PHYSICS 210B : NONEQUILIBRIUM STATISTICAL PHYSICS
HW ASSIGNMENT #2 SOLUTIONS

(1) Consider a monatomic ideal gas in the presence of a temperature gradient VI'. Answer
the following questions within the framework of the relaxation time approximation to the

Boltzmann equation.
(a) Compute the particle current 5 and show that it vanishes.

(b) Compute the ‘energy squared’ current,
Jo2 = /d?’p v f(r,p,t)

(c) Suppose the gas is diatomic, so ¢, = Tk,. Show explicitly that the particle current j
is zero. Hint: To do this, you will have to understand the derivation of eqn. 5.93 in
the Lecture Notes and how this changes when the gas is diatomic. You may assume

QQB - F — 0.
Solution :

(a) Under steady state conditions, the solution to the Boltzmann equation is f = f* + df,
where fU is the equilibrium distribution and
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For the monatomic ideal gas, ¢, = 3k;,. The particle current is
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where the average over momentum/velocity is converted into an average over the energy
distribution,

- dv . _
P(e) = 4mo® L Py (v) = (kD)2 2 o(e) e/ T

As discussed in the Lecture Notes, the average of a homogeneous function of € under this
distribution is given by

(%) = ZT(a+3) (k1)
Thus,



(b) Now we must compute
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We then have

and so

(c) For diatomic gases in the presence of a temperature gradient, the solution to the lin-
earized Boltzmann equation in the relaxation time approximation is
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where L, , are components of the angular momentum about the instantaneous body-fixed
axes, with I = I, = I, > I;. We assume the rotations about axes 1 and 2 are effectively
classical, so equipartition gives (,.;) = 2 x £k, = k,. We still have (¢,,) = 2k,. Now in
the derivation of the factor (¢ — ¢, T) above, the first factor of ¢ came from the v*0P term,
so this is translational kinetic energy. Therefore, with ¢, = Tk, now, we must compute

€(F) = 6tr + 6rot = %7711)2 +

<Etr (Etr + Erot — %kBT)> = <Etr (Etr - %kBT)> =0
So again the particle current vanishes.
Note added :

It is interesting to note that there is no particle current flowing in response to a temperature
gradient when 7 is energy-independent. This is a consequence of the fact that the pressure
gradient Vp vanishes. Newton’s Second Law for the fluid says that nmV 4 Vp = 0, to
lowest relevant order. With Vp # 0, the fluid will accelerate. In a pipe, for example, even-
tually a steady state is reached where the flow is determined by the fluid viscosity, which
is one of the terms we just dropped. (This is called Poiseuille flow.) When p is constant, the
local equilibrium distribution is
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where T = T'(r). We then have

f(r,p):fo(r—'m-,p) )

which says that no new collisions happen for a time 7 after a given particle thermalizes.
Le. we evolve the streaming terms for a time 7. Expanding, we have

T 5

= {1—%]3—T2(E(P)—§kBT)%'VTJF---}fO(T,p) :

which leads to j = 0, assuming the relaxation time 7 is energy-independent.

When the flow takes place in a restricted geometry, a dimensionless figure of merit known
as the Knudsen number, Kn = ¢/L, where / is the mean free path and L is the characteris-
tic linear dimension associated with the geometry. For Kn <« 1, our Boltzmann transport
calculations of quantities like «, ), and ¢ hold, and we may apply the Navier-Stokes equa-
tions'. In the opposite limit Kn >> 1, the boundary conditions on the distribution are
crucial. Consider, for example, the case ¢ = co. Suppose we have ideal gas flow in a cylin-
der whose symmetry axis is @. Particles with v, > 0 enter from the left, and particles with
v, < 0 enter from the right. Their respective velocity distributions are
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where j = L or R. The average current is then

o= [ @ {0, P @) O(0,) + 1y v, Pyfo) O(-0,)}
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(2) Consider a classical gas of charged particles in the presence of a magnetic field B. The
Boltzmann equation is then given by

e—h , e oof _ (of
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Consider the case where ' = T'(x) and B = Bz. Making the relaxation time approxima-

tion, show that a solution to the above equation exists in the form Jf = v - A(e), where
A(e) is a vector-valued function of e(v) = $mwv? which lies in the (z,y) plane. Find the
energy current j.. Interpret your result physically.

These equations may need to be supplemented by certain conditions which apply in the vicinity of solid
boundaries.



Solution : We'll use index notation and the Einstein summation convention for ease of
presentation. Recall that the curl is given by (A x B), = ¢, A4, B,. We write §f =

LU
v, A,(g), and compute
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Since this must be true for all v, we have
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where B = Bn. It is conventional to define the cyclotron frequency, w. = eB/mc, in which
case
(5;LI/+O‘)CT6/JV)\TL)\) AI/ = ,Xt—/J N

where X = —(e — h) 7f° VT /k,T?. So we must invert the matrix
MNV = 5!“’ + WeT 6/»“’)‘ oy
To do so, we make the Ansatz,

Ml,_o1 =Aé6,,+Bn,n, —i—C’ewpnp ,

and we determine the constants 4, B, and C by demanding

M, MV_U1 = (5;“/ + WeT €0 n)\) (A&M +Bn,n, + C’ewp np)
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Here we have used the result

o o
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as well as the fact that 7 is a unit vector: n uny, =1 We can now read off the results:

A-Cw,r=1 , B4+Cwas=0 , CH+Aw =0 |,



which entail

2.2
o L WeT” LW
1+w2r? 1+w2r? 7 1+ w2r?

C C C

So we can now write
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The a-component of the energy current is
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where we have replaced v, v, — Ze Oau- Next, we use
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We are given that n = 2 and VT = T’(z) . We see that the energy current j, is flowing
both along —& and along —y. Why does heat flow along y? It is because the particles
are charged, and as they individually flow along —, there is a Lorentz force in the —y
direction, so the energy flows along —y as well.

(3) A photon gas in equilibrium is described by the distribution function

2
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where the factor of 2 comes from summing over the two independent polarization states.

(a) Consider a photon gas (in three dimensions) slightly out of equilibrium, but in steady
state under the influence of a temperature gradient VT. Write f = f% + §f and
write the Boltzmann equation in the relaxation time approximation. Remember that
e(p) =cpand v = g—; = ¢p, so the speed is always c.

(b) What is the formal expression for the energy current, expressed as an integral of
something times the distribution f?

(c) Compute the thermal conductivity . It is OK for your expression to involve dimen-
sionless integrals.

Solution :



(a) We have

dfo B 2cp ePep df = 2epePr AT
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The steady state Boltzmann equation is v - %LTO = (%)Con , hence with v = ¢p,
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(b) The energy current is given by
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(c) Integrating, we find
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where we simplified the integrand somewhat using integration by parts. The integral may
be computed in closed form:
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and therefore
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(4) Suppose the relaxation time is energy-dependent, with 7(c) = 7, e~%/%. Compute the
particle current j and energy current j, flowing in response to a temperature gradient V7.

Solution :
Now we must compute
U= { ) o
JE gv
2n 0T €
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where 7(g) = 7, e~/%0. We find
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The previous results are obtained by setting ¢, = oo and 7, = 1/v/2nvo. Note the strange
result that x becomes negative for kT > 2.

(5) Use the linearized Boltzmann equation to compute the bulk viscosity ¢ of an ideal gas.
(a) Consider first the case of a monatomic ideal gas. Show that ¢ = 0 within this approx-
imation. Will your result change if the scattering time is energy-dependent?

(b) Compute ¢ for a diatomic ideal gas.

Solution :

According to the Lecture Notes, the solution to the linearized Boltzmann equation in the
relaxation time approximation is

o Tfo a, B avoz kB
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We also have
TrIl = nm (v?) = 2n{e,) =3p—3CV-V



We then compute Tr1I:
Tril =2n(g,)=3p—3(V-V

:2n/dF(f0+5f)atr

The f° term yields a contribution 3nk,T = 3p in all cases, which agrees with the first term
on the RHS of the equation for Tr1I. Therefore

(V-Vz—%n/dféfstr

(a) For the monatomic gas, I' = {p,,, p,, p, }. We then have

(V-V = 2nT /d?’pfo(p)s{mvo‘vB% c V-V}
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Here we have replaced mv®v® — %m’u2 = %Etr under the integral. If the scattering time

is energy dependent, then we put 7(¢) inside the energy integral when computing the
average, but this does not affect the final result: { = 0.

(b) Now we must include the rotational kinetic energy in the expression for J f, and we
have ¢, = %kB. Thus,
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and therefore
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(6) Consider a two-dimensional gas of particles with dispersion (k) = Jk?, where k is the
wavevector. The particles obey photon statistics, so 1+ = 0 and the equilibrium distribution
is given by
(k) = __
=Bk T _

(a) Writing f = f° + &f, solve for §f(k) using the steady state Boltzmann equation in
the relaxation time approximation,

0
N S
or T
Work to lowest order in VT'. Remember that v = %g—i is the velocity.



(b) Show that j = —A VT, and find an expression for A\. Represent any integrals you
cannot evaluate as dimensionless expressions.

(c) Show that j, = —x V7T, and find an expression for . Represent any integrals you
cannot evaluate as dimensionless expressions.

Solution :
(a) We have
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(b) The particle current is
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We may now send k*k” — 1k26*” under the integral. We then read off
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Here we have used
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(c) The energy current is
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We therefore repeat the calculation from part (c), including an extra factor of Jk? inside the
integral. Thus,
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