PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS
HW ASSIGNMENT #3 SOLUTIONS

(1) Show that for time scales sufficiently greater than v~! that the solution z(t) to the
Langevin equation &+~ = 7)(t) describes a Markov process. You will have to construct the
matrix M defined in eqns. 2.213 and 2.214 of the lecture notes. You should assume that the
random force 7(t) is distributed as a Gaussian, with (n(s)) = 0and (n(s) n(s")) = ' 6(s—s').

Solution:

The probability distribution is
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In the limit where t, ¢/, and |t — /| are all large compared to y~!, we have M(t,t') =
2D min(t,t'), where the diffusions constant is D = I'/2v2. Thus,
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since t; > t, > --- > t, . To find the determinant of M, subtract row 2 from row 1, then
subtract row 3 from row 2, efc. The result is
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Note that the last row is unchanged, since there is no row NV + 1 to subtract from it Since
M is obtained from M by consecutive row additions, we have
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The inverse is
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This yields the general result
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where t; = co and ¢, ; = 0. Now consider the conditional probability density
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Subtracting, and evaluating the ratio to get the conditional probability density, we find
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which depends only on {z,t,x,,,}, i.e. on the current and most recent data, and not on
any data before the time ¢,. Note the normalization:
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(2) Provide the missing steps in the solution of the Ornstein-Uhlenbeck process described
in §2.4.3 of the lecture notes. Show that applying the method of characteristics (see ap-
pendix IV) to Eqn. 2.61 leads to the solution in Eqn. 2.62.

Solution:

We solve . .
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using the method of characteristics, writing t = t(s) and k = k.(s), where s parameterizes
the curve (tc(s), kc(s)), and ( parameterizes the initial conditions, which are t(s = 0) = 0
and k(s = 0) = (. The above PDE in two variables is then equivalent to the coupled system

dt dk dp .
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Solving, we have
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and therefore
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We now identify f(¢) = P(keP*,t = 0), hence

P(k,t) = exp {— %(1 - e_zﬁt)kz}p(k‘,()) .

(3) Consider a discrete one-dimensional random walk where the probability to take a step
of length 1 in either direction is p and the probability to take a step of length 2 in either
direction is 1(1 — p). Define the generating function

Pk,t) = f: P,(t)e~™",

n=—oo

where P, (t) is the probability to be at position n at time ¢, with P, (0) = 6, ,. Solve for
P(k,t) and provide an expression for P, (t). Evaluate >, n? P,(t).



Solution:

We have the master equation

P,
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Upon Fourier transforming,

dP(k,t)

= [(1 — p) cos(2k) + pcos(k) — 1] P(k,t),
with the solution ) R
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where
AMk) =1—pcos(k) — (1 — p)cos(2k) .

One then has
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The average of n? is given by
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Note that P(0,%) = 1 for all ¢ by normalization.

(4) Numerically simulate the one-dimensional Wiener and Cauchy processes discussed in
§2.6.1 of the lecture notes, and produce a figure similar to Fig. 2.3.

Hint: To generate normal (Gaussian) deviates with a distribution p(y) = (47 De)~ /2 exp(—y?/4De),
we must invert the relation

1 g2 Y
z(y) = dses/4D€=l+lerf< >
W)= ViDs / 2 27 \V4De
This is somewhat unpleasant. A slicker approach is to use the Box-Muller method, which
you can read about on Wikipedia.

Solution:

Most computing languages come with a random number generating function which pro-
duces uniform deviates on the interval = € [0, 1]. Suppose we have a prescribed function
y(x). If z is distributed uniformly on [0, 1], how is y distributed? Clearly

dx

p(y)dy| = |p(x)de| = ply) = @ p(z)




where for the uniform distribution on the unit interval we have p(z) = ©(z) ©(1 — z) . For
example, if y = —Inz, then y € [0,00] and p(y) = e™¥ which is to say y is exponentially
distributed. Now suppose we want to specify p(y). We have

Z_z:p(y) = x:F(y):/dSP(s) )

where vy, is the minimum value that y takes. Therefore, y = F~!(x), where F~! is the
inverse function.

To generate normal (Gaussian) deviates with a distribution p(y) = (47 De)~'/2 exp(—y?/4D¢),
we have Y
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We now have to invert the error function, which is slightly unpleasant.

A slicker approach is to use the Box-Muller method, which used a two-dimensional version
of the above transformation,

a(xh x2)

P\Y1,Y2) = P\, X
( 1 2) ( 1 2) a(y17y2)

This has an obvious generalization to higher dimensions. The transformation factor is the
Jacobian determinant. Now let z; and x, each be uniformly distributed on [0, 1], and let
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and therefore the Jacobian determinant is
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which says that y; and y, are each independently distributed according to the normal
distribution p(y) = (4w De)~ /2 exp(—y?/4De). Nifty!
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Figure 1: (a) Wiener process sample path W (t). (b) Cauchy process sample path C(t). From
K. Jacobs and D. A. Steck, New J. Phys. 13, 013016 (2011).

For the Cauchy distribution, with

we have

and therefore
Y= F_l(ac) = ctan (mc - g)

(5) Due to quantum coherence effects in the backscattering from impurities, one-dimensional
wires don’t obey Ohm’s law in the limit where the ‘inelastic mean free path’ is greater than
the sample dimensions, which you may assume here. Rather, let R(L) = ¢?R(L)/h be the
dimensionless resistance of a quantum wire of length L, in units of h/e? = 25.813k(2. The
dimensionless resistance of a quantum wire of length L + 0L is then given by

R(L +6L) = R(L) + R(SL) + 2 R(L) R(5L)
+2cosay/R(L) [1+R(L)] R(5L) [1 + REGL)] ,

where « is a random phase uniformly distributed over the interval [0, 27). Here,

oL
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is the dimensionless resistance of a small segment of wire, of length /L < ¢, where / is the
‘elastic mean free path’.



(a) Show that the distribution function P(R, L) for resistances of a quantum wire obeys
the equation

orP 1 0 oP
2o IR =4
oL ~ 20 8R{R( +R) 8R}
(b) Show that this equation may be solved in the limits R <« 1 and R > 1, with
1 —R/z
P(R,z)=-e¢
z
for R < 1, and .
P(R, Z) — (47‘('2)_1/2 ﬁ e—(lnR—z)2/4z
for R > 1, where z = L /2{ is the dimensionless length of the wire. Compute (R) in
the former case, and (In R) in the latter case.

Solution:

(a) From the composition rule for series quantum resistances, we derive the phase averages

(6R) = (1 n 2R(L)) i—i’
<(5R)2> _ (1 + 2R(L))2 <(;—llj>2 +2R(L) (1 + R(L)) (;—lg <1 + %)
=2R(L) (1 + R(L)) (;—i’ +0((6L)%) ,

whence we obtain the drift and diffusion terms
2R(1+R)

2R +1

Note that 2F} (R) = dF5/dR, which allows us to write the Fokker-Planck equation as

oP 0 {R(1+R) ap}'

9L OR 20 9R

(b) Defining the dimensionless length z = L/2¢, we have
orP 0 oP
E ﬁ{R(”R)ﬁ} :
In the limit R < 1, this reduces to

8_P_’R82_P+8_P
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which is satisfied by P(R,z) = z~! exp(—R/z). For this distribution one has (R) = z.



In the opposite limit, R > 1, we have
P 2
P _ 0 (p2 0\ _0F oF
dz OR IR ow? v
where v = InR. This is solved by the log-normal distribution,
P(R,z) = (4mz)~1/? e~ (ta)/4z

Note that
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One then obtains (v) = (InR) = z. Furthermore,

P(R,z)dR = P(v,2)dv =
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Note then that (R) = exp(2z), so the mean resistance grows exponentially with length.
However, note also that (R?) = exp(62), so

(AR)?) = (R?) = (R)? = ¢ — ¥,

and so the standard deviation grows as \/(R?) ~ exp(3z) which grows faster than (R).
In other words, the resistance R itself is not a self-averaging quantity, meaning the ratio of
its standard deviation to its mean doesn’t vanish in the thermodynamic limit — indeed it
diverges. However, v = In R is a self-averaging quantity, with (v) = z and /(12) = /22



