Physics 218B Winter 2020

Texts and References

Strongly Recommended:

- R. Kulsrud; "Plasma Physics for Astrophysics," Princeton University Press
- S. Galtier, "Introduction to Modern Magnetohydrodynamics," Cambridge University Press

References:

- a) General Plasma Physics
 - i.) P. Sturrock; "Plasma Physics" excellent physical insights, readable
 - ii.) N. Krall and A. Trivelpiece; "Principles of Plasma Physics" encyclopedia
 - iii.) E. Lifshitz and L. Pitaevski; "Physical Kinetics" (Volume 10 of Landau and Lifshitz series) good treatment of kinetic theory
- * iv.) B.B. Kadomtsev; "Tokamak Plasma: A Complex Physical System" superb integrative approach to tokamak dynamics, but of general interest
 - v.) T. Boyd and J. Sanderson; "The Physics of Plasmas"
- * vi.) B.B. Kadomtsev; "Cooperative Effects in Plasmas" in Reviews of Plasma
 Physics, Vol. 22 see Supplementary Materials
 - vii.) M. Kikuchi; "Frontiers in Fusion Research" a theoretical look at practical issues in tokamak physics
 - viii.) Keith Moffat, E. Dormy, 2019; "Self-Exciting Fluid Dynamos"; Cambridge University Press
- b) Lite Reading
 - i.) E.N. Parker, "Conversations on Electric and Magnetic Fields in the Cosmos," Princeton University Press
- c) General and Astrophysical MHD
- * i.) D. Biskamp; "Nonlinear Magnetohydrodynamics" broad, solid and easily accessible, focused on laboratory applications
- * ii.) H.K. Moffatt; "Magnetic Field Generation in Electrically Conducting Fluids" superb treatment of basic dynamo theory and related topics

- available online at http://www.igf.fuw.edu.pl/KB/HKM/.
- iii.) A.R. Choudhuri; "The Physics of Fluids and Plasmas" good elementary text, deals with lab and astro
- * iv.) L. Mestel; "Stellar Magnetism" excellent in-depth study of the subject
 - v.) E.N. Parker; "Cosmical Magnetic Fields" broad but insightful coverage of all aspects of solar and galactic MHD, well written
- * vi.) P.A. Davidson; "An Introduction to Magnetohydrodynamics"
 - vii.) R.B. White, "Theory of Tokamak Plasmas"
 - viii.) Goedbloed and Poedts; "Principles of Magnetohydrodynamics", Vol. 1, 2 good basic MHD text with considerable detail provided
 - ix.) K. Itoh, S.-I. Itoh, A. Fukuyama, "Transport and Structural Formation in Plasmas" modern perspective on aspects of MHD
 - x.) J.P. Freidberg, "Ideal Magnetohydrodynamics" in depth coverage of applications to laboratory plasmas

d) General References

- * i.) L.D. Landau and E.M. Lifshitz; "Fluid Mechanics" a classic
- * ii.) L.D. Landau and E.M. Lifshitz; "Electrodynamics of Continuous Media" ditto
 - iii.) G.K. Batchelor; "An Introduction to Fluid Dynamics" three in a row..., complements Landau
- * iv.) G.B. Whitman; "Linear and Nonlinear Waves" yet another great one
- * v.) J. Lighthill; "Waves in Fluids" excellent and accessible
 - vi.) T.H. Stix; "Waves in Plasmas" encyclopedia
- * vii.) F. Shu; "The Physics of Astrophysics, Vol. I, II" good basic graduate text on MANY topics, including fluids, MHD and plasmas
 - viii.) J. Binney and S. Tremaine; "Galactic Dynamics" super text on galactic dynamics, no MHD or plasma but treatment of self-gravitating matter makes it relevant. Try the problems:).....
- * ix.) U. Frisch; "Turbulence-The Legacy of A.N. Kolmogorov" classic book on turbulence ala' K41

Physics 218B Winter 2020

x.) A. Townsend; "The Structure of Turbulent Shear Flow" – classic book on turbulence in real systems