, provided that there
exists an open neighbourhood A containing zero such that

MX (u) = E
[
e−〈u,X 〉

]
<∞, ∀ u ∈ A.

Statistical Theory (Week 5) Point Estimation 22 / 31

Example (Exponential Distribution)

Suppose X1, ...,Xn
iid∼ Exp(λ). Then, E[X r

i ] = λ−r Γ(r + 1). Hence, we
may define a class of estimators of λ depending on r ,

λ̂ =

[
1

nΓ(r + 1)

n∑
i=1

X r
i

]− 1
r

.

Tune value of r so as to get a “best estimator” (will see later...)

Example (Gamma Distribution)

Let X1, ...,Xn
iid∼ Gamma(α, λ). The first two moment equations are:

α

λ
=

1

n

n∑
i=1

Xi = X̄ and
α

λ2
=

1

n

n∑
i=1

(Xi − X̄ )2

yielding estimates α̂ = X̄ 2/σ̂2 and λ̂ = X̄/σ̂2.
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Example (Discrete Uniform Distribution)

Let X1, ...,Xn
iid∼ U{1, 2, ..., θ}, for θ ∈ N. Using the first moment of the

distribution we obtain the equation

X̄ =
1

2
(θ + 1)

yielding the MoM estimator θ̂ = 2X̄ − 1.

A nice feature of MoM estimators is that they generalize to non-iid data.
→ if X = (X1, ...,Xn) has distribution depending on θ ∈ Rp, one can
choose statistics T1, ...,Tp whose expectations depend on θ:

EθTk = gk(θ)

and then equate
Tk(X) = gk(θ), k = 1, ..., p.

→ Important here that Tk is a reasonable estimator of ETk . (motivation)
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Comments on Plug-In and MoM Estimators

Usually easy to compute and can be valuable as preliminary estimates
for algorithms that attempt to compute more efficient (but not easily
computable) estimates.

Can give a starting point to search for better estimators in situations
where simple intuitive estimators are not available.

Often these estimators are consistent, so they are likely to be close to
the true parameter value for large sample size.

↪→ Use empirical process theory for plug-ins
↪→ Estimating equation theory for MoM’s

Can lead to biased estimators, or even completely ridiculous
estimators (will see later)
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Comments on Plug-In and MoM Estimators

The estimate provided by an MoM estimator may /∈ Θ!
(exercise: show that this can happen with the binomial distribution,
both n and p unknown).

Will later discuss optimality in estimation, and appropriateness (or
inappropriateness) will become clearer.

Observation: many of these estimators do not depend solely on
sufficient statistics

↪→ Sufficiency seems to play an important role in optimality – and it does
(more later)

Will now see a method where estimator depends only on a sufficient
statistic, when such a statistic exists.
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The Likelihood Function

A central theme in statistics. Introduced by Ronald Fisher.

Definition (The Likelihood Function)

Let X = (X1, ...,Xn) be random variables with joint density (or frequency
function) f (x; θ), θ ∈ Θ ⊆ Rp. The likelihood function L(θ) is the random
function

L(θ) = f (X; θ)

↪→ Notice that we consider L as a function of θ NOT of X.
Interpretation: Most easily interpreted in the discrete case → How likely
does the value θ make what we observed?
(can extend interpretation to continuous case by thinking of L(θ) as how
likely θ makes something in a small neighbourhood of what we observed)
When X has iid coordinates with density f (·; θ), then likelihood is:

L(θ) =
n∏

i=1

f (Xi ; θ)
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Maximum Likelihood Estimators

Definition (Maximum Likelihood Estimators)

Let X = (X1, ...,Xn) be a random sample from Fθ, and suppose that θ̂ is
such that

L(θ̂) ≥ L(θ), ∀ θ ∈ Θ.

Then θ̂ is called a maximum likelihood estimator of θ.

We call θ̂ the maximum likelihood estimator, when it is the unique
maximum of L(θ),

θ̂ = arg max
θ∈Θ

L(θ).

Intuitively, a maximum likelihood estimator chooses that value of θ that is
most compatible with our observation in the sense that it makes what we
observed most probable. In not-so-mathematical terms, θ̂ is the value of θ
that is most likely to have produced the data.
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Comments on MLE’s

Saw that MoMs and Plug-Ins often do not depend only on sufficient
statistics.

↪→ i.e. they also use “irrelevant” information

If T is a sufficient statistic for θ then the Factorization theorem
implies that

L(θ) = g(T (X); θ)h(X) ∝ g(T (X); θ)

i.e. any MLE depends on data ONLY through the sufficient statistic

MLE’s are also invariant. If g : Θ→ Θ′ is a bijection, and if θ̂ is the
MLE of θ, then g(θ̂) is the MLE of g(θ).
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Comments on MLE’s

When the support of a distribution depends on a parameter,
maximization is usually carried out by direct inspection.

For a very broad class of statistical models, the likelihood can be
maximized via differential calculus. If Θ is open, the support of the
distribution does not depend on θ and the likelihood is differentiable,
then the MLE satisfies the log-likelihood equations:

∇θ log L(θ) = 0

Notice that maximizing log L(θ) is equivalent to maximizing L(θ)

When Θ is not open, likelihood equations can be used, provided that
we verify that the maximum does not occur on the boundary of Θ.
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Example (Uniform Distribution)

Let X1, ...,Xn
iid∼ U [0, θ]. The likelihood is

L(θ) = θ−n
n∏

i=1

1{0 ≤ Xi ≤ θ} = θ−n1{θ ≥ X(n)}.

Hence if θ ≤ X(n) the likelihood is zero. In the domain [X(n),∞), the

likelihood is a decreasing function of θ. Hence θ̂ = X(n) .

Example (Poisson Distribution)

Let X1, ...,Xn
iid∼ Poisson(λ). Then

L(λ) =
n∏

i=1

{
λxi

xi !
e−λ

}
=⇒ log L(λ) = −nλ+ log λ

n∑
i=1

xi −
n∑

i=1

log(xi !)

Setting ∇θ log L(θ) = −n + λ−1
∑

xi = 0 we obtain λ̂ = x̄ since
∇2
θ log L(θ) = −λ−2

∑
xi < 0.
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Point Estimation for Parametric Families

Collection of r.v.’s (a random vector) X = (X1, ...,Xn)

X ∼ Fθ ∈ F

F a parametric class with parameter θ ∈ Θ ⊆ Rd

The Problem of Point Estimation
1 Assume that Fθ is known up to the parameter θ which is unknown

2 Let (x1, ..., xn) be a realization of X ∼ Fθ which is available to us

3 Estimate the value of θ that generated the sample given (x1, ..., xn)

Last week, we saw three estimation methods:

the plug-in method,

the method of moments,

maximum likelihood.

Today: focus on maximum likelihood. Why does it make sense? What are
its properties?
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Maximum Likelihood Estimators

Recall our definition of a maximum likelihood estimator:

Definition (Maximum Likelihood Estimators)

Let X = (X1, ...,Xn) be a random sample from Fθ, and suppose that θ̂ is
such that

L(θ̂) ≥ L(θ), ∀ θ ∈ Θ.

Then θ̂ is called a maximum likelihood estimator of θ.

We call θ̂ the maximum likelihood estimator, when it is the unique
maximum of L(θ),

θ̂ = arg max
θ∈Θ

L(θ).

→ θ̂ makes what we observed most probable, most likely.
→ Makes sense intuitively. But why should it make sense mathematically?
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Kullback-Leibler Divergence

Definition (Kullback-Leibler Divergence)

Let p(x) and q(x) be two probability density (frequency) functions on R.
The Kullback-Leibler divergence, of q with respect to p is defined as:

KL(q‖p) :=

∫ +∞

−∞
p(x) log

(
p(x)

q(x)

)
dx .

Have KL(p‖p) =
∫ +∞
−∞ p(x) log(1)dx = 0.

By Jensen’s inequality, for X ∼ p(·) we have

KL(q‖p) = E{− log[q(X )/p(X )]} ≥ − log

{
E
[

q(X )

p(X )

]}
= 0

since q integrates to 1.

p 6= q implies that KL(q‖p) > 0.

KL is, in a sense, a distance between probability distributions

KL is not a metric: no symmetry and no triangle inequality!
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Likelihood through KL-divergence

Lemma (Maximum Likelihood as Minimum KL-Divergence)

An estimator θ̂ based on an iid sample X1, ...,Xn is a maximum likelihood
estimator if and only if KL(F (x ; θ̂)‖F̂n(x)) ≤ KL(F (x ; θ)‖F̂n(x)) ∀θ ∈ Θ.

Proof (discrete case).

We recall that
∫

h(x)dF̂n(x) = n−1
∑

h(Xi ) so that

KL(Fθ‖F̂n) =

∫ +∞

−∞
log

(∑n
i=1

δXi
(x)

n

f (x ; θ)

)
dF̂n(x) =

1

n

n∑
i=1

log

(
n−1

f (Xi ; θ)

)

= −1

n

n∑
i=1

log n − 1

n

n∑
i=1

log f (Xi ; θ)

= − log n − 1

n
log

[
n∏

i=1

f (Xi ; θ)

]
= − log n − 1

n
log L(θ)

which is minimized w.r.t to θ iff L(θ) is maximized w.r.t θ.

→ Therefore, maximizing the likelihood is equivalent to choosing the
element of the parametric family {fθ}θ∈Θ that minimizes the
KL-divergence with the empirical distribution function.
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Likelihood through KL-divergence

Intuition:

F̂n is (with probability 1) a uniformly good approximation of Fθ0 , θ0

the true parameter (large n).

So Fθ0 will be “very close” to F̂n (for large n)

So set the “projection” of F̂n into {Fθ}θ∈Θ as the estimator of Fθ0 .

(“projection” with respect to KL-divergence)

Final comments on KL-divergence:

KL(p‖q) measures how likely it would be to distinguish if an
observation X came from q or p given that it came from p.

A related quantity is the entropy of p, defined as − ∫ log(p(x))p(x)dx
which measures the “inherent randomness” of p (how ”surprising” an
outcome from p is on average).
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Asymptotics for MLE’s

Under what conditions is an MLE consistent?

How does the distribution of θ̂MLE concetrate around θ as n→∞?

Often, when MLE coincides with an MoM estimator, this can be seen
directly.

Example (Geometric distribution)

Let X1, ...,Xn be iid Geometric random variables with frequency function

f (x ; θ) = θ(1− θ)x , x = 0, 1, 2, ...

MLE of θ is

θ̂n =
1

X̄ + 1
.

By the central limit theorem,
√

n(X̄ − (θ−1 − 1))
d→ N (0, θ−2(1− θ)).
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Example (Geometric distribution)

Now apply the delta method with g(x) = 1/(1 + x), so that
g ′(x) = −1/(1 + x)2:

√
n(θ̂n − θ) =

√
n(g(X̄n)− g(θ−1 − 1))

d→ N (0, θ2(1− θ)).

Example (Uniform distribution)

Suppose that X1, ...,Xn
iid∼ U [0, θ]. MLE of θ is

θ̂n = X(n) = max{X1, ...,Xn}

with distribution function P[θ̂n ≤ x ] = (x/θ)n1{x ∈ [0, θ]}. Thus for
ε > 0,

P[|θ̂n − θ| > ε] = P[θ̂n < θ − ε] =

(
θ − ε
θ

)n
n→∞−→ 0,

so that the MLE is a consistent estimator.

Statistical Theory (Likelihood) Maximum Likelihood 9 / 24

Example (Uniform distribution)

To determine the asymptotic concentration of dist(θ̂n) around θ,

P[n(θ − θ̂n) ≤ x ] = P
[
θ̂n ≥ θ − x

n

]
= 1−

(
1− x

θn

)n

n→∞−→ 1− exp(−x/θ)

so that n(θ − θ̂n) weakly converges to an exponential random variable.
Thus we understand the concentration of dist(θ̂n − θ) around zero for large
n as that of an exponential distribution with variance 1

θ2n2 .

From now on assume that X1, ...,Xn are iid with density (frequency)
f (x ; θ), θ ∈ R. Notation:

`(x ; θ) = log f (x ; θ)

`′(x ; θ), `′′(x ; θ) and `′′′(x ; θ) are partial derivatives w.r.t θ.

Statistical Theory (Likelihood) Maximum Likelihood 10 / 24

Asymptotics for the MLE

Regularity Conditions

(A1) Θ is an open subset of R.

(A2) The support of f , suppf , is independent of θ.

(A3) f is thrice continuously differentiable w.r.t. θ for all x ∈ suppf .

(A4) Eθ[`′(Xi ; θ)] = 0 ∀θ and Varθ[`′(Xi ; θ)] = I (θ) ∈ (0,∞) ∀θ.

(A5) Eθ[`′′(Xi ; θ)] = −J(θ) ∈ (0,∞) ∀θ.

(A6) ∃ M(x) > 0 and δ > 0 such that Eθ0 [M(Xi )] <∞ and

|θ − θ0| < δ =⇒ |`′′′(x ; θ)| ≤ M(x)

Let’s take a closer look at these conditions...

If Θ is open, then for θ0 the true parameter, it always makes sense for an
estimator θ̂ to have a symmetric distribution around θ0 (e.g. Gaussian).
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Asymptotics for the MLE

Under condition (A2) we have d
dθ

∫
supp f f (x ; θ)dx = 0 for all θ ∈ Θ so

that, if we can interchange integration and differentiation,

0 =

∫
d

dθ
f (x ; θ)dx =

∫
`′(x ; θ)f (x ; θ)dx = Eθ[`′(Xi ; θ)]

so that in the presence of (A2), (A4) is essentially a condition that enables
differentiation under the integral and asks that the r.v. `′ have a finite
second moment for all θ. Similarly, (A5) requires that `′′ have a first
moment for all θ.
Conditions (A2) and (A6) are smoothness conditions that will allow us to
“linearize” the problem, while the other conditions will allow us to
“control” the random linearization.
Furthermore, if we can differentiate twice under the integral sign

0 =

∫
d

dθ
[`′(x ; θ)f (x ; θ)]dx =

∫
`′′(x ; θ)f (x ; θ)dx +

∫
(`′(x ; θ))2f (x ; θ)dx

so that I (θ) = −J(θ).
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Example (Exponential Family)

Let X1, ...,Xn be iid random variables distributed according to a
one-parameter exponential family

f (x ; θ) = exp{c(θ)T (x)− d(θ) + S(x)}, x ∈ supp f .

It follows that

`′(x ; θ) = c ′(θ)T (x)− d ′(θ)

`′′(x ; θ) = c ′′(θ)T (x)− d ′′(θ).

On the other hand,

E[T (Xi )] =
d ′(θ)

c ′(θ)

Var[T (Xi )] =
1

[c ′(θ)]2

(
d ′′(θ)− c ′′(θ)

d ′(θ)

c ′(θ)

)
Hence E[`′(Xi ; θ)] = c ′(θ)E[T (Xi )]− d ′(θ) = 0.
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Example (Exponential Family)

Furthermore,

I (θ) = [c ′(θ)]2Var[T (Xi )]

= d ′′(θ)− c ′′(θ)
d ′(θ)

c ′(θ)

and

J(θ) = d ′′(θ)− c ′′(θ)E[T (Xi )]

= d ′′(θ)− c ′′(θ)
d ′(θ)

c ′(θ)

so that I (θ) = J(θ).
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Asymptotic Normality of the MLE

Theorem (Asymptotic Distribution of the MLE)

Let X1, ...,Xn be iid random variables with density (frequency) f (x ; θ) and
satisfying conditions (A1)-(A6). Suppose that the sequence of MLE’s θ̂n
satisfies θ̂n

p→ θ where

n∑
i=1

`′(Xi ; θ̂n) = 0, n = 1, 2, ...

Then,
√

n(θ̂n − θ)
d→ N

(
0,

I (θ)

J2(θ)

)
.

When I (θ) = J(θ), we have of course
√

n(θ̂n − θ)
d→ N

(
0, 1

I (θ)

)
.
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Proof.

Under conditions (A1)-(A3), if θ̂n maximizes the likelihood, we have

n∑
i=1

`′(Xi ; θ̂n) = 0.

Expanding this equation in a Taylor series, we get

0 =
n∑

i=1

`′(Xi ; θ̂n) =
n∑

i=1

`′(Xi ; θ) +

+(θ̂n − θ)
n∑

i=1

`′′(Xi ; θ)

+
1

2
(θ̂n − θ)2

n∑
i=1

`′′′(Xi ; θ
∗
n)

with θ∗n lying between θ and θ̂n.
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Dividing accross by
√

n yields

0 =
1√
n

n∑
i=1

`′(Xi ; θ) +
√

n(θ̂n − θ)
1

n

n∑
i=1

`′′(Xi ; θ)

+
1

2

√
n(θ̂n − θ)2 1

n

n∑
i=1

`′′′(Xi ; θ
∗
n)

which suggests that
√

n(θ̂n − θ) equals

−n−1/2
∑n

i=1 `
′(Xi ; θ)

n−1
∑n

i=1 `
′′(Xi ; θ) + (θ̂n − θ)(2n)−1

∑n
i=1 `

′′′(Xi ; θ∗n)
.

Now, from the central limit theorem and condition (A4), it follows that

1√
n

n∑
i=1

`′(Xi ; θ)
d→ N (0, I (θ)).
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Next, the weak law of large numbers along with condition (A5) implies

1

n

n∑
i=1

`′′(Xi ; θ)
p→ −J(θ).

Now we turn to show that the remainder vanishes in probability,

Rn = (θ̂n − θ)
1

2n

n∑
i=1

`′′′(Xi ; θ
∗
n)

p→ 0.

We have that for any ε > 0

P[|Rn| > ε] = P[|Rn| > ε, |θ̂n − θ| > δ] + P[|Rn| > ε, |θ̂n − θ| ≤ δ]

and
P[|Rn| > ε, |θ̂n − θ| > δ] ≤ P[|θ̂n − θ| > δ]

p→ 0.

If |θ̂n − θ| < δ, (A6) gives |Rn| ≤ δ
2n

∑n
i=1 M(Xi ).
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Since the weak law of large numbers implies that

1

n

n∑
i=1

M(Xi )
p→ E[M(X1)] <∞,

the quantity P[|Rn| > ε, |θ̂n − θ| ≤ δ] can be made arbitrarily small (for

large n) by taking δ sufficiently small. Thus, Rn
p→ 0 and applying

Slutsky’s theorem we may conclude that

√
n(θ̂n − θ)

d→ N
(

0,
I (θ)

J2(θ)

)
.

Notice that for our proof, we assumed that the sequence of MLE’s
was consistent.

Proving consistency of an MLE can be subtle
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Consistency of the MLE

Consider the random function

φn(t) =
1

n

n∑
i=1

[log f (Xi ; t)− log f (Xi ; θ)]

which is maximized at t = θ̂n. By the WLLN, for each t ∈ Θ,

φn(t)
p→ φ(t) = E

[
log

(
f (Xi ; t)

f (Xi ; θ)

)]
.

which is minus the KL-divergence.

The latter is minimized when t = θ and so φ(t) is maximized at
t = θ.

Moreover, unless f (x ; t) = f (x ; θ) for all x ∈ supp f , we have
φ(t) < 0

Since we are assuming identifiability, it follows that φ is uniquely
maximized at θ
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Consistency of the MLE

Does the fact that φn(t)
p→ φ(t) ∀ t with φ maximized uniquely at θ

imply that θ̂n
p→ θ?

Unfortunately, the answer is in general no.

Example (A Deterministic Example)

Define φn(t) =


1− n|t − n−1| for 0 ≤ t ≤ 2/n,

1/2− |t − 2| for 3/2 ≤ t ≤ 5/2,

0 otherwise.
It is easy to see that φn → φ pointwise, with

φ(t) =
[

1
2 − |t − 2|]1{3/2 ≤ t ≤ 5/2}.

But now note that φn is maximized at tn = n−1 with φn(tn) = 1 for all n.
On the other hand, φ is maximized at t0 = 2.
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More assumptions are needed on the φn(t).

Theorem

Suppose that {φn(t)} and φ(t) are real-valued random functions defined
on the real line. Suppose that

1 for each M > 0, sup|t|≤M |φn(t)− φ(t)| p→ 0

2 Tn maximizes φn(t) and T0 is the unique maximizer of φ(t)

3 ∀ε > 0, there exists Mε such that P[|Tn| > Mε] < ε ∀n

Then, Tn
p→ T0

If φn are concave, can weaken the assumptions,

Theorem

Suppose that {φn(t)} and φ(t) are random concave functions defined on
the real line. Suppose that

1 φn(t)
p→ φ(t) for all t

2 Tn maximizes φn and T0 is the unique maximizer of φ.

Then, Tn
p→ T0.
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Example (Exponential Families)

Let X1, ...,Xn be iid random variables from a one-parameter exponential
family

f (x ; θ) = exp{c(θ)T (x)− d(θ) + S(x)}, x ∈ suppf .

The MLE of θ maximizes

φn(t) =
1

n

n∑
i=1

[c(t)T (Xi )− d(t)]

If c(·) is continuous and 1-1 with inverse c−1(·), we may define u = c(t)
and consider

φ∗n(u) =
1

n

n∑
i=1

[uT (Xi )− d0(u)]

with d0(u) = d(c−1(u)). It follows that φ∗n is a concave function, since its
second derivative is, (φ∗n)′′(u) = −d ′′0 (u), which is negative
(d ′′0 (u) = VarT (Xi )).
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Example (Exponential Families)

Now, by the weak law of large numbers, for each u, we have

φ∗n(u)
p→ uE[T (X1)]− d0(u) = φ∗(u).

Furthermore, φ∗(u) is maximized when d ′0(u) = E[T (X1)]. But since,

E[T (X1)] = d ′0(c(θ)),

we must have that φ∗ is maximized when

d ′0(u) = d ′0(c(θ))

The condition holds is if we set u = c(θ), so c(θ) is a maximizer of φ∗. By
concavity, it is the unique maximizer.
It follows from our theorem that if ûn = c(θ̂n) then ûn = c(θ̂n)

p→ c(θ).
But c is 1-1 and continuous, so the continuous mapping theorem implues

θ̂n
p→ θ.
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Maximum Likelihood Estimators

Recall our definition of a maximum likelihood estimator:

Definition (Maximum Likelihood Estimators)

Let X = (X1, ...,Xn) be a random sample from Fθ, and suppose that θ̂ is
such that

L(θ̂) ≥ L(θ), ∀ θ ∈ Θ.

Then θ̂ is called a maximum likelihood estimator of θ.

We saw that, under regularity conditions, the distribution of a consistent
sequence of MLEs converges weakly to the normal distribution centred
around the true parameter value when this is real.

Consistent likelihood equation roots

Newton-Raphson and “one-step” estimators

The multivariate parameter case

What happens if the model has been mis-specified?
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Consistent Likelihood Roots

Theorem

Let {f (·; θ)}θ∈R be an identifiable parametric class of densities
(frequencies) and let X1, ...,Xn be iid random variables each having density
f (x ; θ0). If the support of f (·; θ) is independent of θ,

P[L(θ0|X1, ...,Xn) > L(θ|X1, ...,Xn)]
n→∞−→ 1

for any fixed θ 6= θ0.

Therefore, with high probability, the likelihood of the true parameter
exceeds the likelihood of any other choice of parameter, provided that
the sample size is large.

Hints that extrema of L(θ;X) should have something to do with θ0

(even though we saw that without further assumptions a maximizer of
L is not necessarily consistent).
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Proof.

Notice that

L(θ0|Xn) > L(θ|Xn) ⇐⇒ 1

n

n∑

i=1

log

[
f (Xi ; θ)

f (Xi ; θ0)

]
< 0

By the WLLN,

1

n

n∑

i=1

log

[
f (Xi ; θ)

f (Xi ; θ0)

]
p→ E log

[
f (X ; θ)

f (X ; θ0)

]
= −KL(fθ‖fθ0)

But we have seen that the KL-divergence is zero only at θ0 and positive
everywhere else.
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Consistent Sequences of Likelihood Roots

Theorem (Cramér)

Let {f (·; θ)}θ∈R be an identifiable parametric class of densities
(frequencies) and let X1, ...,Xn be iid random variables each having density
f (x ; θ0). Assume that the the support of f (·; θ) is independent of θ and
that f (x ; θ) is differentiable with respect to θ for (almost) all x. Then,
given any ε > 0, with probability tending to 1 as n→∞, the likelihood
equation

∂

∂θ
`(θ; X1, ...,Xn) = 0

has a root θ̂n(X1, ...,Xn) such that |θ̂n(X1, ...,Xn)− θ0| < ε.

Does not tell us which root to choose, so not useful in practice

Actually the consistent sequence is essentially unique
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Corollary (Consistency of Unique Solutions)

Under the assumptions of the previous theorem, if the likelihood equation
has a unique root δn for each n and all x, then δn is a consistent sequence
of estimators for θ0.

The statement remains true if the uniqueness requirement is
substituted with the requirement that the probability of multiple roots
tends to zero as n→∞.

Notice that the statement does not claim that the root corresponds
to a maximum: it merely requires that we have a root.

On the other hand, even when the root is unique, the corollary says
nothing about its properties for finite n.

Example (Minimum Likelihood Estimation)

Let X take the values 0, 1, 2 with probabilities 6θ2 − 4θ + 1, θ − 2θ2 and
3θ − 4θ2 (θ ∈ (0, 1/2)). Then, the likelihood equation has a unique root
for all x , which is a minimum for x = 0 and a maximum for x = 1, 2.
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Consistent Sequences of Likelihood Roots

Fortunately, some “good” estimator is already available, then...

Lemma

Let αn be any consistent sequence of estimators for the parameter θ. For
each n, let θ∗n denote the root of the likelihood equations that is closest to
αn. Then, under the assumptions of Cramér’s theorem, θ∗n → θ.

Therefore, when the likelihood equations do not have a single root,
we may still choose a root based on some estimator that is readily
available

↪→ Only require that the estimator used is consistent
↪→ Often the case with Plug-In or MoM estimators

Very often, the roots will not be available in closed form. In these
cases, an iterative approach will be required to approximate the roots
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The Newton-Raphson Algorithm

We wish to solve the equation

`′(θ) = 0

Supposing that θ̃ is close to a root (perhaps is a consistent estimator),

0 = `′(θ̂) ' `′(θ̃) + (θ̂ − θ̃)`′′(θ̃)

By using a second-order Taylor expansion. This suggests

θ̂ ' θ̃ − `′(θ̃)

`′′(θ̃)

The procedure can then be iterated by replacing θ̃ by the right hand side
of the above relation.
→ Many issues regarding convergence, speed of convergence, etc...
(numerical analysis course)
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Construction of Asymptotically MLE-like Estimators

Theorem

Suppose that assumptions (A1)-(A6) hold and let θ̃n be a consistent
estimator of θ0 such that

√
n(θ̃n − θ0) is bounded in probability. Then, the

sequence of estimators

δn = θ̃n −
`′(θ̃n)

`′′(θ̃n)

satisfies √
n(δn − θ0)

d→ N (0, I (θ)/J(θ)2).

Therefore, with a single Newton-Raphson step, we may obtain an
estimator that, asymptotically, behaves like a consistent MLE.

↪→ Provided that we have a
√

n−consistent estimator!

The “one-step” estimator does not necessarily behave like an MLE for
finite n!
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Proof.

We Taylor expand around the true value, θ0,

`′(θ̃n) = `′(θ0) + (θ̃n − θ0)`′′(θ0) +
1

2
(θ̃n − θ0)2`′′′(θ∗n)

with θ∗n between θ0 and θ̃n. Subsituting this expression into the definition
of δn yields

√
n(δn − θ0) =

(1/
√

n)`′(θ0)

−(1/n)`′′(θ̃n)
+
√

n(θ̃n − θ0)×

×
[

1− `′′(θ0)

`′′(θ̃n)
− 1

2
(θ̃n − θ0)

`′′′(θ∗n)

`′′(θ̃n)

]

Exercise.

Use the central limit theorem and the law of large numbers to complete
the proof.
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The Multiparameter Case

→ Extension of asymptotic results to multiparameter models easy under
similar assumptions, but notationally cumbersome.
→ Same ideas: the MLE will be a zero of the likelihood equations

n∑

i=1

∇`(Xi ;θ) = 0

A Taylor expansion can be formed

0 =
1√
n

n∑

i=1

∇`(Xi ;θ) +

(
1

n

n∑

i=1

∇2`(Xi ;θ
∗
n)

)
√

n(θ̂N − θ)

Under regularity conditions we should have:

1√
n

∑n
i=1∇`(Xi ;θ)

d→ Np(0,Cov[∇`(Xi ;θ)])

1
n

∑n
i=1∇2`(Xi ;θ

∗
n)

p→ E[∇2`(Xi ;θ)]
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The Multiparameter Case

Regularity Conditions

(B1) The parameter space Θ ∈ Rp is open.

(B2) The support of f (·|θ), suppf (·|θ), is independent of θ

(B3) All mixed partial derivatives of ` w.r.t. θ up to degree 3 exist and are
continuous.

(B4) E[∇`(Xi ;θ)] = 0 ∀θ and Cov[∇`(Xi ;θ)] =: I (θ) � 0 ∀θ.

(B5) −E[∇2`(Xi ;θ)] =: J(θ) � 0 ∀θ.

(B6) ∃δ > 0 s.t. ∀θ ∈ Θ and for all 1 ≤ j , k , l ≤ p,

∣∣∣∣
∂

∂θj∂θk∂θl
`(x ;u)

∣∣∣∣ ≤ Mjkl(x)

for ‖θ − u‖ ≤ δ with Mjkl such that E[Mjkl(Xi )] <∞.

The interpretation of the conditions is the same as with the
one-dimensional case
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The Multiparameter Case

Theorem (Asymptotic Normality of the MLE)

Let X1, ...,Xn be iid random variables with density (frequency) f (x ;θ),
satisfying conditions (B1)-(B6). If θ̂n = θ̂(X1, ...,Xn) is a consistent
sequence of MLE estimators, then

√
n(θ̂n − θ)

d→ Np(0, J−1(θ)I (θ)J−1(θ))

The theorem remains true if each Xi is a random vector

The proof mimics that of the one-dimensional case
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Misspecification of Models

Statistical models are typically mere approximations to reality

George P. Box: “all models are wrong, but some are useful”

As worrying as this may seem, it may not be a problem in practice.

Often the model is wrong, but is “close enough” to the true situation

Even if the model is wrong, the parameters often admit a fruitful
interpretation in the context of the problem.

Example

Let X1, ...,Xn be iid Exponential(λ) r.v.’s but we have modelled them as
having the following two parameter density

f (x |α, θ) =
α

θ

(
1 +

x

θ

)−(α+1)
, x > 0

with α and θ positive unknown parameters to be estimated.

Statistical Theory (Likelihood) Maximum Likelihood 15 / 24

Example (cont’d)

Notice that the exponential distribution is not a member of this
parametric family.

However, letting α, θ →∞ at rates such that α/θ → λ, we have

f (x |α, θ)→ λ exp(−λx)

Thus, we may approximate the true model from within this class.
Reasonable α̂ and λ̂ will yield a density “close” to the true density.

Example

Let X1, ...,Xn be independent random variables with variance σ2 and mean

E[Xi ] = α + βti

If we assume that the Xi are normal when they are in fact not, the MLEs
of the parameters α, β, σ2 remain good (in fact optimal in a sense) for the
true parameters (Gauss-Markov theorem).
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Misspecified Models and Likelihood

The Framework

X1, ...,Xn are iid r.v.’s with distribution F

We have assumed that the Xi admit a density in {f (x ; θ)}θ∈Θ.

The true distribution F does not correspond to any of the {fθ}

Let θ̂n be a root of the likelihood equation,

n∑

i=1

`′(Xi ; θ̂n) = 0

where the log-likelihood `(θ) is w.r.t. f (·|θ).

What exactly is θ̂n estimating?

What is the behaviour of the sequence {θ̂n}n≥1 as n→∞?
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Misspecified Models and Likelihood

Consider the functional parameter θ(F ) defined by

∫ +∞

−∞
`′(x ; θ(F ))dF (x) = 0

Then, the plug-in estimator of θ(F ) when using the edf F̂n as an estimator
of F is given by solving

∫ +∞

−∞
`′(x ; θ(F̂n))dF̂n(x) = 0 ⇐⇒

n∑

i=1

`′(Xi ; θ̂n) = 0

so that the MLE is a plug-in estimator of θ(F ).
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Model Misspecification and the Likelihood

Theorem

Let X1, ...,Xn
iid∼ F and let θ̂n be a random variable solving the equations∑n

i=1 `
′(Xi ; θ) = 0 for θ in the open set Θ. If

(a) `′ is a strictly monotone function on Θ for each x

(b)
∫ +∞
−∞ `′(x ; θ(F ))dF (x) = 0 has a unique solution θ = θ(F ) on Θ

(c) I (F ) :=
∫ +∞
−∞ [`′(x ; θ(F ))]2dF (x) <∞

(d) J(F ) := −
∫ +∞
−∞ `′′(x ; θ(F ))dF (x) <∞

(e) |`′′′(x ; t)| ≤ M(x) for t ∈ (θ(F )− δ, θ(F ) + δ), some δ > 0 and∫ +∞
−∞ M(x)dF (x) <∞

Then
θ̂n

p→ θ(F )

and √
n(θ̂n − θ(F ))

d→ N (0, I (F )/J2(F ))

Statistical Theory (Likelihood) Maximum Likelihood 19 / 24

Proof.

Assume without loss of generality that `′(x ; θ) is strictly decreasing in θ.
Let ε > 0 and observe that

P[|θ̂n − θ(F )| > ε] = P
[{
θ̂n − θ(F ) > ε

}
∪
{
θ(F )− θ̂n > ε

}]

≤ P
[{
θ̂n − θ(F ) > ε

}]
+ P

[{
θ(F )− θ̂n > ε

}]
.

By our monotonicity assumption, we have

θ̂n − θ(F ) > ε =⇒ θ̂n > θ(F ) + ε =⇒ 1

n

n∑

i=1

`′(Xi ; θ(F ) + ε) > 0

because θ̂n is the solution to the equation 1
n

∑n
i=1 `

′(Xi ; θ) = 0.
Similarly we also obtain

θ(F )− θ̂n > ε =⇒ θ(F )− ε > θ̂n =⇒ 1

n

n∑

i=1

`′(Xi ; θ(F )− ε) < 0.
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Hence,

P[|θ̂n − θ(F )| > ε] ≤ P
[

1

n

n∑

i=1

`′(Xi ; θ(F ) + ε) > 0

]

+ P
[

1

n

n∑

i=1

`′(Xi ; θ(F )− ε) < 0

]
.

We may re-write the first term on the right-hand side as

P
[

1

n

n∑

i=1

`′(Xi ; θ(F ) + ε) > 0

]
= P

[
1

n

n∑

i=1

`′(Xi ; θ(F ) + ε)

−
∫ ∞

−∞
`′(x ; θ(F ) + ε)dF (x) > −

∫ ∞

−∞
`′(x ; θ(F ) + ε)dF (x)

]
.

This converges to zero because the monotonicity assumption implies that
−
∫∞
−∞ `

′(x ; θ(F ) + ε)dF (x) > 0 and the law of large numbers implies that

1

n

n∑

i=1

`′(Xi ; θ(F ) + ε)
p−→
∫ ∞

−∞
`′(x ; θ(F ))dF (x).
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Similar arguments give

P

[
1

n

n∑

i=1

`′(Xi ; θ(F )− ε) < 0

]
→ 0

and thus
θ̂n

p−→ θ(F ).

Expanding the equation that defines the estimator in a Taylor series, gives

0 =
n∑

i=1

`′(Xi ; θ̂n) =
1√
n

n∑

i=1

`′(Xi ; θ(F )) +

+
√

n(θ̂n − θ(F ))
1

n

n∑

i=1

`′′(Xi ; θ(F ))

+
√

n(θ̂n − θ(F ))2 1

2n

n∑

i=1

`′′′(Xi ; θ
∗
n)
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Here, θ∗n lies between θ(F ) and θ̂n.

Exercise: complete the proof by mimicking the proof of asymptotic
normality of MLEs.

The result extends immediately to the multivariate parameter case.

Notice that the proof is essentially identical to MLE asymptotics
proof.

The difference is the first part, where we show consistency.

This is where assumptions (a) and (b) come in

These can be replaced by any set of assumptions yielding consistency

Indicated the subtleties that are involved when proving convergence
for indirectly defined estimators
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Model Misspecification and the Likelihood

What is the interpretation of the parameter θ(F ) in the misspecified setup?

Suppose that F has density (frequency) g and assume that
integration/differentiation may be interchanged:

∫ +∞

−∞

d

dθ
log f (x ; θ)dF (x) = 0 ⇐⇒ d

dθ

∫ +∞

−∞
log f (x ; θ)dF (x) = 0

⇐⇒ d

dθ

[∫ +∞

−∞
log f (x ; θ)dF (x)−

∫ +∞

−∞
log g(x)dF (x)

]
= 0

⇐⇒ d

dθ
KL(f (x ; θ)‖g(x)) = 0

When the equation is assumed to have a unique solution, then this is
to be though as a minimum of the KL-distance

Hence we may intuitively think of the θ(F ) as the element of Θ for
which fθ is “closest” to F in the KL-sense.
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Statistics as a Random Game?

Nature and a statistician decide to play a game. What’s in the box?

A family of distributions F, usually assumed to admit densities
(frequencies). This is the variant of the game we decide to play.

A parameter space Θ ⊆ Rp which parametrizes the family
F = {Fθ}θ∈Θ. This represents the space of possible
plays/moves available to Nature.

A data space X , on which the parametric family is supported. This
represents the space of possible outcomes following a play by Nature.

An action space A, which represents the space of possible actions or
decisions or plays/moves available to the statistician.

A loss function L : Θ×A → R+. This represents how much
the statistician has to pay nature when losing.

A set D of decision rules. Any δ ∈ D is a (measurable) function
δ : X → A. These represent the possible strategies available to the
statistician.
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Statistics as a Random Game?

How the game is played:

First we agree on the rules:
1 Fix a parametric family {Fθ}θ∈Θ

2 Fix an action space A
3 Fix a loss function L

Then we play:
1 Nature selects (plays) θ0 ∈ Θ.
2 The statistician observes X ∼ Fθ0

3 The statistician plays α ∈ A in response.
4 The statistician has to pay nature L(θ0, α).

Framework proposed by A. Wald in 1939. Encompasses three basic
statistical problems:

Point estimation

Hypothesis testing

Interval estimation
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Point Estimation as a Game

In the problem of point estimation we have:

1 Fixed parametric family {Fθ}θ∈Θ

2 Fixed an action space A = Θ

3 Fixed loss function L(θ, α) (e.g. ‖θ − α‖2)

The game now evolves simply as:

1 Nature picks θ0 ∈ Θ

2 The statistician observes X ∼ Fθ0

3 The statistician plays δ(X) ∈ A = Θ

4 The statistician loses L(θ0, δ(X))

Notice that in this setup δ is an estimator (it is a statistic X → Θ).

The statistician always loses.
↪→ Is there a good strategy δ ∈ D for the statistician to restrict his losses?
↪→ Is there an optimal strategy?
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Risk of a Decision Rule

Statistician would like to pick strategy δ so as to minimize his losses.
But losses are random, as they depend on X.

Definition (Risk)

Given a parameter θ ∈ Θ, the risk of a decision rule δ : X → A is the
expected loss incurred when employing δ: R(θ, δ) = Eθ [L(θ, δ(X))] .

Key notion of decision theory

decision rules should be compared by comparing their risk functions

Example (Mean Squared Error)

In point estimation, the mean squared error

MSE (δ(X)) = Eθ[‖θ − δ(X)‖2]

is the risk corresponding to a squared error loss function.

Statistical Theory () Decision Theory 6 / 23

Coin Tossing Revisited

Consider the “coin tossing game” with quadratic loss:

Nature picks θ ∈ [0, 1]

We observe n variables Xi
iid∼ Bernoulli(θ).

Action space is A = [0, 1]

Loss function is L(θ, α) = (θ − α)2.

Consider 3 different decision procedures {δj}3
j=1:

1 δ1(X) = 1
n

∑n
i=1 Xi

2 δ2(X) = X1

3 δ3(X) = 1
2

Let us compare these using their associated risks as benchmarks.
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Coin Tossing Revisited

Risks associated with different decision rules:

Rj(θ) = R(θ, δj(X)) = Eθ[(θ − δj(X))2]

R1(θ) = 1
nθ(1− θ)

R2(θ) = θ(1− θ)

R3(θ) =
(
θ − 1

2

)2
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Coin Tossing Revisited
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Risk of a Decision Rule

Saw that decision rule may strictly dominate another rule (R2(θ)>R1(θ)).

Definition (Inadmissible Decision Rule)

Let δ be a decision rule for the experiment ({Fθ}θ∈Θ,L). If there exists a
decision rule δ∗ that strictly dominates δ, i.e.

R(θ, δ∗) ≤ R(θ, δ), ∀θ ∈ Θ & ∃ θ′ ∈ Θ : R(θ′, δ∗) < R(θ′, δ),

then δ is called an inadmissible decision rule.

An inadmissible decision rule is a “silly” strategy since we can find a
strategy that always does at least as well and sometimes better.

However “silly” is with respect to L and Θ. (it may be that our
choice of L is “silly”!!!)

If we change the rules of the game (i.e. different loss or different
parameter space) then domination may break down.
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Risk of a Decision Rule

Example (Exponential Distribution)

Let X1, ...,Xn
iid∼ Exponential(λ), n ≥ 2. The MLE of λ is

λ̂ =
1

X̄

with X̄ the empirical mean. Observe that

Eλ[λ̂] =
nλ

n − 1
.

It follows that λ̃ = (n − 1)λ̂/n is an unbiased estimator of λ. Observe now
that

MSEλ(λ̃) < MSEλ(λ̂)

since λ̃ is unbiased and Varλ(λ̃) < Varλ(λ̂). Hence the MLE is an
inadmissible rule for quadratic loss.
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Risk of a Decision Rule

Example (Exponential Distribution)

Notice that the parameter space in this example is (0,∞). In such cases,
quadratic loss tends to penalize over-estimation more heavily than
under-estimation (the maximum possible under-estimation is bounded!).
Considering a different loss function gives the opposite result! Let

L(a, b) =
a

b
− 1− log(a/b)

where, for each fixed a, limb→0L(a, b) = limb→∞L(a, b) =∞. Now,

R(λ, λ̃) = Eλ

[
nλX̄

n − 1
− 1− log

(
nλX̄

n − 1

)]
= Eλ

[
λX̄ − 1− log(λX̄ )

]
+

Eλ(λX̄ )

n − 1
− log

(
n

n − 1

)
> Eλ

[
λX̄ − 1− log(λX̄ )

]
= R(λ, λ̂).

Statistical Theory () Decision Theory 12 / 23



Criteria for Choosing Decision Rules

Definition (Admissible Decision Rule)

A decision rule δ is admissible for the experiment ({Fθ}θ∈Θ,L) if it is not
strictly dominated by any other decision rule.

In non-trivial problems, it may not be easy at all to decide whether a
given decision rule is admissible.

Stein’s paradox (“one of the most striking post-war results in
mathematical statistics”-Brad Efron)

Admissibility is a minimal requirement - what about the opposite end
(optimality) ?

In almost any non-trivial experiment, there will be no decision rule
that makes risk uniformly smallest over θ

Narrow down class of possible decision rules by
unbiasedness/symmetry/... considerations, and try to find uniformly
dominating rules of all other rules (next week!).
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Minimax Decision Rules

Another approach to good procedures is to use global rather than
local criteria (with respect to θ).

Rather than look at risk at every θ ↔ Concentrate on maximum risk

Definition (Minimax Decision Rule)

Let D be a class of decision rules for an experiment ({Fθ}θ∈Θ,L). If
δ ∈ D is such that

sup
θ∈Θ

R(θ, δ) ≤ sup
θ∈Θ

R(θ, δ′), ∀ δ′ ∈ D,

then δ is called a minimax decision rule.

A minimax rule δ satisfies supθ∈ΘR(θ, δ) = infκ∈D supθ∈Θ R(θ, κ).

In the minimax setup, a rule is preferable to another if it has smaller
maximum risk.
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Minimax Decision Rules

A few comments on minimaxity:

Motivated as follows: we do not know anything about θ so let us
insure ourselves against the worst thing that can happen.

Makes sense if you are in a zero-sum game: if your opponent chooses
θ to maximize L then one should look for minimax rules. But is
nature really an opponent?

If there is no reason to believe that nature is trying to “do her worst”,
then the minimax principle is overly conservative: it places emphasis
on the “bad θ”.

Minimax rules may not be unique, and may not even be admissible. A
minimax rule may very well dominate another minimax rule.

A unique minimax rule is (obviously) admissible.

Minimaxity can lead to counterintuitive results. A rule may dominate
another rule, except for a small region in Θ, where the other rule
achieves a smaller supremum risk.
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Minimax Decision Rules

Inadmissible minimax rule
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Bayes Decision Rules

Wanted to compare decision procedures using global rather than local
criteria (with respect to θ).

We arrived at the minimax principle by assuming we have no idea
about the true value of θ.

Suppose we have some prior belief about the value of θ. How can this
be factored in our risk-based considerations?

Rather than look at risk at every θ ↔ Concentrate on average risk

Definition (Bayes Risk)

Let π(θ) be a probability density (frequency) on Θ and let δ be a decision
rule for the experiment ({Fθ}θ∈Θ,L). The π-Bayes risk of δ is defined as

r(π, δ) =

∫
Θ

R(θ, δ)π(θ)dθ =

∫
Θ

∫
X
L(θ, δ(x))Fθ[dx]π(θ)dθ

The prior π(θ) places different emphasis for different values of θ based on
our prior belief/knowedge.
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Bayes Decision Rules

Bayes principle: a decision rule is preferable to another if it has
smaller Bayes risk (depends on the prior π(θ)!).

Definition (Bayes Decision Rule)

Let D be a class of decision rules for an experiment ({Fθ}θ∈Θ,L) and let
π(·) be a probability density (frequency) on Θ. If δ ∈ D is such that

r(π, δ) ≤ r(π, δ′) ∀ δ′ ∈ D,

then δ is called a Bayes decision rule with respect to π.

The minimax principle aims to minimize the maximum risk.

The Bayes principle aims to minimize the average risk

Sometime no Bayes rule exist becaise the infimum may not be
attained for any δ ∈ D. However in such cases ∀ε > 0 ∃δε ∈ D:
r(π, δε) < infδ∈D r(π, δ) + ε.
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Admissibility of Bayes Rules

Rule of thumb: Bayes rules are nearly always admissible.

Theorem (Discrete Case Admissibility)

Assume that Θ = {θ1, ..., θt} is a finite space and that the prior π(θi ) > 0,
i = 1, ..., t. Then a Bayes rule with respect to π is admissible.

Proof.

Let δ be a Bayes rule, and suppose that κ strictly dominates δ. Then

R(θj , κ) ≤ R(θj , δ), ∀j

R(θj , κ)π(θj) ≤ R(θj , δ)π(θj), ∀θ ∈ Θ∑
j

R(θj , κ)π(θj) <
∑

j

R(θ, δ)π(θj)

which is a contradiction (strict inequality follows by strict domination and
the fact that π(θj) is always positive).
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Admissibility of Bayes Rules

Theorem (Uniqueness and Admissibility)

If a Bayes rule is unique, it is admissible.

Proof.

Suppose that δ is a unique Bayes rule and assume that κ strictly
dominates it. Then,∫

Θ
R(θ, κ)π(θ)dθ ≤

∫
Θ

R(θ, δ)π(θ)dθ.

as a result of strict domination and by π(θ) being non-negative. This
implies that κ either improves upon δ, or κ is a Bayes rule. Either
possibility contradicts our assumption.
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Admissibility of Bayes Rules

Theorem (Continuous Case Admissibility)

Let Θ ⊂ Rd . Assume that the risk functions R(θ, δ) are continuous in θ
for all decision rules δ ∈ D. Suppose that π places positive mass on any
open subset of Θ. Then a Bayes rule with respect to π is admissible.

Proof.

Let κ be a decision rule that strictly dominates δ. Let Θ0 be the set on
which R(θ, κ) < R(θ, δ). Given a θ0 ∈ Θ0, we have R(θ0, κ) < R(θ0, δ).
By continuity, there must exist an ε > 0 such that R(θ, κ) < R(θ, δ) for all
theta satisfying ‖θ − θ0‖ < ε. It follows that Θ0 is open and hence, by our
assumption, π[Θ0] > 0. Therefore, it must be that∫

Θ0

R(θ, κ)π(θ)dθ <

∫
Θ0

R(θ, δ)π(θ)dθ
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Admissibility of Bayes Rules

Observe now that

r(π, κ) =

∫
Θ

R(θ, κ)π(θ)dθ

=

∫
Θ0

R(θ, κ)π(θ)dθ +

∫
Θc

0

R(θ, κ)π(θ)dθ

<

∫
Θ0

R(θ, δ)π(θ)dθ +

∫
Θc

0

R(θ, δ)π(θ)dθ

= r(π, δ),

since
∫

Θc
0

R(θ, κ)π(θ)dθ ≤ ∫Θc
0

R(θ, δ)π(θ)dθ, while we have strict

inequality on Θ0, contradicting our assumption that δ is a Bayes rule.

The continuity assumption and the assumption on π ensure that Θ0

is not an isolated set, and has positive measure, so that it
“contributes” to the integral.
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Randomised Decision Rules

Given

decision rules δ1, ..., δk

probabilities πi ≥ 0,
∑k

i=1 pi = 1

we may define a new decision rule

δ∗ =
k∑

i=1

piδi

called a randomised decision rule. Interpretation:

Given data X, choose a δi randomly according to p but independent of X.
If δj is the outcome (1 ≤ j ≤ k), then take action δj(X).

→ Risk of δ∗ is average risk: R(θ, δ∗) =
∑k

i=1 piR(θ, δi )

Appears artificial but often minimax rules are randomised

Examples of randomised rules with supθ R(θ, δ∗) < supθ R(θ, δi )∀i
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Decision Theory Framework

Saw how point estimation can be seen as a game: Nature VS Statistician.
The decision theory framework includes:

A family of distributions F, usually assumed to admit densities
(frequencies) and a parameter space Θ ⊆ Rp which parametrizes the
family F = {Fθ}θ∈Θ.

A data space X , on which the parametric family is supported.

An action space A, which represents the space of possible actions
available to the statistician. In point estimation A ≡ Θ

A loss function L : Θ×A → R+. This represents the lost incurred
when estimating θ ∈ Θ by α ∈ A.

A set D of decision rules. Any δ ∈ D is a (measurable) function
δ : X → A. In point estimation decision rules are simply estimators.

Performance of decision rules was to be judged by the risk they induce:

R(θ, δ) = Eθ[L(θ, δ(X))], θ ∈ Θ,X ∼ Fθ, δ ∈ D
Statistical Theory () MVUE 3 / 24

Optimality in Point Estimation

An optimal decision rule would be one that uniformly minimizes risk:

R(θ, δOPTIMAL) ≤ R(θ, δ), ∀θ ∈ Θ & ∀δ ∈ D.

But such rules can very rarely be determined.
↪→ optimality becomes a vague concept

↪→ can be made precise in many ways...

Avenues to studying optimal decision rules include:

Restricting attention to global risk criteria rather than local
↪→ Bayes and minimax risk.

Focusing on restricted classes of rules D
↪→ e.g. Minimum Variance Unbiased Estimation.

Studying risk behaviour asymptotically (n→∞)

↪→ e.g. Asymptotic Relative Efficiency.
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Unbiased Estimators under Quadratic Loss

Focus on Point Estimation

1 Assume that Fθ is known up to the parameter θ which is unknown

2 Let (x1, ..., xn) be a realization of X ∼ Fθ which is available to us

3 Estimate the value of θ that generated the sample given (x1, ..., xn)

Focus on Quadratic Loss

Error incurred when estimating θ by θ̂ = δ(X) is

L(θ, θ̂) = ‖θ − θ̂‖2

giving MSE as risk R(θ, θ̂) = Eθ‖θ − θ̂‖2 = Variance + Bias2.

RESTRICT class of estimators (=decision rules)

Consider ONLY ubiased estimators: D := {δ : X → Θ|Eθ[δ(X)] = θ}.
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Comments on Unbiasedness

Unbiasedness requirement is one means of reducing the class of
rules/estimators we are considering
↪→ Other requirements could be invariance or equivariance, e.g.

δ(X + c) = δ(X) + c

Risk reduces to variance since bias is zero.

Not necessarily a sensible requirement
↪→ e.g. violates “likelihood principle”

Unbiased Estimators may not exist in a particular problem

Unbiased Estimators may be silly for a particular problem

However unbiasedness can be a reasonable/natural requirement in a
wide class of point estimation problems.

Unbiasedness can be defined for more general loss functions, but not
as conceptually clear (and with tractable theory) as for quadratic loss.
↪→ δ is unbiased under L if Eθ[L(θ′, δ)] ≥ Eθ[L(θ, δ)] ∀ θ, θ′ ∈ Θ.
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Comments on Unbiasedness

Example (Unbiased Estimators Need not Exist)

Let X ∼Binomial(n, θ), with θ unknown but n known. We wish to estimate

ψ = sin θ

We require that our estimator δ(X ) be unbiased, Eθ[δ] = ψ = sin θ. Such
an estimator satisfies

n∑
x=0

δ(x)

(
n

x

)
θx(1− θ)n−x = sin θ

but this cannot hold for all θ, since the sine function cannot be
represented as a finite polynomial.

The class of unbiased estimators in this case is empty.
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Comments on Unbiased Estimators

Example (Unbiased Estimators May Be “Silly”)

Let X ∼Poisson(λ). We wish to estimate the parameter

ψ = e−2λ.

If δ(X ) is an unbiased estimator of ψ, then

∞∑
x=0

δ(x)
λx

x!
e−λ = e−2λ =⇒

∞∑
x=0

δ(x)
λx

x!
= e−λ

=⇒
∞∑

x=0

δ(x)
λx

x!
=

∞∑
x=0

(−1)x λ
x

x!

so that δ(X ) = (−1)X is the only unbiased estimator of ψ.

But 0 < ψ < 1 for λ > 0, so this is clearly a silly estimator
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Comments on Unbiased Estimators

Example (A Non-Trivial Example)

Let X1, ...,Xn be iid random variables with density

f (x ;µ) = e−(x−µ), x ≥ µ ∈ R.

Two possible unbiased estimators are

µ̂ = X(1) −
1

n
& µ̃ = X̄ − 1.

In fact, tµ̂+ (1− t)µ̃ is unbiased for any t. Simple calculations reveal

R(µ, µ̂) = Var(µ̂) =
1

n2
& R(µ, µ̃) = Var(µ̃) =

1

n

so that µ̂ dominates µ̃. Will it dominate any other unbiased estimator?

(note that µ̂ depends only on the one-dimensional sufficient statistic X(1))
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Unbiased Estimation and Sufficiency

Theorem (Rao-Blackwell Theorem)

Let X be distributed according to a distribution depending on an unknown
parameter θ and let T be a sufficient statistic for θ. Let δ be decision rule
such that

1 Eθ[δ(X)] = g(θ) for all θ

2 Varθ(δ(X)) <∞, for all θ.

Then δ∗ := E[δ|T ] is an unbiased estimator of g(θ) that dominates δ, i.e.

1 Eθ[δ∗(X)] = g(θ) for all θ.

2 Varθ(δ∗(X)) ≤ Varθ(δ(X)) for all θ.

Moreover, inequality is replaced by equality if and only if Pθ[δ∗ = δ] = 1.

The theorem indicates that any candidate minimum variance unbiased
estimator should be a functions of the sufficient statistic.
Intuitively, an estimator that takes into account aspects of the sample
that are irrelevant with respect to θ, can always be improved
(throwing away some irrelevant information improves risk).Statistical Theory () MVUE 10 / 24

Proof.

Since T is sufficient for θ, E[δ|T = t] = h(t) is independent of θ, so that
δ∗ is well-defined as a statistic (depends only on X). Then,

Eθ[δ∗(X)] = Eθ[E[δ(X)|T (X)]] = Eθ[δ(X)] = g(θ).

Furthermore, we have

Varθ(δ) = Varθ[E(δ|T )] + Eθ[Var(δ|T )] ≥ Varθ[E(δ|T )]

= Varθ(δ∗)

In addition, note that

Var(δ|T ) := E[(δ − E[δ|T ])2|T ] = E[(δ − δ∗)2|T ]

so that Eθ[Var(δ|T )] = Eθ(δ − δ∗)2 > 0 unless if Pθ(δ∗ = δ) = 1.

Exercise

Show that Var(Y ) = E[Var(Y |X)] + Var[E(Y |X)] when Var(Y ) <∞.
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Unbiasedness and Sufficiency

Any admissible unbiased estimator should be a function of a sufficient
statistic

↪→ If not, we can dominate it by its conditional expectation given a
sufficient statistic.

But is any function of a sufficient statistic admissible?
(provided that it is unbiased)

Suppose that δ is an unbiased estimator of g(θ) and T , S are θ-sufficient.

What is the relationship between Varθ(E[δ|T ]︸ ︷︷ ︸
δ∗T

)
?

T Varθ(E[δ|S ]︸ ︷︷ ︸
δ∗S

)

Intuition suggests that whichever of T ,S carries the least irrelevant
information (in addition to the relevant information) should “win”

↪→ More formally, if T = h(S) then we should expect that δ∗T dominate δ∗S .
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Unbiasedness and Sufficiency

Proposition

Let δ be an unbiased estimator of g(θ) and for T ,S two θ-sufficient
statistics define

δ∗T := E[δ|T ] & δ∗S := E[δ|S ].

Then, the following implication holds

T = h(S) =⇒ Varθ(δ∗T ) ≤ Varθ(δ∗S)

1 Essentially this means that the best possible “Rao-Blackwellization” is
achieved by conditioning on a minimal sufficient statistic.

2 This does not necessarily imply that for T minimally sufficient and δ
unbiased, E[δ|T ] has minimum variance.

↪→ In fact it does not even imply that E[δ|T ] is admissible.
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Proof.

Recall the tower property of conditional expectation: if Y = f (X ), then

E[Z |Y ] = E{E(Z |X )|Y }.

Since T = f (S) we have

δ∗T = E[δ|T ]

= E[E(δ|S)|T ]

= E[δ∗S |T ]

The conclusion now follows from the Rao-Blackwell theorem.

A mathematical remark

To better understand the tower property intuitively, recall that E[Z |Y ] is
the minimizer of E[(Z − ϕ(Y ))2] over all (measurable) functions ϕ of Y .
You can combine that with the fact that

√
E[(X − Y )2] defines a Hilbert

norm on random variables with finite variance to get geometric intuition.
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Completeness, Sufficiency, Unbiasedness, and Optimality

Theorem (Lehmann-Scheffé Theorem)

Let T be a complete sufficient statistic for θ and let δ be a statistic such
that Eθ[δ] = g(θ) and Varθ(δ) <∞, ∀θ ∈ Θ. If δ∗ := E[δ|T ] and V is
any other unbiased estimator of g(θ), then

1 Varθ(δ∗) ≤ Varθ(V ), ∀θ ∈ Θ

2 Varθ(δ∗) = Varθ(V ) =⇒ Pθ[δ∗ = V ] = 1.

That is, δ∗ := E[δ|T ] is the unique Uniformly Minimum Variance Unbiased
Estimator of g(θ).

The theorem says that if a complete sufficient statistic T exists, then
the MVUE of g(θ) (if it exists) must be a function of T .

Moreover it establishes that whenever ∃ UMVUE, it is unique.

Can be used to examine whether unbiased estimators exist at all: if a
complete sufficient statistic T exists, but there exists no function h
with E[h(T )] = g(θ), then no unbiased estimator of g(θ) exists.
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Proof.

To prove (1) we go through the following steps:

Take V to be any unbiased estimator with finite variance.

Define its “Rao-Blackwellized” version V ∗ := E[V |T ]

By unbiasedness of both estimators,

0 = Eθ[V ∗ − δ∗] = Eθ[E[V |T ]− E[δ|T ]] = Eθ[h(T )], ∀θ ∈ Θ.

By completeness of T we conclude Pθ[h(T ) = 0] = 1 for all θ.

In other words, Pθ[V ∗ = δ∗] = 1 for all θ.

But V ∗ dominates V by the Rao-Blackwell theorem.

Hence Varθ(δ∗) = Varθ(V ∗)≤ Varθ(V ).

For part (2) (the uniqueness part) notice that from our reasoning above

Varθ(V ) = Varθ(δ∗) =⇒ Varθ(V ) = Varθ(V ∗)
But Rao-Blackwell theorem says
Varθ(V ) = Varθ(V ∗) ⇐⇒ Pθ[V = V ∗] = 1.
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Completeness, Sufficiency, Unbiasedness, and Optimality

Taken together, the Rao-Blackwell and Lehmann-Scheffé theorems also
suggest approaches to finding UMVUE estimators when a complete
sufficient statistic T exists:

1 Find a function h such that Eθ[h(T )] = g(θ). If Varθ[h(T )] <∞ for
all θ, then δ = h(T ) is the unique UMVUE of g(θ).

↪→ The function h can be found by solving the equation Eθ[h(T )] = g(θ)
or by an educated guess.

2 Given an unbiased estimator δ of g(θ), we may obtain the UMVUE by
“Rao-Blackwellizing” with respect to the complete sufficient statistic:

Example (Bernoulli Trials)

Let X1, ...,Xn
iid∼Bernoulli(θ). What is the UMVUE of θ2?

By the Neyman factorization theorem T = X1 + . . .+ Xn is sufficient,

Since the distribution of (X1, ...,Xn) is a 1-parameter exponential
family, T is also complete.
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Example (Bernoulli Trials)

First suppose that n = 2. If a UMVUE exists, it must be of the form h(T )
with h satisfying

θ2 =
2∑

k=0

h(k)

(
2

k

)
θk(1− θ)2−k

It is easy to see that h(0) = h(1) = 0 while h(2) = 1. Thus, for n = 2,
h(T ) = T (T − 1)/2 is the unique UMVUE of θ2.
For n > 2, set δ = 1{X1 + X2 = 2} and note that this is an unbiased
estimator of θ2. By the Lehmann-Scheffé theorem, δ∗ = E[δ|T ] is the
unique UMVUE estimator of θ2. We have

E[S |T = t] = P[X1 + X2 = 2|T = t]

=
Pθ[X1 + X2 = 2,X3 + . . .+ Xn = t − 2]

Pθ[T = t]

=

{
0 if t ≤ 1(n−2
t−2

)
/
(n
t

)
if t ≥ 2

}
=

t(t − 1)

n(n − 1)
.
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Variance Lower Bounds for Unbiased Estimators

Often → minimal sufficient statistic exists but is not complete.

↪→ Cannot appeal to the Lehmann-Scheffé theorem in search of a UMVUE.

However, if we could establish a lower bound for the variance as a
function of θ, than an estimator achieving this bound will be the
unique UMVUE.

The Aim

For iid X1, ...,Xn with density (frequency) depending on θ unknown, we
want to establish conditions under which

Varθ[δ] ≥ φ(θ), ∀θ

for any unbiased estimator δ. We also wish to determine φ(θ).

Let’s take a closer look at this...
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Cuachy-Schwarz Bounds

Theorem (Cauchy-Schwarz Inequality)

Let U,V be random variables with finite variance. Then,

Cov(U,V ) ≤
√

Var(U)Var(V )

The theorems yields an immediate lower bound for the variance of an
unbiased estimator δ0:

Varθ(δ0) ≥ Cov2
θ(δ0,U)

Varθ(U)

which is valid for any random variable U with Varθ(U) <∞ for all θ.

The bound can be made tight be choosing a suitable U.
However this is still not very useful as it falls short of our aim

The bound will be specific to δ0, while we want a bound that holds for
any unbiased estimator δ.

Is there a smart choice of U for which Covθ(δ0,U) depends on
g(θ) = Eθ(δ0) only? (and so is not specific to δ0)
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Optimizing the Cauchy-Schwartz Bound

Assume that θ is real and the following regularity conditions hold

Regularity Conditions

(C1) The support of A := {x : f (x; θ) > 0} is independent of θ

(C2) f (x; θ) is differentiable w.r.t. θ, ∀θ ∈ Θ

(C3) Eθ
[
∂
∂θ log f (X; θ)

]
= 0

(C4) For a statistic T = T (X) with Eθ|T | <∞ and g(θ) = EθT
differentiable,

g ′(θ) = Eθ
[

T
∂

∂θ
log f (X; θ)

]
, ∀θ

To make sense of (C3) and (C4), suppose that f (·; θ) is a density. Then

d

dθ

∫
S(x)f (x; θ)dx

!
=

∫
S(x)

f (x ; θ)

f (x ; θ)

d

dθ
f (x; θ)dx =

∫
S(x)f (x; θ)

d

dθ
log f (x; θ)dx

provided integration/differentiation can be interchanged.
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The Cramér-Rao Lower Bound

Theorem

Let X = (X1, ...,Xn) have joint density (frequency) f (x; θ) satisfying
conditions (C1), (C2) and (C3). If the statistic T satisfies condition (C 4),
then

Varθ(T ) ≥ [g ′(θ)]2

I (θ)

with I (θ) = Eθ
[(

∂
∂θ log f (X; θ)

)2
]

Proof.

By the Cauchy-Schartz inequality with U = ∂
∂θ log f (X; θ),

Varθ(T ) ≥ Cov2
θ

(
T , ∂∂θ log f (X; θ)

)
Varθ

(
∂
∂θ log f (X; θ)

)
Since Eθ

[
∂
∂θ log f (X; θ)

]
= 0 we have Varθ

(
∂
∂θ log f (X; θ)

)
= I (θ).
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The Cramér-Rao Lower Bound

Also, observe that

Covθ

(
T ,

∂

∂θ
log f (X; θ)

)
= Eθ

[
T
∂

∂θ
log f (X; θ)

]
−Eθ[T ]Eθ

[
∂

∂θ
log f (X; θ)

]
= Eθ

[
T
∂

∂θ
log f (X; θ)

]
=

d

dθ
Eθ[T ]

= g ′(θ)

which completes the proof.
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The Cramér-Rao Lower Bound

When is the Cramér-Rao lower bound achieved?

if Varθ[T ] =
[g ′(θ)]2

I (θ)

then Varθ[T ] =
Cov2

θ

[
T , ∂∂θ log f (X; θ)

]
Varθ

[
∂
∂θ log f (X; θ)

]
which occurs if and only if ∂

∂θ log f (X; θ) is a linear function of T
(correlation 1). That is, w.p.1:

∂

∂θ
log f (X; θ) = A(θ)T (x) + B(θ)

Solving this differential equation yields, for all x,

log f (x; θ) = A∗T (x) + B∗(θ) + S(x)

so that Varθ(T ) attains the lower bound if and only if the density
(frequency) of X is a one-parameter exponential family as above
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Using Data to Evaluate Theories/Assertions

Scientific theories lead to assertions that are testable using empirical
data.

Data may discredit the theory (call it a hypothesis) or not

↪→ i.e. are empirical findings reasonable under hypothesis?

Example: Large Hadron Collider in CERN, Genève. Does the Higgs
Boson exist? Study if particle trajectories are consistent with what
theory predicts.

Example: Theory of “luminoferous aether” in late 19th century to
explain light travelling in vacuum. Discredited by Michelson-Morley
experiment.

Similarities with the logical/mathematical concept of a necessary
condition

Formal statistical framework?
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Statistical Framework for Testing Hypotheses

The Problem of Hypothesis Testing

X = (X1, ...,Xn) random variables with joint density/frequency f (x; θ)

θ ∈ Θ where Θ = Θ0 ∪Θ1 and Θ0 ∩Θ1 = ∅ (or Λ(Θ0 ∩Θ1) = 0)

Observe realization x = (x1, ..., xn) of X ∼ fθ

Decide on the basis of x whether θ ∈ Θ0 or θ ∈ Θ1

↪→ Often dim(Θ0) < dim(Θ) so θ ∈ Θ0 represents a simplified model.

Example

Let X1, ...,Xn
iid∼ N (µ, 1) and Y1, ...,Yn

iid∼ N (ν, 1). Have θ = (µ, ν) and

Θ = {(µ, ν) : µ ∈ R, ν ∈ R} = R2

May be interested to see if X and Y have same distribution, even though
they may be measurements on characteristics of different groups. In this
case Θ0 = {(µ, ν) ∈ R2 : µ = ν}
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Decision Theory Perspective on Hypothesis Testing

Given X we need to decide between two hypotheses:

H0: θ ∈ Θ0 (the NULL HYPOTHESIS)

H1: θ ∈ Θ1 (the ALTERNATIVE HYPOTHESIS)

→ Want decision rule δ : X → A = {0, 1} (chooses between H0 and H1)

In hypothesis testing δ is called a test function

Often δ depends on X only through some real-valued statistic
T = T (X) called a test statistic.

Unlikely that a test function is perfect. Possible errors to be made?

Action / Truth H0 H1

0 ¨̂ Type II Error

1 Type I Error ¨̂

Potential asymmetry of errors in practice: false positive VS false negative
(e.g. spam filters for e-mail)
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Decision Theory Perspective on Hypothesis Testing

Typically loss function is “0–1” loss, i.e.

L(θ, a) =


1 if θ ∈ Θ0 & a = 1 (Type I Error)

1 if θ ∈ Θ1 & a = 0 (Type II Error)

0 otherwise (No Error)

i.e. way lose 1 unit whenever committing a type I or type II error.
−→ Leads to the following risk function:

R(θ, δ) =

{
Eθ[1{δ = 1}] = Pθ[δ = 1] if θ ∈ Θ0 (prob of type I error)

Eθ[1{δ = 0}] = Pθ[δ = 0] if θ ∈ Θ1 (prob of type II error)

In short,

R(θ, δ) = Pθ[δ = 1]1{θ ∈ Θ0}+ Pθ[δ = 0]1{θ ∈ Θ1}
“ = ” “Pθ[choose H1|H0 is true]” OR “Pθ[choose H0|H1 is true]”
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Optimal Testing?

As with point estimation, we may wish to find optimal test functions
↪→ Find test functions that uniformly minimize risk?

Possible to do in some problems, but in intractable in general
↪→ As in point estimation

How to relax problem in this case? Minimize each type I and type II
error probabilities separately?

In general there is a trade-off between the two error probabilities

For example, consider two test functions δ1 and δ2 and let

R1 = {x : δ1(x) = 1} & R2 = {x : δ2(x) = 1}
Assume that R1 ⊂ R2. Then, for all θ ∈ Θ,

Pθ[δ1(X) = 1] ≤ Pθ[δ2(X) = 1]

Pθ[δ = 0] = 1− Pθ[δ1(X) = 1] ≥ 1− Pθ[δ2(X) = 1] = Pθ[δ2(X) = 0]

so by attempting to reduce the probability of error when θ ∈ Θ0 we may
increase the the probability of error when θ ∈ Θ1!
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The Neyman-Pearson Setup

Classical approach: restrict class of test functions by “minimax reasoning”
1 We fix an α ∈ (0, 1), usually small (called the significance level)
2 We declare that we will only consider test functions δ such that

Pθ[δ = 1] ≤ α ∀θ ∈ Θ0

(
i.e. sup

θ∈Θ0

Pθ[δ = 1] ≤ α
)

i.e. rules for which prob of type I error is bounded above by α

↪→ Jargon: we fix a significance level for our test
3 Within this restricted class of rules, choose δ to minimize prob of type

II error uniformly on Θ1:

Pθ[δ(X) = 0] = 1− Pθ[δ(X) = 1]

4 Equivalently, maximize the power uniformly over Θ1

β(θ, δ) = Pθ[δ(X) = 1] = Eθ[1{δ(X) = 1}]= Eθ[δ(X)], θ ∈ Θ1

(since δ = 1 ⇐⇒ 1{δ = 1} = 1 and δ = 0 ⇐⇒ 1{δ = 1} = 0)

Statistical Theory (Week 10) Hypothesis Testing 8 / 19



The Neyman-Pearson Setup

Intuitive rationale of the approach:

Want to test H0 against H1 at significance level α

Suppose we observe δ(X) = 1 (so we take action 1)

α is usually small, so that if H0 is indeed true, we have observed
something rare or unusual

↪→ since δ = 1 has probability at most α under H0

Evidence that H0 is false (i.e. in favour of H1)

So taking action 1 is a highly reasonable decision

But what if we observe δ(X) = 0? (so we take action 0)

Our significance level does not guarrantee that our decision is
necessarily reasonable

Our decision would have been reasonable if δ was such that the type
II error was also low (given the significance level).

If we had maximized power β at level α though, then we would be
reassured of our decision.
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The Neyman-Pearson Setup

Neyman-Pearson setup naturally exploits any asymmetric structure

But, if natural asymmetry absent, need judicious choice of H0

Example: Obama VS McCain 2008. Pollsters gather iid sample X from
Ohio with Xi = 1{vote Obama}. Which pair of hypotheses to test?{

H0 : Obama wins Ohio

H1 : McCain wins Ohio
OR

{
H0 : McCain wins Ohio

H1 : Obama wins Ohio

Which pair to choose to make a prediction? (confidence intervals?)
If Obama is conducting poll to decide whether he’ll spend more money
to campaign in Ohio, then his possible losses due to errors are:
(a) Spend more $’s to campaign in Ohio even though he would win

anyway: lose $’s
(b) Lose Ohio to McCain because he thought he would win without any

extra effort.

(b) is much worse than (a) (especially since Obama had lots of $’s)

Hence Obama would pick H0 = {McCain wins Ohio} as his null
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Finding Good Test Functions

Consider simplest situation:

Have (X1, ...,Xn) ∼ f (·; θ) with Θ = {θ0, θ1}
Want to test H0 : θ = θ0 vs H1 : θ = θ1

The Neyman-Pearson Lemma

Let X = (X1, ...,Xn) have joint density (frquency) function f ∈ {f0, f1} and
suppose we wish to test

H0 : f = f0 VS H1 : f = f1.

Then, the test whose test function is given by

δ(X) =

{
1 if f1(X) ≥ k · f0(X),

0 otherwise

for some k ∈ (0,∞), is a most powerful (MP) test of H0 versus H1 at
significance level α = P0[δ(X) = 1](= E0[δ(X)] = P0[f1(X) ≥ k · f0(X)]).
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Proof.

Use obvious notation E0, E1, P0, P1 corresponding to H0 or H1.
It suffices to prove that if ψ is any function with ψ(x) ∈ {0, 1}, then

E0[ψ(X)] ≤ E0[δ(X)]︸ ︷︷ ︸
=α(by definition)

=⇒ E1[ψ(X)]︸ ︷︷ ︸
β1(ψ)

≤ E1[δ(X)]︸ ︷︷ ︸
β1(δ)

.

(recall that β1(δ) = 1− P1[δ = 0] = P1[δ = 1] = E1[δ]).
WLOG assume that f0 and f1 are density functions. Note that

f1(x)− k · f0(x) ≥ 0 if δ(x) = 1 & f1(x)− k · f0(x) < 0 if δ(x) = 0.

Since ψ can only take the values 0 or 1,

ψ(x)(f1(x)− k · f0(x)) ≤ δ(x)(f1(x)− k · f0(x))∫
Rn

ψ(x)(f1(x)− k · f0(x))dx ≤
∫

Rn

δ(x)(f1(x)− k · f0(x))dx
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Rearranging the terms yields∫
Rn

(ψ(x)− δ(x))f1(x)dx ≤ k

∫
Rn

(ψ(x)− δ(x))f0(x)dx

=⇒ E1[ψ(X)]− E1[δ(X)] ≤ k (E0[ψ(X)]− E0[δ(X)])

So when E0[ψ(X)] ≤ E0[δ(X)] the RHS is negative, i.e. δ is an MP test of
H0 vs H1 at level α.

Essentially the result says that the optimal test statistic for simple
hypotheses vs simple alternatives is T (X) = f1(X)/f0(X)

The optimal test function would then reject the null whenever T ≥ k

k is chosen so that the test has desirable level α

• The result does not guarantee existence of an MP test

• The result does not guarantee uniqueness when MP test exists
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The Neyman-Pearson Setup

General version of Neyman-Pearson lemma considers relaxed problem:

maximize E1[δ] subject to E0[δ] = α & 0 ≤ δ(X) ≤ 1 a.s.

It is then proven that an optimal δ exists and is given by

δ(X) =


1 if f1(X) > kf0(X),

c if f1(X) = kf0(X)

0 if f1(X) < kf0(X)

where k and c ∈ [0, 1] are such that the conditions are satisfied
→ The optimum need not be a test function (relaxation≡randomization)
↪→ But when the test statistic T = f1/f0 is a continuous RV, then δ can
be taken to have range {0, 1}, i.e. be a test function
↪→ In this case an MP test function of H0 : f = f0 against H1 : f = f1

exists for any significance level α > 0.
→ When T is discrete then the optimum need not be a test function for
certain levels α, unless we consider randomized tests as well.
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The Neyman-Pearson Setup

Example (Exponential Distribution)

Let X1, ...,Xn
iid∼ Exp(λ) and λ ∈ {λ1, λ2}, with λ1 > λ0 (say). Consider{

H0 : λ = λ0

H1 : λ = λ1

Have

f (x;λ) =
n∏

i=1

λe−λxi = λne−λ
Pn

i=1 xi

So Neyman-Pearson say we must base our test on the statistic

T =
f (X;λ1)

f (X;λ0)
=

(
λ1

λ0

)n

exp

[
(λ0 − λ1)

n∑
i=1

Xi

]

rejecting the null if T ≥ k, for k such that the level is α.
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The Neyman-Pearson Setup

Example (cont’d)

To determine k we note that T is a decreasing function of S =
∑n

i=1 X1

(since λ0 < λ1). Therefore

T ≥ k ⇐⇒ S ≤ K

for some K , so that

α = Pλ0 [T ≥ k] ⇐⇒ α = Pλ0

[
n∑

i=1

Xi ≤ K

]

For given values of λ0 and α it is entirely feasible to find the appropriate
K : under the null hypothesis, S has a gamma distribution with parameters
n and λ0. Hence we reject H0 at level α if S exceeds that α-quantile of a
gamma(n, λ0) distribution.
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Example (Uniform Distribution)

Let X1, ...Xn
iid∼ U [0, θ] with θ ∈ {θ0, θ1} where θ0 > θ1. Consider{

H0 : θ = θ0

H1 : θ = θ1

Recall that

f (x; θ) =
1

θn
1

{
max

1≤i≤n
Xi ≤ θ

}
so an MP test of H0 vs H1 should be based on the discrete test statistic

T =
f (X; θ1)

f (X; θ0)
=

(
θ0

θ1

)n

1{X(n) ≤ θ1}.

So if the test rejects H0 when X(n) ≤ θ1 then it is MP for H0 vs H1 at

α = Pθ0 [X(n) ≤ θ1] = (θ1/θ0)n

with power Pθ1 [X(n) ≤ θ1] = 1. What about smaller values of α?
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Example (cont’d)

↪→ What about finding an MP test for α < (θ1/θ0)n?
An intuitive test statistic is the sufficient statistic X(n), giving the test

reject H0 iff X(n) ≤ k

with k solving the equation:

Pθ0 [X(n) ≤ k] =

(
k

θ0

)n

= α,

i.e. with k = θ0α
1/n, with power

Pθ1 [X(n) ≤ θ0α
1/n] =

(
θ0α

1/n

θ1

)n

= α

(
θ0

θ1

)n

.

Is this the MP test at level α < (θ1/θ0)n though?
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Example (cont’d)

Use general form of the Neyman-Pearson lemma to solve relaxed problem:

maximize E1[δ(X)] subject to Eθ0 [δ(X)] = α <
(
θ1
θ0

)n
& 0 ≤ δ(x) ≤ 1.

One solution to this problem is given by

δ(X) =

{
α(θ0/θ1)n if X(n) ≤ θ1,

0 otherwise.

which is not a test function. However, we see that its power is

Eθ1 [δ(X)] = α

(
θ0

θ1

)n

= Pθ1 [X(n) ≤ θ0α
1/n]

which is the power of the test we proposed.
Hence the test that rejects H0 if X(n) ≤ θ0α

1/n is an MP test for all levels
α < (θ1/θ0)n.
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Neyman-Pearson Framework for Testing Hypotheses

The Problem of Hypothesis Testing

X = (X1, ...,Xn) random variables with joint density/frequency f (x; θ)

θ ∈ Θ where Θ = Θ0 ∪Θ1 and Θ0 ∩Θ1 = ∅
Observe realization x = (x1, ..., xn) of X ∼ fθ

Decide on the basis of x whether θ ∈ Θ0 (H0) or θ ∈ Θ1 (H1)

Neyman-Pearson Framework:

1 Fix a significance level α for the test

2 Among all rules respecting the significance level, pick the one that
uniformly maximizes power

When H0/H1 both simple→ Neyman-Pearson lemma settles the problem.

↪→ What about more general structure of Θ0,Θ1?
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Uniformly Most Powerful Tests

A uniformly most powerful test of H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 at level α:

1 Respects the level for all θ ∈ Θ0 (i.e. for all possible simple nulls),

Eθ[δ] ≤ α ∀θ ∈ Θ0

2 Is most powerful for all θ ∈ Θ1 (i.e. for all possible simple
alternatives),

Eθ[δ] ≥ Eθ[δ′] ∀θ ∈ Θ1 & δ′ respecting level α

Unfortunately UMP tests rarely exist. Why?
↪→ Consider H0 : θ = θ0 vs H1 : θ 6= θ0

A UMP test must be MP test for any θ 6= θ1.

But by the form of the MP test typically differs for θ1 > θ0 and
θ1 < θ0!
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Example (No UMP test exists)

Let X ∼Binom(n, θ) and suppose we want to test:

H0 : θ = θ0 vs H1 : θ 6= θ0

at some level α. To this aim, consider first

H ′0 : θ = θ0 vs H ′1 : θ = θ1

Neyman-Pearson lemma gives test statistics

T =
f (X ; θ1)

f (X ; θ0)
=

(
1− θ0

1− θ1

)n (θ1(1− θ0)

θ0(1− θ1)

)X

If θ1 > θ0 then T increasing in X

↪→ MP test would reject for large values of X

If θ1 < θ0 then T decreasing in X

↪→ MP test would reject for small values of X
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Example (A UMP test exists)

Let X1, ...,Xn
iid∼ Exp(λ) and suppose we wish to test

H0 : λ ≤ λ0 vs H1 : λ > λ0

at some level α. To this aim, consider first the pair

H ′0 : λ = λ0 vs H ′1 : λ = λ1

with λ1 > λ0 which we saw last time to admit a MP test ∀ λ1 > λ0:

Reject H0 for
n∑

i=1

Xi ≤ k, with k such that Pλ0

[
n∑

i=1

Xi ≤ k

]
= α

But for λ < λ0, Pλ0 [
∑n

i=1 Xi ≤ k] = α =⇒ Pλ [
∑n

i=1 Xi ≤ k] < α.

So the same test respects level α for all singletons under the the null.
↪→ The test is UMP of H0 vs H1
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When do UMP tests exist?

Examples: insight on which composite pairs typically admit UMP tests:

1 Hypothesis pair concerns a single real-valued parameter

2 Hypothesis pair is “one-sided”

However existence of UMP test does not only depend on hypothesis
structure, as was the case with simple vs simple...

↪→ Also depends on specific model. Sufficient condition?

Definition (Monotone Likelihood Ratio Property)

A family of density (frequency) functions {f (x; θ) : θ ∈ Θ} with Θ ⊆ R is
said to have monotone likelihood ratio if there exists a real-valued function
T (x) such that, for any θ1 < θ2, the function

f (x; θ2)

f (x; θ1)

is a non-decreasing function of T (x).
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When do UMP tests exist?

Proposition

Let X = (X1, ...,Xn) have joint distribution of monotone likelihood ratio
with respect to a statistic T , depending on θ ∈ R. Further assume that T
is a continuous random variable. Then, the test function given by

δ(X) =

{
1 if T (X) > k ,

0 if T (X) ≤ k

is UMP among all tests with type one error bounded above by Eθ0 [δ(X)]
for the hypothesis pair {

H0 : θ ≤ θ0

H1 : θ > θ1

[The assumption of continuity of the random variable T can be removed,
by considering randomized tests as well, similarly as before]
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When do UMP tests exist?

T yielding monotone likelihood ratio necessarily a sufficient statistic

Example (One-Parameter Exponential Family)

Let X = (X1, ...,Xn) have a joint density (frequency)

f (x; θ) = exp[c(θ)T (x)− b(θ) + S(x)]

and assume WLOG that c(θ) is strictly increasing. For θ1 < θ2,

f (x; θ2)

f (x; θ1)
= exp{[c(θ2)− c(θ1)]T (x) + b(θ1 − b(θ2))}

is increasing in T by monotonicity of c(·).

Hence the UMP test of H0 : θ ≤ θ0 vs H1 : θ > θ0 would reject iff
T (x) ≥ k , with α = Pθ0 [T ≥ k].
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Locally Most Powerful Tests

↪→ What if MLR property fails to be satisfied? Can optimality be “saved”?

Consider θ ∈ R and wish to test: H0 : θ ≤ θ0 vs H0 : θ > θ0

Intuition: if true θ far from θ0 any reasonable test powerful

? So focus on maximizing power in small neighbourhood of θ0

→ Consider power function β(θ) = Eθ[δ(X)] of some δ.
→ Require β(θ0) = α (a boundary condition, similar with MLR setup)
→ Assume that β(θ) is differentiable, so for θ close to θ0

β(θ) ≈ β(θ0) + β′(θ0)(θ − θ0) = α + β′(θ0)(θ − θ0)︸ ︷︷ ︸
>0

Since Θ1 = (θ0,∞), this suggests approach for locally most powerful test

Choose δ to Maximize β′(θ0) Subject to β(θ0) = α
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How do we solve this constrained optimization problem?

↪→ Solution similar to Neyman-Pearson lemma?

Supposing that X = (X1, ...Xn) has density f (x; θ), then

β(θ) =

∫
Rn

δ(x)f (x; θ)dx

∂

∂θ
β(θ) =

∫
Rn

δ(x)
∂

∂θ
f (x; θ)dx [provided interchange possible]

=

∫
Rn

δ(x)
f (x; θ)

f (x; θ)

∂

∂θ
f (x; θ)dx

=

∫
Rn

δ(x)

[
∂

∂θ
log f (x; θ)

]
f (x; θ)dx

= Eθ

δ(X)
∂

∂θ
log f (x; θ)︸ ︷︷ ︸
S(X;θ)


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Locally Most Powerful Tests

Theorem

Let X = (X1, ...,Xn) have joint density (frequency) f (x; θ) and define the
test function

δ(X) =

{
1 if S(X; θ0) ≥ k ,

0 otherwise

where k is such that Eθ0 [δ(X)] = α. Then δ maximizes

Eθ0 [ψ(X)S(X; θ0)]

over all test functions ψ satisfying the constraint Eθ0 [ψ(X)] = α.

Gives recipe for constructing LMP test

We were concerned about power only locally around θ0

• May not even give a level α test for some θ < θ0
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Proof.

Consider ψ with ψ(x) ∈ {0, 1} ∀ x and Eθ0 [ψ(X)] = α. Then,

δ(x)− ψ(x) =

{
≥ 0 if S(x; θ0) ≥ k ,

≤ 0 if S(x; θ0) ≤ k

Therefore
Eθ0 [(δ(X)− ψ(X))(S(X; θ0)− k)] ≥ 0

Since Eθ0 [δ(X)− ψ(X)] = 0 it must be that

Eθ0 [δ(X)S(X; θ0)] ≥ Eθ0 [ψ(X)S(X; θ0)]

How is the critical value k evaluated in practice? (obviously to give level α)

When {Xi} are iid then S(X; θ) =
∑n

i=1 `
′(Xi ; θ)

Under regularity conditions: sum of iid rv’s mean zero variance I (θ)

So, for θ = θ0 and large n, S(X; θ)
d≈ N (0, nI (θ))
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Example (Cauchy distribution)

Let X1, ...,Xn
iid∼Cauchy(θ), with density,

f (x ; θ) =
1

π(1 + (x − θ)2)

and consider the hypothesis pair

{
H0 : θ ≥ 0

H1 : θ ≤ 0
We have

S(X; 0) =
n∑

i=1

2Xi

1 + X 2
i

so that the LMP test at level α rejects the null if S(X; 0) ≤ k , where

P0[S(X; 0) ≤ k] = α

While the exact distribution is difficult to obtain, for large n,

S(X; 0)
d≈ N (0, n/2).
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Likelihood Ratio Tests

So far seen → Tests for Θ = R, simple vs simple, one sided vs one sided

↪→ Extension to multiparameter case θ ∈ Rp? General Θ0, Θ1?

Unfortunately, optimality theory breaks down in higher dimensions
General method for constructive reasonable tests?

→ The idea: Combine Neyman-Pearson paradigm with Max Likelihood

Definition (Likelihood Ratio)

The likelihood ratio statistic corresponding to the pair of hypotheses
H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 is defined to be

Λ(X) =
supθ∈Θ f (X; θ)

supθ∈Θ0
f (X; θ)

=
supθ∈Θ L(θ)

supθ∈Θ0
L(θ)

“Neyman-Pearson”-esque approach: reject H0 for large Λ.
Intuition: choose the “most favourable” θ ∈ Θ0 (in favour of H0) and
compare it against the “most favourable” θ ∈ Θ1 (in favour of H1) in
a simple vs simple setting (applying NP-lemma)
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Example

Let X1, ...,Xn
iid∼ N (µ, σ2) where both µ and σ2 are unknown. Consider:

H0 : µ = µ0 vs H1 : µ 6= µ0

Λ(X) =
sup(µ,σ2)∈R×R+ f (X;µ, σ2)

sup(µ,σ2)∈{µ0}×R+ f (X;µ, σ2)
=

(
σ̂2

0

σ̂2

) n
2

=

(∑n
i=1(Xi − µ0)2∑n
i=1(Xi − X̄ )2

) n
2

So reject when Λ ≥ k , where k is s.t. P0[Λ ≥ k] = α. Distribution of Λ?
By monotonicity look only at∑n

i=1(Xi − µ0)2∑n
i=1(Xi − X̄ )2

= 1 +
n(X̄ − µ0)2∑n
i=1(Xi − X̄ )2

= 1 +
1

n − 1

(
n(X̄ − µ0)2

S2

)
= 1 +

T 2

n − 1

With S2 = 1
n−1

∑n
i=1(Xi − X̄ )2 and T =

√
n(X̄ − µ0)/S

H0∼ tn−1.

So T 2 H0∼ F1,n−1 and k may be chosen appropriately.
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Example

Let X1, ...,Xm
iid∼ Exp(λ) and Y1, ...,Yn

iid∼ Exp(θ). Assume X indep Y.

Consider: H0 : θ = λ vs H1 : θ 6= λ

Unrestricted MLEs:
sup

(λ,θ)∈R2
+

f (X,Y;λ,θ)
λ̂ = 1/X̄ & θ̂ = 1/Ȳ

Restricted MLEs:
sup

(λ,θ)∈{(x,y)∈R2
+:x=y} f (X,Y;λ,θ)

λ̂0 = θ̂0 =

[
mX̄ + nȲ

m + n

]−1

=⇒ Λ =

(
m

m + n
+

n

n + m

Ȳ

X̄

)m (
n

n + m
+

m

m + n

X̄

Ȳ

)n

Depends on T = X̄/Ȳ and can make Λ large/small by varying T .

↪→ But T
H0∼ F2m,2n so given α we may find the critical value k .
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Distribution of Likelihood Ratio?

More often than not, dist(Λ) intractable
↪→(and no simple dependence on T with tractable distribution either)

Consider asymptotic approximations?
Setup

Θ open subset of Rp

either Θ0 = {θ0} or Θ0 open subset of Rs , where s < p

Concentrate on X = (X1, ...,Xn) has iid components.

Initially restrict attention to H0 : θ = θ0 vs H1 : θ 6= θ0. LR becomes:

Λn(X) =
n∏

i=1

f (Xi ; θ̂n)

f (Xi ; θ0)

where θ̂n is the MLE of θ.

Impose regularity conditions from MLE asymptotics
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Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilks’ Theorem, case p = 1)

Let X1, ...,Xn be iid random variables with density (frequency) depending
on θ ∈ R and satisfying conditions (A1)-(A6), with I (θ) = J(θ). If the
MLE sequence θ̂n is consistent for θ, then the likelihood ratio statistic Λn

for H0 : θ = θ0 satisfies

2 log Λn
d→ V ∼ χ2

1

when H0 is true.

Obviously, knowing approximate distribution of 2 log Λn is as good as
knowing approximate distribution of Λn for the purposes of testing
(by monotonicity and rejection method).

Theorem extends immediately and trivially to the case of general p
and for a hypothesis pair H0 : θ = θ0 vs H1 : θ 6= θ0.
(i.e. when null hypothesis is simple)
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Asymptotic Distribution of the Likelihood Ratio

Proof.

Under the conditions of the theorem and when H0 is true,

√
n(θ̂n − θ0)

d→ N (0, I−1(θ))

Now take logarithms and expand in a Taylor series

log Λn =
n∑

i=1

[`(Xi ; θ̂n)− `(Xi ; θ0)]

= (θ0 − θ̂n)
n∑

i=1

`′(Xi ; θ̂n)− 1

2
(θ̂n − θ0)2

n∑
i=1

`′′(Xi ; θ
∗
n)

= −1

2
n(θ̂n − θ0)2 1

n

n∑
i=1

`′′(Xi ; θ
∗
n)

where θ∗n lies between θ̂n and θ0.
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Asymptotic Distribution of the Likelihood Ratio

But under assumptions (A1)-(A6), it follows that when H0 is true,

1

n

n∑
i=1

`′′(Xi ; θ
∗
n)

p→ −Eθ0 [`′′(Xi ; θ0)] = I (θ0)

On the other hand, by the continuous mapping theorem,

n(θ̂n − θ0)2 d→ V

I (θ0)

Applying Slutsky’s theorem now yields the result.
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Asymptotic Distribution of the Likelihood Ratio

Theorem (Wilk’s theorem, general p, general s ≤ p)

Let X1, ...,Xn be iid random variables with density (frequency) depending
on θ ∈ Rp and satisfying conditions (B1)-(B6), with I (θ) = J(θ). If the
MLE sequence θ̂n is consistent for θ, then the likelihood ratio statistic Λn

for H0 : {θj = θj ,0}sj=1 satisfies 2 log Λn
d→ V ∼ χ2

s when H0 is true.

Exercise

Prove Wilks’ theorem. Note that it may potentially be that s < p.

Hypotheses of the form H0 : {gj(θ) = aj}sj=1, for gj differentiable real
functions, can also be handled by Wilks’ theorem:

Define (φ1, ..., φp) = g(θ) = (g1(θ), ..., gp(θ))

gs+1, ..., gp defined so that θ 7→ g(θ) is 1-1

Apply theorem with parameter φ
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Other Tests?

Many other tests possible once we “liberate” ourselves from strict
optimality criteria. For example:

Wald’s test

↪→ For a simple null, may compare the unrestricted MLE with the MLE
under the null. Large deviations indicate evidence against null
hypothesis. Distributions are approximated for large n via the
asymptotic normality of MLEs.

Score Test

↪→ For a simple null, if the null hypothesis is false, then the loglikelihood
gradient at the null should not be close to zero, at least when n
reasonably large: so measure its deviations form zero. Use asymptotics
for distributions (under conditions we end up with a χ2)

...
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From Hypothesis Tests to Confidence Regions
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1 p-values

2 Confidence Intervals

3 The Pivoting Method

4 Extension to Confidence Regions

5 Inverting Hypothesis Tests
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Beyond Neyman-Pearson?

So far restricted to Neyman-Pearson Framework:

1 Fix a significance level α for the test
2 Consider rules δ respecting this significance level

↪→ We choose one of those rules, δ∗, based on power considerations

3 We reject at level α if δ∗(x) = 1.

Useful for attempting to determine optimal test statistics
What if we already have a given form of test statistic in mind? (e.g. LRT)
↪→ A different perspective on testing (used more in practice) says:

Rather then consider a family of test functions respecting level α...

... consider family of test functions indexed by α

1 Fix a family {δα}α∈(0,1) of decision rules, with δα having level α

↪→ for a given x some of these rules reject the null, while others do not

2 Which is the smallest α for which H0 is rejected given x?
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Observed Significance Level

Definition (p–Value)

Let {δα}α∈(0,1) be a family of test functions satisfying

α1 < α2 =⇒ {x ∈ X : δα1(x) = 1} ⊆ {x ∈ X : δα2(x) = 1}.

The p–value (or observed significance level) of the family {δα} is

p(x) = inf{α : δα(x) = 1}

↪→ The p–value is the smallest value of α for which the null would be
rejected at level α, given X = x.
Most usual setup:

Have a single test statistic T

Construct family δα(x) = 1{T (x) > kα}
If PH0 [T ≤ t] = G (t) then p(x) = PH0 [T (X) ≥ T (x)] = 1− G (T (x))
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Observed Significance Level

Notice: contrary to NP-framework did not make explicit decision!

We simply reported a p–value

The p–value is used as a measure of evidence against H0

↪→ Small p–value provides evidence against H0

↪→ Large p–value provides no evidence against H0

How small does “small” mean?

↪→ Depends on the specific problem...

Intuition:

Recall that extreme values of test statistics are those that are
“inconsistent” with null (NP-framework)

p–value is probability of observing a value of the test statistic as
extreme as or more extreme than the one we observed, under the null

If this probability is small, the we have witnessed something quite
unusual under the null hypothesis

Gives evidence against the null hypothesis
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Example (Normal Mean)

Let X1, ...,Xn
iid∼ N (µ, σ2) where both µ and σ2 are unknown. Consider:

H0 : µ = 0 vs H1 : µ 6= 0

Likelihood ratio test: reject when T 2 large, T =
√
nX̄/S

H0∼ tn−1.

Since T 2 H0∼ F1,n−1, p–value is

p(x) = PH0 [T 2(X) ≥ T (x)] = 1− GF1,n−1(T 2(x))

Consider two samples (datasets),

x = (0.66, 0.28,−0.99, 0.007,−0.29,−1.88,−1.24, 0.94, 0.53,−1.2)

y = (1.4, 0.48, 2.86, 1.02,−1.38, 1.42, 2.11, 2.77, 1.02, 1.87)

Obtain p(x) = 0.32 while p(y) = 0.006.
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Significance VS Decision

Reporting a p–value does not necessarily mean making a decision

A small p–value can simply reflect our “confidence” in rejecting a null

↪→ reflects how statistically significant the alternative statement is

Recall example: Statisticians working for Obama gather iid sample X from
Ohio with Xi = 1{vote Obama}. Obama team want to test

{
H0 : McCain wins Ohio

H1 : Obama wins Ohio

Will statisticians decide for Obama?

Perhaps better to report p–value to him and let him decide...

What if statisticians working for newspaper, not Obama?

Something easier to interpret than test/p–value?
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A Glance Back at Point Estimation

Let X1, ...,Xn be iid random variables with density (frequency) f (·; θ).

Problem with point estimation: Pθ[θ̂ = θ] typically small (if not zero)

↪→ always attach an estimator of variability, e.g. standard error
↪→ interpretation?

Hypothesis tests may provide way to interpret estimator’s variability
within the setup of a particular problem

↪→ e.g. if observe P̂[obama wins] = 0.52 can actually see what p–value we
get when testing H0 : P[obama wins] ≥ 1/2.

Something more directly interpretable?

Back to our example: What do pollsters do in newspapers?
↪→ They announce their point estimate (e.g. 0.52)
↪→ They give upper and lower confidence limits

What are these and how are they interpreted?
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Interval Estimation

Simple underlying idea:

Instead of estimating θ by a single value

Present a whole range of values for θ that are consistent with the data

↪→ In the sense that they could have produced the data

Definition (Confidence Interval)

Let X = (X1, ...,Xn) be random variables with joint distribution depending
on θ ∈ R and let L(X) and U(X) be two statistics with L(X) < U(X) a.s.
Then, the random interval [L(X),U(X)] is called a 100(1− α)%
confidence interval for θ if

Pθ[L(X) ≤ θ ≤ U(X)] ≥ 1− α

for all θ ∈ Θ, with equality for at least one value of θ.

1− α is called the coverage probability or confidence level

Beware of interpretation!
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Interval Estimation: Interpretation

Probability statement is NOT
made about θ, which is
constant.

Statement is about interval:
probability that the interval
contains the true value is at
least 1− α.

Given any realization X = x, the
interval [L(x),U(x)] will either
contain or not contain θ.

Interpretation: if we construct
intervals with this method, then
we expect that 100(1− α)% of
the time our intervals will engulf
the true value.
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Example

Let X1, ...,Xn
iid∼ N (µ, 1). Then

√
n(X̄ − µ) ∼ N (0, 1), so that

Pµ[−1.96 ≤
√
n(X̄ − µ) ≤ 1.96] = 0.95

and since

−1.96 ≤
√
n(X̄ − µ) ≤ 1.96 ⇐⇒ X̄ − 1.96/

√
n ≤ µ ≤ X̄ + 1.96/

√
n

we obviously have

Pµ
[
X̄ − 1.96√

n
≤ µ ≤ X̄ +

1.96√
n

]
= 0.95

So that the random interval [L(X),U(X)] =
[
X̄ − 1.96√

n
, X̄ + 1.96√

n

]
is a 95%

confidence interval for µ.
Central Limit Theorem: same argument can yield approximate 95% CI
when X1, ...,Xn are iid, EXi = µ and Var(Xi ) = 1, regardless of their
distribution.
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Pivotal Quantities

What can we learn from previous example?

Definition (Pivot)

A random function g(X, θ) is said to be a pivotal quantity (or simply a
pivot) if it is a function both of X and θ whose distribution does not
depend on θ.

↪→ √n(X̄ − µ) ∼ N (0, 1) is a pivot in previous example

Why is a pivot useful?

∀ α ∈ (0, 1) we can find constants a < b independent of θ, such that

Pθ[a ≤ g(X, θ) ≤ b] = 1− α ∀ θ ∈ Θ

If g(X, θ) can be manipulated then the above yields a CI
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Example

Let X1, ...,Xn
iid∼ U [0, θ]. Recall that MLE θ̂ is θ̂ = X(n), with distribution

Pθ
[
X(n) ≤ x

]
= FX(n)

(x) =
(x
θ

)n
=⇒ Pθ

[
X(n)

θ
≤ y

]
= yn

→ Hence X(n)/θ is a pivot for θ. Can now choose a < b such that

Pθ
[
a ≤

X(n)

θ
≤ b

]
= 1− α

→ But there are ∞-many such choices!
↪→ Idea: choose pair (a, b) that minimizes interval’s length!

Solution can be seen to be a = α1/n and b = 1, yielding

[
X(n),

X(n)

α1/n

]
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Comments on Pivotal Quantities

Pivotal method extends to construction of CI for θk , when

θ = (θ1, ..., θk , ..., θp) ∈ Rp

and the remaining coordinates are also unknown. → Pivotal quantity
should now be function g(X; θk) which

1 Depends on X, θk , but no other parameters

2 Has a distribution independent of any of the parameters

↪→ e.g.: CI for normal mean, when variance unknown

→ Main difficulties with pivotal method:

Hard to find exact pivots in general problems

Exact distributions may be intractable

Resort to asymptotic approximations...

↪→ Most classic example when have an(θ̂n − θ)
d→ N (0, σ2(θ)).
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Confidence Regions

What about higher dimensional parameters?

Definition (Confidence Region)

Let X = (X1, ...,Xn) be random variables with joint distribution depending
on θ ∈ Θ ⊆ Rp. A random subset R(X) of Θ depending on X is called a
100(1− α)% confidence region for θ if

Pθ[R(X) 3 θ] ≥ 1− α

for all θ ∈ Θ, with equality for at least one value of θ.

No restriction requiring R(X) to be convex or even connected

↪→ So when p = 1 get more general notion than CI

Nevertheless, many notions extend immediately to CR case

↪→ e.g. notion of a pivotal quantity
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Pivots for Confidence Regions

Let g : X ×Θ→ R be a function such that dist[g(X,θ)] independent of θ
↪→ Since image space is the real line, can find a < b s.t.

Pθ[a ≤ g(X,θ) ≤ b] = 1− α
=⇒ Pθ[R(X) 3 θ] = 1− α

where R(x) = {θ ∈ Θ : g(x,θ) ∈ [a, b])}

Notice that region can be “wild” since it is a random fibre of g

Example

Let X1, ...,Xn
iid∼ Nk(µ,Σ). Two unbiased estimators of µ and Σ are

µ̂ =
1

n

n∑

i=1

Xi

Σ̂ =
1

n − 1

n∑

i=1

(Xi − µ̂)(Xi − µ̂)T
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Example (cont’d)

Consider the random variable

g({X}ni=1,µ) :=
n(n − k)

k(n − 1)
(µ̂−µ)T Σ̂−1(µ̂−µ) ∼ F -dist with k and n-k d.f.

A pivot!
↪→ If fq is q-quantile of this distribution, then get 100q% CR as

R({X}ni=1) =

{
θ ∈ Rn :

n(n − k)

k(n − 1)
(µ̂− µ)T Σ̂−1(µ̂− µ) ≤ fq

}

An ellipsoid in Rn

Ellipsoid centred at µ̂

Principle axis lengths given by eigenvalues of Σ̂−1

Orientation given by eigenvectors of Σ̂−1
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Getting Confidence Regions from Confidence Intervals

Visualisation of high-dimensional CR’s can be hard

When these are ellipsoids spectral decomposition helps

But more generally?

Things especially easy when dealing with rectangles - but they rarely occur!
↪→ What if we construct a CR as Cartesian product of CI’s?

Let [Li (X),Ui (X)] be 100qi% CI’s for θi , i = 1, .., p, and define

R(X) = [L1(X),U1(X)]× . . .× [Lp(X),Up(X)]

Bonferroni’s inequality implies that

Pθ[R(X) 3 θ] ≥ 1−
p∑

i=1

P[θi /∈ [Li (X),Ui (X)]] = 1−
p∑

i=1

(1− qi )

→ So pick qi such that
∑p

i=1(1− qi ) = α (can be conservative...)
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Confidence Intervals and Hypothesis Tests

Discussion on CR’s → no guidance to choosing “good” regions

But: ∃ close relationship between CR’s and HT’s!
↪→ exploit to transform good testing properties into good CR properties

Suppose R(X) is an exact 100q%=100(1− α)% CR for θ. Consider

H0 : θ = θ0 vs H1 : θ 6= θ0

Define test function:

δ(X) =

{
1 if θ0 /∈ R(X),

0 if θ0 ∈ R(X).

Then, Eθ0 [δ(X)] = 1− Pθ0 [θ0 ∈ R(X)] ≤ α

Can use a CR to construct test with significance level α!
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Confidence Intervals and Hypothesis Tests

Going the other way around, can invert tests to get CR’s:

Suppose we have tests at level α for any choice of simple null, θ0 ∈ Θ.
↪→ Say that δ(X;θ0) is appropriate test function for H0 : θ = θ0

Define R∗(X) = {θ0 : δ(X;θ0) = 0}

Coverage probability of R∗(X) is

Pθ[θ ∈ R∗(X)] = Pθ[δ(X;θ) = 0] ≥ 1− α

Obtain a 100(1− α)% confidence region by choosing all the θ for which
the null would not be rejected given our data X.

↪→ If test inverted is powerful, then get “small” region for given 1− α.
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Multiple Testing

Modern example: looking for signals in noise

Interested in detecting presence of a signal µ(xt), t = 1, . . . ,T over a
discretised domain, {x1, . . . , xt}, on the basis of noisy measurements

This is to be detected against some known background, say 0.

May or may not be specifically interested in detecting the presence of
the signal in some particular location xt , but in detecting whether
the a signal is present anywhere in the domain.

Formally:

Does there exist a t ∈ {1, . . . ,T} such that µ(xt) 6= 0?

or

for which t’s is µ(xt) 6= 0?
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Multiple Testing

More generally:

Observe
Yt = µ(xt) + εt , t = 1, . . . ,T .

Wish to test, at some significance level α:

{
H0 : µ(xt) = 0 for all t ∈ {1, . . . ,T},
HA : µ(xt) 6= 0 for some t ∈ {1, . . . ,T}.

May also be interested in which specific locations signal deviates from
zero

More generally: May have T hypotheses to test simultaneously at
level α (they may be related or totally unrelated)

Suppose we have a test statistic for each individual hypothesis H0,t

yielding a p-value pt .
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Bonferroni Method

If we test each hypothesis individually, we will not maintain the level!

Can we maintain the level α?

Idea: use the same trick as for confidence regions!

Bonferroni
1 Test individual hypotheses separately at level αt = α/T

2 Reject H0 if at least one of the {H0,t}Tt=1 is rejected

Global level is bounded as follows:

P[ZZH0|H0] = P

[
T⋃

t=1

{HHHH0,t}
∣∣∣∣∣H0

]
≤

T∑

t=1

P[HHHH0,t |H0] = T
α

T
= α
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Holm-Bonferroni Method

Advantage: Works for any (discrete domain) setup!

Disadvantage: Too conservative when T large

Holm’s modification increases average # of hypotheses rejected at level α
(but does not increase power for overall rejection of H0 = ∩t∈TH0,t)

Holm’s Procedure
1 We reject H0,t for large values of a corresponding p-value, pt

2 Order p-values from most to least significant: p(1) ≤ . . . ≤ p(T )

3 Starting from t = 1 and going up, reject all H0,(t) such that p(t)

significant at level α/t. Stop rejecting at first insignificant p(t).

Genuine improvement over Bonferroni if want to detect as many signals as
possible, not just existence of some signal
Both Holm and Bonferroni reject the global H0 if and only if inft pt
significant at level α/T .
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Taking Advantage of Structure: Independence

In the (special) case where individual test statistics are independent, one
may use Sime’s (in)equality,

P
[
p(j) ≥

jα

T
, for all j = 1, ...,T

∣∣∣∣H0

]
≥ 1− α

(strict equality requires continuous test statistics, otherwise ≤ α)

Yields Sime’s procedure (assuming independence)

1 Suppose we reject H0,j for small values of pj

2 Order p-values from most to least significant: p(1) ≤ . . . ≤ p(T )

3 If, for some j = 1, . . . ,T the p-value p(j) is significant at level jα
T ,

then reject the global H0.

Provides a test for the global hypothesis H0, but does not “localise” the
signal at a particular xt
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Taking Advantage of Structure: Independence

One can, however, devise a sequential procedure to “localise” Sime’s
procedure, at the expense of lower power for the global hypothesis H0:

Hochberg’s procedure (assuming independence)

1 Suppose we reject H0,j for small values of pj

2 Order p-values from most to least significant: p(1) ≤ . . . ≤ p(T )

3 Starting from j = T ,T − 1, ... and down, accept all H0,(j) such that
p(j) insignificant at level α/j .

4 Stop accepting for the first j such that p(j) is significant at level α/j ,
and reject all the remaining ordered hypotheses past that j going
down.

Genuine improvement over Holm-Bonferroni both overall (H0) and in terms of signal

localisation:

1 Rejects “more” individual hypotheses than Holm-Bonferroni

2 Power for overall H0 “weaker” than Sime’s (for T > 2), much “stronger” than
Holm (for T > 1).
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Taking Advantage of Structure: Independence

Bonferroni, Hochberg, Simes
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Some Elements of Bayesian Inference

Statistical Theory

Victor Panaretos
Ecole Polytechnique Fédérale de Lausanne
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1 θ as a random variable

2 Using Bayes’ Rule to Update a Prior

3 Empirical Bayes

4 Choice of Prior: Informative, Conjugate, Uninformative

5 Inference in the Bayesian Framework
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Back to Basics!

Classical Perspective

1 θ ∈ Θ ⊆ Rp is unknown fixed

2 data are realization of random X ∼ f (x; θ)

3 use data to learn about value of θ (estimation, testing,...)

I Somehow assumes complete ignorance about θ
I What if have some prior knowledge/belief about plausible values?

↪→ We did this when defining Bayes risk

↪→ Placed a prior π(·) on θ

Bayesian Perspective

1 θ is RANDOM VARIABLE with prior distribution π(·)
2 data are realization of random X such that X|θ ∼ f (x|θ)

3 use data {X = x} to UPDATE the distribution of θ
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Updating a Prior

1 Have knowledge/belief about θ: expressed via π(θ)

2 Observe data X = x

How do we readjust our belief incorporating this new evidence?

↪→ Answer: use Bayes’ rule to obtain a posterior for θ

π(θ|x) =
f (x|θ)π(θ)∫

Θ f (x|θ)π(θ)dθ

since denominator is constant,

π(θ|x) ∝ f (x|θ)
Likelihood

π(θ)
Prior

Bayesian Principle: Everything we want to learn about θ from the data
contained in the posterior
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A Few Remarks

Some strengths of the Bayesian approach:
(provided we accept viewing θ as random)

I Inferences on θ take into account only observed data and prior

↪→ Contrast to classical approach which worries about all samples that
could have but did not occur (risk)

I Provides unified approach for solving (almost) any inference problem

I Allows natural way to incorporate prior information in inference

I Posterior can become your prior for next exepriment!
(updating process: can unify a series of experiments naturally)

But... one basic weaknesses:

I Choice of prior? Objective priors typically NOT available...
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Example (Coin Flips)

Let (X1, ...,Xn)|θ iid∼ Bernoulli(θ) and consider a Beta prior density on θ:

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, θ ∈ (0, 1)

Given X1 = x1, ...,Xn = xn with y = x1 + . . .+ xn, have

π(θ|x) =
f (x1, ..., xn|θ)π(θ)∫ 1

0 f (x1, ..., xn|θ)π(θ)dθ

=
θy+α−1(1− θ)n−y+β−1∫ 1

0 θ
y+α−1(1− θ)n−y+β−1dθ

=
Γ(α + β + n)

Γ(α + y)Γ(β + n − y)
θy+α−1(1− θ)n−y+β−1

Recall that Γ(k) = (k − 1)! for k ∈ Z+

↪→ our choice of prior includes great variety of densities, including uniform
distribution
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Coin Flipping Example: n = 10,
∑

xi = 2, prior vs posterior
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Coin Flipping Example: n = 15,
∑

xi = 3, prior vs posterior
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Coin Flipping Example: n = 100,
∑

xi = 20, prior vs posterior
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Hyperparameters and Empirical Bayes

Typically → Prior depends itself on parameters (=hyperparameters)
↪→ They are tuned to reflect prior knowledge/belief

I “Orthodox” Bayesians:

1 Accept the role of subjective probability / a priori beliefs

2 Hyperparameters should be specified independent of the data

I Empirical Bayes Approach:

1 Not willing to a prior specify hyperparameters

2 Tune prior do observed data (estimate hyperparameters from data)

(essentially a non-Bayesian approach since prior is tuned to data)
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Empirical Bayes

Prior π(θ; α) depending on hyperparameter α. Write

g(x; α)︸ ︷︷ ︸
marginal of x

=

∫
Θ

f (x|θ)π(θ; α)︸ ︷︷ ︸
joint density of θ and x

dθ

Marginal of x depends on α
↪→ classical point estimation setting - estimate α!

Maximum likelihood

Plug in principle

...

↪→ Then plug α̂ into prior, and obtain posterior

π(θ|x; α̂) =
f (x|θ)π(θ; α̂)∫

Θ f (x|θ)π(θ; α̂)dθ
=

f (x|θ)π(θ; α̂)

g(x; α̂)
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Example

Let X1, ...,Xn|λ iid∼Poisson(λ) with a gamma prior on λ

π(λ;α, β) =
αβ

Γ(β)
λβ−1 exp(−αλ)

Letting y = x1 + . . .+ xn, observe that the marginal for x is

g(x;α, β) =

∫ ∞
0

exp(−nλ)λy

x1! . . . xn!
π(λ;α, β)dλ

=

(
α

n + α

)β Γ(y + β)

Γ(α)x1! . . . xn!

(
1

n + α

)y

So use ML estimation with L(α, β) = g(x;α, β). Alternatively, MoM:

E[Xi ] = E[E(Xi |λ)] =

∫ ∞
0

λπ(λ;α;β)dλ =
α

β

Var [Xi ] = E[Var(Xi |λ)] + Var [E(Xi |λ)] =
α

β
+

α

β2
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Informative, Conjugate and Ignorance Priors

The “catch” with Bayesian inference is picking a prior. Can be done:

1 By expressing prior knowledge/opinion (informative)

2 For convenience (conjugate)

3 As objectively as possible (ignorance)

Focus on (2) and (3).

The most convenient priors to work with are conjugate families

Definition (Conjugate Family)

A parametric family P = {π(·; α)}α∈A on Θ is called a conjugate family
for a family of distributions F = {f (·; θ)}θ∈Θ on X if,

f (x|θ)π(θ; α)∫
Θ f (x|θ)π(θ; α)dθ

= π(θ|x; α) ∈ P, ∀ α ∈ A & x ∈ X .
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Informative, Conjugate and Ignorance Priors

Conjugate families: posterior immediately available
↪→ great simplification to Bayesian inference

Example (Exponential Family)

Let (X1, ...,Xn)|θ follow a one-parameter exponential family,

f (x|θ) = exp[c(θ)T (x)− d(θ) + S(x)]

Consider prior: π(θ) = K (α, β) exp[αc(θ)− βd(θ)]

Posterior: π(θ|x) ∝ π(θ)f (x; θ)

∝ exp[(T (x) + α)c(θ)− (β + 1)d(θ)]

So obtain a posterior in the same family as the prior

π(θ|x) = K (T (x) + α︸ ︷︷ ︸
α′

, β + 1︸ ︷︷ ︸
β′

) exp[(T (x) + α︸ ︷︷ ︸
α′

)c(θ)− (β + 1︸ ︷︷ ︸
β′

)d(θ)]
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Informative, Conjugate and Ignorance Priors

Bayesian inference ofetn perceived as not objective.

↓
Can we find priors that express an indifference on values of θ?

If Θ finite: easy, place mass 1/|Θ| on each point

Infinite case?

Consider initially Θ = [a, b]. Natural uninformative prior U [a, b]
↪→ Uninformative for θ. But what about g(θ)?
↪→ If g(·) non-linear, we are being informative about g(θ)

What if Θ not bounded? No uniform probability distribution:∫
Θ

kdθ =∞ ∀ k > 0

Some “improper” priors (i.e. infinite mass) yield valid posterior densities
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Example (Lebesgue Prior for Normal Distribution)

Let X1, ...,Xn|µ ∼ N (µ, 1). Assume prior π is “uniform” on R,

π[a, b] = b − a =

∫ b

a
dx , ∀ a < b

(density 1 with respect to Lebesgue measure). Obtain posterior

π(µ|x) = k(x) exp

[
−1

2

n∑
i=1

(xi − µ)2

]

k(x) =

(∫ +∞

−∞
exp

[
−1

2

n∑
i=1

(xi − τ)2

]
dτ

)−1

=

√
n

2π
exp

[
1

2

n∑
i=1

(xi − x̄)2

]

so the posterior is N (x̄ , 1/n).
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Jeffreys’ Prior

Invariance problem remains even with improper priors.
↪→ Jeffreys (1961) proposed the following approach. Assume X|θ ∼ f (·|θ)

1 Let g be monotone on Θ, define ν = g(θ)

2 Define π(θ) ∝ |I (θ)|1/2 (Fisher information)

3 Fisher information for ν:

I (ν) = Varν

[
d

dν
log f (X; g−1(ν))

]
=

(
d

dν
g−1(ν)

)2

Varθ

[
d

dθ
log f (X; θ)

]
=

∣∣∣∣dθdν

∣∣∣∣2 × I (θ)

4 Thus |I (θ)|1/2dθ = |I (ν)|1/2dν

Gives widely-accepted solution to some standard problems.

Note that this prior distribution can be improper.
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Computational Issues

When prior is conjugate: easy to obtain posterior

However for a general prior: posterior not easy to obtain

↪→ Problems especially with evaluation of
∫
Θ f (x|θ)π(θ)dθ

Explicit intergration infeasible - alternatives

Numerical Integration

Monte Carlo methods

↪→ Monte Carlo Integration

↪→ Gibbs sampling

↪→ Markov Chain Monte Carlo
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Inference in the Bayesian Framework?

In principle: posterior contains everything you want to know

↪→ So any inference really is just a descriptive measure of posterior
↪→ Any descriptive measure contains less information than posterior

Point estimators: posterior mean, mode, median,...

↪→ Relate to Bayes decision rules

Highest Posterior Density Regions (vs Confidence Regions)

↪→ Different Interpretation from CRs!

Hypothesis Testing: Bayes Factors
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