
PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) Consider the following stochastic differential equation,

dx = −βx dt+
√

2β(a2 − x2) dW (t) ,

where x ∈ [−a, a].

(i) Find the corresponding Fokker-Planck equation.

(ii) Find the normalized steady state probability P(x).

(iii) Find and solve for the eigenfunctions Pn(x) and Qn(x). Hint: learn a bit about
Chebyshev polynomials.

(iv) Find an expression for
〈

x3(t)x3(0)
〉

, assuming x0 ≡ x(0) is distributed according to
P(x0).

Solution:

(a) From §3.3.4 of the notes, assuming the stochastic differential equation is in the Itô form
(parameter α=0),

∂P

∂t
= − ∂

∂x

(

fP ) +
1

2

∂2

∂x2
(

g2P
)

,

with f(x) = −βx and g(x) =
√

2β(a2 − x2). Thus,

∂P

∂t
= β

∂

∂x
(xP ) + β

∂2

∂x2
[

(a2 − x2)P
]

.

At the boundaries x = ±a the diffusion constant vanishes, and the drift is into the interval,
hence the boundaries are reflecting.

(b) We set the LHS of the FPE to zero to find the steady state solution. Assuming no cur-
rents at the boundaries, we have P (x, t → ∞) = P(x) , where the equilibrium distribution
P(x) satisfies the first order equation

0 = xP +
d

dx

[

(a2 − x2)P
]

.

This may be rewritten as

d

dx
ln
[

(a2 − x2)P
]

= − x

a2 − x2
=

d

dx
1
2 ln(a

2 − x2) ,

and therefore

P(x) =
1

π

1√
a2 − x2

,

which is normalized with
a
∫

−a
dx P(x) = 1.
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(c) The eigenfunctions Pn(x) satisfy LPn(x) = −λnPn(x) , with Qn(x) = Pn(x)/P(x) satis-
fying L†Qn = −λnQn. It is useful to measure distances in units of a and times in units of
β−1. Then the FPE is ∂tP = LP , where our Fokker-Planck operator is

L =
d

dx
x+

d2

dx2
(1− x2) .

The eigenfunctions Qn(x) satisfy L†Qn = −λnQn. Thus,

(1− x)2
d2Qn

dx2
− x

dQn

dx
= −λnQn .

This is Chebyshev’s equation. The solution are the Chebyshev polynomials Tn(x), and the
eigenvalues are λn = n2. The eigenfunctions Pn(x) are given by Pn(x) = P(x)Qn(x) , with
P(x) = π−1(1− x2)−1/2.

A good place to learn about Chebyshev polynomials is Wikipedia. The Chebyshev poly-
nomials of the first kind are an orthonormal family of functions

{

Tn(x)
}

on the interval
x ∈ [−1, 1], satisfying the recurrence relation

T0(x) = 1 , T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x) .

They satisfy the differential equation

(1− x2)
d2Tn
dx2

− x
dTn
dx

+ n2 Tn = 0 .

There are several generating functions for the
{

Tn(x)
}

:

1− tx

1− 2tx+ t2
=

∞
∑

n=0

tn Tn(x)

etx cos
(

t
√

1− x2
)

=
∞
∑

n=0

tn

n!
Tn(x)

−1
2 ln

(

1− 2tx+ t2
)

=

∞
∑

n=1

tn

n
Tn(x) .

The orthogonality relation is

1

π

1
∫

−1

dx√
1− x2

Tm(x)Tn(x) =











0 if m 6= n

1 if m = n = 0
1
2 if m = n 6= 0 .

The first few Tn(x) are

T0(x) = 1 T6(x) = 32x6 − 48x4 + 18x2 − 1

T1(x) = x T7(x) = 64x7 − 112x5 + 56x3 − 7x

T2(x) = 2x2 − 1 T8(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1

T3(x) = 4x3 − 3x T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

T4(x) = 8x4 − 8x2 + 1 T10(x) = 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1

T5(x) = 16x5 − 20x3 + 5x T11(x) = 1024x11 − 2816x9 + 2816x7 − 1232x5 + 220x3 − 11x .
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The general solution of the Fokker-Planck equation is then

P (x, t) =

∞
∑

n=0

An P(x)Tn(x) e
−n2t .

The coefficients An are obtained from initial data P (x, 0), viz.

A0 =

1
∫

−1

dx P (x, 0) , An>0 = 2

1
∫

−1

dx P (x, 0) Tn(x) .

(d) From the conclusion of §4.2.4 of the notes, we have that

P (x, t |x0, 0) =
∑

n

Qn(x0)Pn(x) e
−λ

n
t ,

where P0(x) = P(x) and Pn>0(x) =
√
2Tn(x)P(x). Thus, assuming x0 is distributed

according to P(x0),

〈

x3(t)x3(0)
〉

=

1
∫

−1

dx0 P(x0)x
3
0

1
∫

−1

dx P (x, t |x0, 0) =
∑

n

∣

∣

〈

x3
∣

∣Pn

〉
∣

∣

2
e−n2t ,

where

〈

x3
∣

∣Pn

〉

=
√
2

1
∫

−1

dx P(x)x3 Tn(x) =
1√
2

(

1
4 δn,3 +

3
4 δn,1

)

,

since x3 = 1
4 T3(x) +

3
4 T1(x). Thus,

〈

x3(t)x3(0)
〉

= 1
32 e

−3t + 9
32 e

−t .

Note that
〈

x6(0)
〉

= 5
16 , which agrees with the calculation

〈

x6(0)
〉

=

1
∫

−1

dx0 P(x0)x
6
0 =

1

π

π
∫

0

dθ cos6θ =
1

26

(

6

3

)

=
5

16
.

(2) A diffusing particle is confined to the interval [0, L]. The diffusion constant is D and
the drift velocity is v

D
. The boundary at x = 0 is absorbing and that at x = L is reflecting.

(a) Calculate the mean and mean square time for the particle to get absorbed at x = 0 if
it starts at t = 0 from x = L. Examine in detail the cases v

D
> 0 , v

D
= 0 , and v

D
< 0.
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(b) Compute the Laplace transform of the distribution of trapping times for the cases
v
D
> 0 , v

D
= 0 , and v

D
< 0, and discuss the asymptotic behaviors of these distribu-

tions in the limits t→ 0 and t→ ∞.

Solution:

(a) We studied first passage problems in §4.2.5. The distribution function for exit times is

given by −∂tG(x, t), where G(x, t) =
L
∫

0

dx′P (x′, t |x, 0) satisfies the backward FPE,

∂G

∂t
= D

∂2G

∂x2
+ v

D

∂G

∂x
= L†G .

The boundary conditions are G(0, t) = 0 and ∂xG(x, t)
∣

∣

x=L
= 0. The mean nth power of

the exit time, Tn(x) = 〈tnx〉 , therefore satisfies

L† Tn(x) = L†
∞
∫

0

dt tn
(

− ∂G(x, t)

∂t

)

= nL†
∞
∫

0

dt tn−1G(x, t)

= n

∞
∫

0

dt tn−1 ∂G(x, t)

∂t
= −nTn−1(x) ,

with L† T1(x) = −1 , i.e. T0(x) = 〈t0x〉 = 1.

With x = 0 absorbing and x = L reflecting, we have

T1(x) =
1

D

x
∫

0

dy

ψ(y)

L
∫

y

dz ψ(z) ,

where ψ(x) = exp
(

v
D
x/D

)

(use Eqn. 4.53 with A = v
D

and B = 2D). We then have

T1(x) =
D

v2
D

(

1− e−v
D
x/D

)

evDL/D − x

v
D

.

One can check that this solution satisfies the boundary conditions T1(0) = 0 and T ′
1(L) = 0.

It is convenient to define the length scale ℓ = D/|v
D
| and the time scale τ = D/v2

D
. We

henceforth measure all lengths in units of ℓ and all times in units of τ . We therefore mea-
sure the moments Tn in units of τn. The mean escape time is

T1 = eσL − eσ(L−x) − σx ,

where σ = sgn(v
D
) . Note that for σ > 0 the drift is away from the absorbing boundary,

and the mean escape time is T1 ∼ eL , where L is the length in units of D/|v
D
|. This grows

exponentially with |v
D
|. When σ < 0 the exponential terms are dominated by the linear
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term forL−x≫ 1 , and T1 ≈ x, or in dimensionful units, T1 ≈ x/v
D

, which says the particle
exits in a time similar to what would expect for D = 0, when there is pure ballistic motion.
When v

D
= 0 our length and time scales are divergent, which means the dimensionless

quantities L and x are infinitesimal. We then expand to get T1 = 1
2x(2L − x). Restoring

units recovers T1 = x(2L− x)/2D in terms of dimensionful quantities.

To find T2(x), we solve L† T2(x) = −T1(x) . This means that the dimensionless T2(x) satis-
fies

T ′′
2 + σ T ′

2 = 2
[

eσ(L−x) − eσL + σx
]

.

We can solve this by a spatial Laplace transform on the interval x ∈ [0,∞) , later imposing
the conditions T2(0) = T ′

2(L) = 0. We define

Ť2(α) =

∞
∫

0

dx T2(x) e
−αx .

Then
∞
∫

0

dx T ′′
2 (x) e

−αx = −T ′
2(0) − αT2(0) + α2 Ť2(α)

∞
∫

0

dx T ′
2(x) e

−αx = −T2(0) + α Ť2(α) .

Assuming Re α+ σ > 0, we have

∞
∫

0

dx
[

eσ(L−x) − eσL + σx
]

e−αx =
eσL

α+ σ
− eσL

α
+

σ

α2
.

We therefore have

α(α + σ) Ť2(α) = A+
eσL

α+ σ
− eσL

α
+

σ

α2
,

where we have used T2(0) = 0, and where the constant A ≡ T ′
2(0), which is yet to be

determined. Therefore

T2(x) = 2

∮

dα

2πi

{

A

α(α + σ)
− σ eσL

α2(α+ σ)2
+

σ

α3(α+ σ)

}

eαx .

We now employ the method of partial fractions:

1

α(α+ σ)
=

1

σ

(

1

α
− 1

α+ σ

)

=
σ

α
− σ

α+ σ

1

α2(α+ σ)2
=

(

1

α
− 1

α+ σ

)2

=
1

α2
+

1

(α+ σ)2
− 2σ

α
+

2σ

α+ σ

1

α3(α+ σ)
=

1

α2

(

σ

α
− σ

α+ σ

)

=
σ

α3
− σ

α

(

σ

α
− σ

α+ σ

)

=
σ

α3
− 1

α2
+
σ

α
− σ

α+ σ
.
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We can now basically read off the form for T2(x):

T2(x) = 2σA
(

1− e−σx
)

+ 2 eσL
(

2− 2 e−σx − σx− σx e−σx
)

+ x2 − 2σx+ 2− 2 e−σx .

To fix A, we set T ′
2(L) = 0:

T ′
2(L) = 2Ae−σL + 4L− 4 sinhL ⇒ Ae−σL = 2 sinhL− 2L .

Then

T2(L) = L2 − 4 + 2 (1 − 3σL) eσL + 2 e2σL

= 5
12 L

4 + 3
10 σL

5 +O(L6) ,

where the second line says that in v
D

→ 0 limit we have T2(L) = 5L4/12D2 (with ap-
propriate dimensions). Note again that for σ = +1, when the drift is away from the
absorbing boundary, the mean square escape time behaves to leading order as T2(L) ∼
(D/v2

D
) exp(2Lv

D
/D) , whereas when σ = −1 and the drift is toward the absorbing bound-

ary, the mean square escape time behaves as a power law T2(L) ≃ (L/v
D
)2.

(b) The probability distribution of exit times is W (x, t) = −∂G(x, t)/∂t, where

G(x, t) =

L
∫

0

dx′ P (x′, t |x, 0) ,

as discussed in §4.2.5 of the notes. The Laplace transform W̌ (x, z) therefore satisfies

L† W̌ (x, z) = z W̌ (x, z) ,

with boundary conditions

W̌ (0, z) = 1 ,
∂W̌ (x, z)

∂x

∣

∣

∣

∣

x=L

= 0 .

The first of these boundary conditions comes from the fact that W (0, t) = δ(t) , since a
particle starting at the left boundary is immediately absorbed. The resulting equation for
W̌ (x, z) ,

D
∂2W̌

∂x2
+ v

D

∂W̌

∂x
− z W̌ = 0 ,

has the general solution W̌ (x, z) = A+ e
λ+ x +A− e

λ
−

x , where

λ±(z) = − v
D

2D
±

√

(

v
D

2D

)2

+
z

D
.

Accounting for the boundary conditions, we have

W̌ (x, z) =
λ+ e

λ+L eλ−

x − λ− e
λ
−

L eλ+x

λ+ e
λ
+
L − λ− e

λ
−

L
.
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Define

ℓ ≡ D

|v
D
| , τ ≡ D

v2
D

, u ≡
√
1 + 4τz ⇒ z =

u2 − 1

4τ
.

Then the eigenvalues λ± are

λ± =











(−1± u)/2ℓ if v
D
> 0

±
√

z/D if v
D
= 0

(1± u)/2ℓ if v
D
< 0 .

For v
D
= 0, we have

W̌ (x, z) =
ex
√

z/D + e(2L−x)
√

z/D

1 + e2L
√

z/D
.

The closest pole to z = 0 lies at 2L
√

z/D = iπ, which means z = −π2D/4L2. Upon
taking the inverse Laplace transform, and evaluating at x = L for convenience, we find

W (L, t) ∼ e−π2Dt/4L2

, which says that the characteristic escape time is tesc ∼ L2/D, as we
found in part (a).

When v
D

6= 0, it is helpful to eliminate z in favor of the variable u defined above. For
v
D
> 0, we have

W̌ (x, z) =
(1 + u) e−u(L−x)/2ℓ − (1− u) eu(L−x)/2ℓ

(1 + u) e−uL/2ℓ − (1− u) euL/2ℓ
e−x/2ℓ .

The pole in the denominator occurs for

euL/ℓ =
1 + u

1− u
⇒ L

2ℓ
u = tanh−1 u .

Assuming L≫ ℓ, the solution lies at u = 1− ε with ε ≃ 2 e−L/ℓ , hence

z =
u2 − 1

4τ
≃ −1

τ
e−L/ℓ .

Thus, W (L, t) ∼ e−γt with γ−1 ≃ τ eL/ℓ exponentially large in L/ℓ, as found in part (a).

When v
D
< 0, we have

W̌ (x, z) =
(1 + u) eu(L−x)/2ℓ − (1− u) e−u(L−x)/2ℓ

(1 + u) euL/2ℓ − (1− u) e−uL/2ℓ
ex/2ℓ .

The poles of the denominator lie at values of u such that

euL/ℓ =
1− u

1 + u
.

With u = −iw, this yields (L/2ℓ)w = − tan−1w, whose only solution lies at w = 0. In fact,
this pole is cancelled by the numerator.
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