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Chapter 12

BCS Theory of Superconductivity

12.1 Binding and Dimensionality

Consider a spherically symmetric potential U(r) = −U0 Θ(a − r). Are there bound states, i.e.
states in the eigenspectrum of negative energy? What role does dimension play? It is easy
to see that if U0 > 0 is large enough, there are always bound states. A trial state completely
localized within the well has kinetic energy T0 ≃ ~

2/ma2, while the potential energy is −U0 , so
if U0 > ~

2/ma2, we have a variational state with energy E = T0 − U0 < 0, which is of course an
upper bound on the true ground state energy.

What happens, though, if U0 < T0? We again appeal to a variational argument. Consider a
Gaussian or exponentially localized wavefunction with characteristic size ξ ≡ λa, with λ > 1.
The variational energy is then

E ≃ ~
2

mξ2
− U0

(
a

ξ

)d
= T0 λ

−2 − U0 λ
−d . (12.1)

Extremizing with respect to λ, we obtain −2T0 λ
−3 + dU0 λ

−(d+1) and λ =
(
dU0/2T0

)1/(d−2)
.

Inserting this into our expression for the energy, we find

E =

(
2

d

)2/(d−2)(
1− 2

d

)
T

d/(d−2)
0 U

−2/(d−2)
0 . (12.2)

We see that for d = 1 we have λ = 2T0/U0 and E = −U2
0 /4T0 < 0. In d = 2 dimensions,

we have E = (T0 − U0)/λ
2, which says E ≥ 0 unless U0 > T0. For weak attractive U(r), the

minimum energy solution is E → 0+, with λ → ∞. It turns out that d = 2 is a marginal
dimension, and we shall show that we always get localized states with a ballistic dispersion
and an attractive potential well. For d > 2 we have E > 0 which suggests that we cannot have
bound states unless U0 > T0, in which case λ ≤ 1 and we must appeal to the analysis in the
previous paragraph.

1



2 CHAPTER 12. BCS THEORY OF SUPERCONDUCTIVITY

We can firm up this analysis a bit by considering the Schrödinger equation,

− ~
2

2m
∇2ψ(x) + V (x)ψ(x) = E ψ(x) . (12.3)

Fourier transforming, we have

ε(k) ψ̂(k) +

∫
ddk′

(2π)d
V̂ (k− k′) ψ̂(k′) = E ψ̂(k) , (12.4)

where ε(k) = ~
2k2/2m. We may now write V̂ (k − k′) =

∑
n λn αn(k)α

∗
n(k

′) , which is a decom-

position of the Hermitian matrix V̂k,k′ ≡ V̂ (k−k′) into its (real) eigenvalues λn and eigenvectors
αn(k). Let’s approximate Vk,k′ by its leading eigenvalue, which we call λ, and the correspond-

ing eigenvector α(k). That is, we write V̂k,k′ ≃ λα(k)α∗(k′) . We then have

ψ̂(k) =
λα(k)

E − ε(k)

∫
ddk′

(2π)d
α∗(k′) ψ̂(k′) . (12.5)

Multiply the above equation by α∗(k) and integrate over k, resulting in

1

λ
=

∫
ddk

(2π)d

∣∣α(k)
∣∣2

E − ε(k)
=

1

λ
=

∞∫

0

dε
g(ε)

E − ε

∣∣α(ε)
∣∣2 , (12.6)

where g(ε) is the density of states g(ε) = Tr δ
(
ε − ε(k)

)
. Here, we assume that α(k) = α(k) is

isotropic. It is generally the case that if Vk,k′ is isotropic, i.e. if it is invariant under a simultane-
ous O(3) rotation k → Rk and k′ → Rk′, then so will be its lowest eigenvector. Furthermore,
since ε = ~

2k2/2m is a function of the scalar k = |k|, this means α(k) can be considered a
function of ε. We then have

1

|λ| =
∞∫

0

dε
g(ε)

|E|+ ε

∣∣α(ε)
∣∣2 , (12.7)

where we have we assumed an attractive potential (λ < 0), and, as we are looking for a bound
state, E < 0.

If α(0) and g(0) are finite, then in the limit |E| → 0 we have

1

|λ| = g(0) |α(0)|2 ln
(
1/|E|

)
+ finite . (12.8)

This equation may be solved for arbitrarily small |λ| because the RHS of Eqn. 12.7 diverges as
|E| → 0. If, on the other hand, g(ε) ∼ εp where p > 0, then the RHS is finite even when E = 0.
In this case, bound states can only exist for |λ| > λc, where

λc = 1

/ ∞∫

0

dε
g(ε)

ε

∣∣α(ε)
∣∣2 . (12.9)
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Typically the integral has a finite upper limit, given by the bandwidth B. For the ballistic
dispersion, one has g(ε) ∝ ε(d−2)/2, so d = 2 is the marginal dimension. In dimensions d ≤ 2,
bound states form for arbitrarily weak attractive potentials.

12.2 Cooper’s Problem

In 1956, Leon Cooper considered the problem of two electrons interacting in the presence of
a quiescent Fermi sea. The background electrons comprising the Fermi sea enter the problem
only through their Pauli blocking. Since spin and total momentum are conserved, Cooper first
considered a zero momentum singlet,

|Ψ 〉 = 1√
2

∑

k

Ak

(
c†k↑c

†
−k↓ − c†k↓c

†
−k↑
)
|F 〉 , (12.10)

where |F 〉 is the filled Fermi sea, |F 〉 =
∏

|p|<k
F

c†p↑c
†
p↓ | 0 〉 . Only states with k > k

F
contribute to

the RHS of Eqn. 12.10, due to Pauli blocking. The real space wavefunction is

Ψ(r1, r2) =
1√
2

∑

k

Ak e
ik·(r

1
−r

2
)
(
|↑1↓2 〉 − |↓1↑2 〉

)
, (12.11)

with Ak = A−k to enforce symmetry of the orbital part. It should be emphasized that this is a
two-particle wavefunction, and not an (N + 2)-particle wavefunction, with N the number of
electrons in the Fermi sea. Again, the Fermi sea in this analysis has no dynamics of its own. Its

presence is reflected only in the restriction k > kF for the states which participate in the Cooper
pair.

The many-body Hamiltonian is written

Ĥ =
∑

kσ

εk c
†
kσckσ +

1
2

∑

k
1
σ
1

∑

k
2
σ
2

∑

k
3
σ
3

∑

k
4
σ
4

〈 k1σ1, k2σ2 | v | k3σ3, k4σ4 〉 c†k
1
σ
1

c†k
2
σ
2

ck
4
σ
4

ck
3
σ
3

. (12.12)

We treat |Ψ 〉 as a variational state, which means we set

δ

δA∗
k

〈Ψ | Ĥ |Ψ 〉
〈Ψ |Ψ 〉 = 0 , (12.13)

resulting in

(E − E0)Ak = 2εk Ak +
∑

k′

Vk,k′ Ak′ , (12.14)

where

Vk,k′ = 〈 k↑,−k↓ | v | k′↑,−k′↓ 〉 = 1

V

∫
d3r v(r) ei(k−k′)·r . (12.15)
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Here E0 = 〈F | Ĥ |F 〉 is the energy of the Fermi sea.

We write εk = ε
F
+ ξk, and we define E ≡ E0 + 2ε

F
+W . Then

WAk = 2ξk Ak +
∑

k′

Vk,k′ Ak′ . (12.16)

If Vk,k′ is rotationally invariant, meaning it is left unchanged by k → Rk and k′ → Rk′ where
R ∈ O(3), then we may write

Vk,k′ =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Vℓ(k, k
′) Yℓ,m(k̂) Y

∗
ℓ,m(k̂

′) . (12.17)

We assume that Vl(k, k
′) is separable, meaning we can write

Vℓ(k, k
′) =

1

V
λℓ αℓ(k)α

∗
ℓ(k

′) . (12.18)

This simplifies matters and affords us an exact solution, for now we take Ak = Ak Yℓ,m(k̂) to
obtain a solution in the ℓ angular momentum channel:

WℓAk = 2ξk Ak + λℓ αℓ(k) ·
1

V

∑

k′

α∗
ℓ(k

′)Ak′ , (12.19)

which may be recast as

Ak =
λℓ αℓ(k)

Wℓ − 2ξk
· 1

V

∑

k′

α∗
ℓ(k

′)Ak′ . (12.20)

Now multiply by α∗
k and sum over k to obtain

1

λℓ
=

1

V

∑

k

∣∣αℓ(k)
∣∣2

Wℓ − 2ξk
≡ Φ(Wℓ) . (12.21)

We solve this for Wℓ.

We may find a graphical solution. Recall that the sum is restricted to k such that k > k
F
, and

that ξk ≥ 0. The denominator on the RHS of Eqn. 12.21 changes sign as a function of Wℓ every
time 1

2
Wℓ passes through one of the ξk values1. A sketch of the graphical solution is provided

in Fig. 12.1. One sees that if λℓ < 0, i.e. if the potential is attractive, then a bound state exists.
This is true for arbitrarily weak |λℓ|, a situation not usually encountered in three-dimensional
problems, where there is usually a critical strength of the attractive potential in order to form a
bound state2. This is a density of states effect – by restricting our attention to electrons near the

1We imagine quantizing in a finite volume, so the allowed k values are discrete.
2For example, the He2 molecule is unbound, despite the attractive −1/r6 van der Waals attractive tail in the
interatomic potential.
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Figure 12.1: Graphical solution to the Cooper problem. A bound state exists for arbitrarily
weak λ < 0.

Fermi level, where the DOS is roughly constant at g(ε
F
) = m∗k

F
/π2

~
2, rather than near k = 0,

where g(ε) vanishes as
√
ε, the pairing problem is effectively rendered two-dimensional. We

can make further progress by assuming a particular form for αℓ(k):

αℓ(k) =

{
1 if 0 < ξk < Bℓ

0 otherwise ,
(12.22)

where Bℓ is an effective bandwidth for the ℓ channel. Then

1 = 1
2
|λℓ|

B
ℓ∫

0

dξ
g(εF + ξ)∣∣Wℓ

∣∣ + 2ξ
. (12.23)

The factor of 1
2

is because it is the DOS per spin here, and not the total DOS. We assume g(ε)

does not vary significantly in the vicinity of ε = εF, and pull g(εF) out from the integrand.
Integrating and solving for

∣∣Wℓ

∣∣,
∣∣Wℓ

∣∣ = 2Bℓ

exp
[
4/|λℓ| g(εF)

]
− 1

. (12.24)

In the weak coupling limit, where |λℓ| g(εF) ≪ 1, we have

∣∣Wℓ

∣∣ ≃ 2Bℓ exp

(
− 4

|λℓ| g(εF)

)
. (12.25)

As we shall see when we study BCS theory, the factor in the exponent is twice too large. The
coefficient 2Bℓ will be shown to be the Debye energy of the phonons; we will see that it is only
over a narrow range of energies about the Fermi surface that the effective electron-electron
interaction is attractive. For strong coupling,

|Wℓ| = 1
2
|λℓ|Bℓ g(εF) . (12.26)
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Finite momentum Cooper pair

We can construct a finite momentum Cooper pair as follows:

|Ψq 〉 =
1√
2

∑

k

Ak

(
c†
k+ 1

2
q ↑c

†
−k+ 1

2
q ↓ − c†

k+ 1

2
q ↓c

†
−k+ 1

2
q ↑
)
|F 〉 . (12.27)

This wavefunction is a momentum eigenstate, with total momentum P = ~q. The eigenvalue
equation is then

WAk =
(
ξ
k+ 1

2
q
+ ξ−k+ 1

2
q

)
Ak +

∑

k′

Vk,k′ Ak′ . (12.28)

Assuming ξk = ξ−k ,

ξ
k+ 1

2
q
+ ξ−k+ 1

2
q
= 2 ξk +

1
4
qαqβ

∂2ξk
∂kα ∂kβ

+ . . . . (12.29)

The binding energy is thus reduced by an amount proportional to q2 ; the q = 0 Cooper pair
has the greatest binding energy3.

Mean square radius of the Cooper pair

We have

〈
r2
〉
=

∫
d3r
∣∣Ψ(r)

∣∣2 r2
∫
d3r
∣∣Ψ(r)

∣∣2 =

∫
d3k
∣∣∇kAk

∣∣2
∫
d3k
∣∣Ak

∣∣2 ≃
g(εF) ξ

′(kF)
2
∞∫
0

dξ
∣∣∂A
∂ξ

∣∣2

g(εF)
∞∫
0

dξ |A|2
(12.30)

withA(ξ) = −C/
(
|W |+2ξ

)
and thusA′(ξ) = 2C/

(
|W |+2ξ

)2
, whereC is a constant independent

of ξ. Ignoring the upper cutoff on ξ at Bℓ, we have

〈
r2
〉
= 4 ξ′(k

F
)2 ·

∞∫
|W |
du u−4

∞∫
|W |
du u−2

= 4
3
(~v

F
)2 |W |−2 , (12.31)

where we have used ξ′(k
F
) = ~v

F
. Thus, R

RMS
= 2~v

F

/√
3 |W | . In the weak coupling limit,

where |W | is exponentially small in 1/|λ|, the Cooper pair radius is huge. Indeed it is so large
that many other Cooper pairs have their centers of mass within the radius of any given pair.
This feature is what makes the BCS mean field theory of superconductivity so successful. Re-
call in our discussion of the Ginzburg criterion in §11.4.5, we found that mean field theory
was qualitatively correct down to the Ginzburg reduced temperature t

G
= (a/R∗)

2d/(4−d), i.e.
t
G
= (a/R∗)

6 for d = 3. In this expression, R∗ should be the mean Cooper pair size, and a a
microscopic length (i.e. lattice constant). Typically R∗/a ∼ 102 − 103, so t

G
is very tiny indeed.

3We assume the matrix ∂α∂β ξk is positive definite.
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12.3 Effective Attraction Due to Phonons

The solution to Cooper’s problem provided the first glimpses into the pairing nature of the
superconducting state. But why should Vk,k′ be attractive? One possible mechanism is an
induced attraction due to phonons.

12.3.1 Electron-phonon Hamiltonian

In §5.12 we derived the electron-phonon Hamiltonian,

Ĥel−ph =
1√
V

∑

k,k′σ
q,λ,G

gλ(k, k
′) (a†qλ + a−qλ) c

†
kσ ck′σ δk′,k+q+G , (12.32)

where c†kσ creates an electron in state | k σ 〉 and a†qλ creates a phonon in state | q λ 〉, where λ is
the phonon polarization state. G is a reciprocal lattice vector, and

gλ(k, k
′) = −i

(
~

2Ωωλ(q)

)1/2
4πZe2

(q +G)2 + λ−2
TF

(q +G) · ê∗λ(q) . (12.33)

is the electron-phonon coupling constant, with êλ(q) the phonon polarization vector, Ω the
Wigner-Seitz unit cell volume, and ωλ(q) the phonon frequency dispersion of the λ branch.

Recall that in an isotropic ‘jellium’ solid, the phonon polarization at wavevector q either is
parallel to q (longitudinal waves), or perpendicular to q (transverse waves). We then have that
only longitudinal waves couple to the electrons. This is because transverse waves do not result
in any local accumulation of charge density, and the Coulomb interaction couples electrons to
density fluctuations. Restricting our attention to the longitudinal phonon, we found for small

q the electron-longitudinal phonon coupling gL(k, k+ q) ≡ gq satisfies

|gq|2 = λel−ph ·
~cLq

g(εF)
, (12.34)

where g(εF) is the electronic density of states, c
L

is the longitudinal phonon speed, and where
the dimensionless electron-phonon coupling constant is

λel−ph =
Z2

2Mc2
L
Ω g(εF)

=
2Z

3

m∗

M

(
εF
k

B
Θs

)2
, (12.35)

with Θs ≡ ~cLkF/kB
.
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Figure 12.2: Feynman diagrams for electron-phonon processes.

12.3.2 Effective interaction between electrons

Consider now the problem of two particle scattering | k σ , −k −σ 〉 → | k′ σ , −k′ −σ 〉. We
assume no phonons are present in the initial state, i.e. we work at T = 0. The initial state
energy is Ei = 2ξk and the final state energy is Ef = 2ξk′ . There are two intermediate states:4

| I1 〉 = | k′ σ , −k −σ 〉 ⊗ | − q λ 〉
| I2 〉 = | k σ , −k′ −σ 〉 ⊗ |+ q λ 〉 ,

(12.36)

with k′ = k + q in each case. The energies of these intermediate states are

E1 = ξ−k + ξk′ + ~ω−q λ , E2 = ξk + ξ−k′ + ~ωq λ . (12.37)

The second order matrix element is then

〈 k′ σ , −k′ −σ | Ĥindirect | k σ , −k −σ 〉 =
∑

n

〈 k′ σ , −k′ −σ | Ĥel−ph |n 〉〈n | Ĥel−ph | k σ , −k −σ 〉

×
(

1

Ef −En

+
1

Ei −En

)

=
∣∣gk′−k

∣∣2
(

1

ξk′ − ξk − ~ωq

+
1

ξk − ξk′ − ~ωq

)
. (12.38)

Here we have assumed ξk = ξ−k and ωq = ω−q, and we have chosen λ to correspond to the

longitudinal acoustic phonon branch. We add this to the Coulomb interaction v̂
(
|k− k′|

)
to get

the net effective interaction between electrons,

〈 k′ σ , −k
′ −σ | Ĥeff | k σ , −k −σ 〉 = v̂

(
|k− k

′|
)
+
∣∣gq
∣∣2 ×

2~ωq

(ξk − ξk′)2 − (~ωq)
2

, (12.39)

where k′ = k + q. We see that the effective interaction can be attractive, but only so long as
|ξk − ξk′| < ~ωq.

4The annihilation operator in the Hamiltonian Ĥel−ph can act on either of the two electrons.
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Another way to evoke this effective attraction is via the jellium model studied in §10.5.6. There
we found the effective interaction between unit charges was given by

V̂eff(q, ω) =
4πe2

q2 ǫ(q, ω)
(12.40)

where
1

ǫ(q, ω)
≃ q2

q2 + q2
TF

{
1 +

ω2
q

ω2 − ω2
q

}
, (12.41)

where the first term in the curly brackets is due to Thomas-Fermi screening (§10.5.2) and the
second from ionic screening (§10.5.6). Recall that the Thomas-Fermi wavevector is given by

q
TF

=

√
4πe2g(εF) , where g(εF) is the electronic density of states at the Fermi level, and that

ωq = Ωp,i q
/√

q2 + q2
TF

, where Ωp,i =
√

4πn0
iZie

2/Mi is the ionic plasma frequency.

12.4 Reduced BCS Hamiltonian

The operator which creates a Cooper pair with total momentum q is b†k,q + b†−k,q, where

b†k,q = c†
k+ 1

2
q ↑ c

†
−k+ 1

2
q ↓ (12.42)

is a composite operator which creates the state | k + 1
2
q ↑ , −k + 1

2
q ↓ 〉. We learned from the

solution to the Cooper problem that the q = 0 pairs have the greatest binding energy. This
motivates consideration of the so-called reduced BCS Hamiltonian,

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′

Vk,k′ b
†
k,0 bk′,0 . (12.43)

The most general form for a momentum-conserving interaction is5

V̂ =
1

2V

∑

k,p,q

∑

σ,σ′

ûσσ′(k, p, q) c
†
k+q σ c

†
p−q σ′ cpσ′ ck σ . (12.44)

Taking p = −k, σ′ = −σ, and defining k′ ≡ k + q , we have

V̂ → 1

2V

∑

k,k′,σ

v̂(k, k′) c†k′σ c
†
−k′ −σ c−k−σ ckσ , (12.45)

where v̂(k, k′) = û↑↓(k,−k, k′ − k), which is equivalent to Ĥred .

5See the discussion in Appendix I, §12.13.
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Figure 12.3: John Bardeen, Leon Cooper, and J. Robert Schrieffer.

If Vk,k′ is attractive, then the ground state will have no pair (k ↑ , −k ↓) occupied by a single
electron; the pair states are either empty or doubly occupied. In that case, the reduced BCS
Hamiltonian may be written as6

H0
red =

∑

k

2εk b
†
k,0 bk,0 +

∑

k,k′

Vk,k′ b
†
k,0 bk′,0 . (12.46)

This has the innocent appearance of a noninteracting bosonic Hamiltonian – an exchange of
Cooper pairs restores the many-body wavefunction without a sign change because the Cooper
pair is a composite object consisting of an even number of fermions7. However, this is not

quite correct, because the operators bk,0 and bk′,0 do not satisfy canonical bosonic commutation
relations. Rather,

[
bk,0 , bk′,0

]
=
[
b†k,0 , b

†
k′,0

]
= 0

[
bk,0 , b

†
k′,0

]
=
(
1− c†k↑ck↑ − c†−k↓c−k↓

)
δkk′ .

(12.47)

Because of this, Ĥ0
red cannot naı̈vely be diagonalized. The extra terms inside the round brackets

on the RHS arise due to the Pauli blocking effects. Indeed, one has (b†k,0)
2 = 0, so b†k,0 is no

ordinary boson operator.

While the composite operators bk,q do not obey bosonic commutation relations, they are still
boson-like in the sense that they can have a nonzero expectation value, which composite fermion
operators cannot. This suggest we try a mean field Hartree-Fock approach. Accordingly, we
write

bk,0 = 〈bk,0〉+

δbk,0︷ ︸︸ ︷(
bk,0 − 〈bk,0〉

)
, (12.48)

6Spin rotation invariance and a singlet Cooper pair requires that Vk,k′
= Vk,−k′

= V
−k,k′

.
7Recall that the atom 4He, which consists of six fermions (two protons, two neutrons, and two electrons), is a
boson, while 3He, which has only one neutron and thus five fermions, is itself a fermion.
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and we neglect terms in Ĥred proportional to δb†k,0 δbk′,0. We have

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′

Vk,k′

( energy shift︷ ︸︸ ︷
−〈b†k,0〉 〈bk′,0〉 +

keep this︷ ︸︸ ︷
〈bk′,0〉 b

†
k,0 + 〈b†k,0〉 bk′,0 +

drop this!︷ ︸︸ ︷
δb†k,0 δbk′,0

)
.

(12.49)
Dropping the last term, which is quadratic in fluctuations, we obtain

ĤMF

red =
∑

k,σ

εk c
†
kσ ckσ +

∑

k

(
∆k c

†
k↑ c

†
−k↓ +∆∗

k c−k↓ ck↑
)
−
∑

k,k′

Vk,k′ 〈c†k↑ c
†
−k↓〉 〈c−k′↓ ck′↑〉 , (12.50)

where

∆k =
∑

k′

Vk,k′

〈
c−k′↓ ck′↑

〉
, ∆∗

k =
∑

k′

V ∗
k,k′

〈
c†k′↑ c

†
−k′↓

〉
. (12.51)

The first thing to notice about ĤMF

red is that it does not preserve particle number, i.e. it does not

commute with N̂ =
∑

k,σ c
†
kσckσ. Accordingly, we are practically forced to work in the grand

canonical ensemble, and we define the grand canonical Hamiltonian K̂ ≡ Ĥ − µN̂ .

12.5 Solution of the Mean Field Hamiltonian

We now subtract µN̂ from Eqn. 12.50, and define K̂
BCS

≡ ĤMF

red − µN̂ . Thus,

K̂
BCS

=
∑

k

(
c†k↑ c−k↓

)
K

k︷ ︸︸ ︷(
ξk ∆k

∆∗
k −ξk

) (
ck↑
c†−k↓

)
+K0 , (12.52)

with ξk = εk − µ, and where

K0 =
∑

k

ξk −
∑

k,k′

Vk,k′ 〈c†k↑c
†
−k↓〉 〈c−k′↓ ck′↑〉 (12.53)

is a constant. This problem may be brought to diagonal form via a unitary transformation,

(
ck↑
c†−k↓

)
=

U
k︷ ︸︸ ︷(

cosϑk − sin ϑk e
iφ

k

sin ϑk e
−iφ

k cosϑk

) (
γk↑
γ†−k↓

)
. (12.54)
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In order for the γkσ operators to satisfy fermionic anticommutation relations, the matrix Uk

must be unitary8. We then have

ckσ = cosϑk γkσ − σ sin ϑk e
iφ

k γ†−k−σ

γkσ = cosϑk ckσ + σ sinϑk e
iφ

k c†−k−σ .
(12.55)

EXERCISE: Verify that
{
γkσ , γ

†
k′σ′

}
= δkk′ δσσ′ .

We now must compute the transformed Hamiltonian. Dropping the k subscript for notational
convenience, we have

K̃ = U †K U =

(
cosϑ sinϑ eiφ

− sin ϑ e−iφ cos ϑ

)(
ξ ∆
∆∗ −ξ

)(
cosϑ − sinϑ eiφ

sinϑ e−iφ cosϑ

)
(12.56)

=

(
(cos2ϑ− sin2ϑ) ξ + sinϑ cosϑ (∆ e−iφ +∆∗eiφ) ∆ cos2ϑ−∆∗e2iφ sin2ϑ− 2ξ sin ϑ cosϑ eiφ

∆∗ cos2ϑ−∆e−2iφ sin2ϑ− 2ξ sin ϑ cosϑ e−iφ (sin2ϑ− cos2ϑ) ξ − sin ϑ cosϑ (∆ e−iφ +∆∗eiφ)

)
.

We now use our freedom to choose ϑ and φ to render K̃ diagonal. That is, we demand that
φ = arg(∆) and

2ξ sin ϑ cosϑ = |∆| (cos2ϑ− sin2ϑ) . (12.57)

This says tan(2ϑ) = |∆|/ξ, which means

cos(2ϑ) =
ξ

E
, sin(2ϑ) =

|∆|
E

, E =
√
ξ2 + |∆|2 . (12.58)

The upper left element of K̃ then becomes

(cos2ϑ− sin2ϑ) ξ + sinϑ cos ϑ (∆ e−iφ +∆∗eiφ) =
ξ2

E
+

|∆|2
E

= E , (12.59)

and thus K̃ =

(
E 0
0 −E

)
. This unitary transformation, which mixes particle and hole states, is

called a Bogoliubov transformation, because it was first discovered by Valatin.

Restoring the k subscript, we have φk = arg(∆k), and tan(2ϑk) = |∆k|/ξk, which means

cos(2ϑk) =
ξk
Ek

, sin(2ϑk) =
|∆k|
Ek

, Ek =
√
ξ2k + |∆k|2 . (12.60)

Assuming that ∆k is not strongly momentum-dependent, we see that the dispersion Ek of the

excitations has a nonzero minimum at ξk = 0, i.e. at k = kF. This minimum value of Ek is called
the superconducting energy gap.

8The most general 2 × 2 unitary matrix is of the above form, but with each row multiplied by an independent
phase. These phases may be absorbed into the definitions of the fermion operators themselves. After absorbing
these harmless phases, we have written the most general unitary transformation.
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We may further write

cosϑk =

√
Ek + ξk
2Ek

, sinϑk =

√
Ek − ξk
2Ek

. (12.61)

The grand canonical BCS Hamiltonian then becomes

K̂
BCS

=
∑

k,σ

Ek γ
†
kσ γkσ +

∑

k

(ξk − Ek)−
∑

k,k′

Vk,k′ 〈c†k↑c
†
−k↓〉 〈c−k′↓ ck′↑〉 . (12.62)

Finally, what of the ground state wavefunction itself? We must have γkσ|G 〉 = 0. This leads to

|G 〉 =
∏

k

(
cos ϑk − sin ϑk e

iφ
k c†k↑ c

†
−k↓
)
| 0 〉 . (12.63)

Note that 〈G |G 〉 = 1. J. R. Schrieffer conceived of this wavefunction during a subway ride in
New York City sometime during the winter of 1957. At the time he was a graduate student at
the University of Illinois.

Sanity check

It is good to make contact with something familiar, such as the case ∆k = 0. Note that ξk < 0

for k < kF and ξk > 0 for k > kF . We now have

cosϑk = Θ(k − k
F
) , sin ϑk = Θ(k

F
− k) . (12.64)

Note that the wavefunction |G 〉 in Eqn. 12.63 correctly describes a filled Fermi sphere out to

k = kF. Furthermore, the constant on the RHS of Eqn. 12.62 is 2
∑

k<k
F

ξk, which is the Landau

free energy of the filled Fermi sphere. What of the excitations? We are free to take φk = 0. Then

k < k
F
: γ†kσ = σ c−k−σ

k > k
F
: γ†kσ = c†kσ .

(12.65)

Thus, the elementary excitations are holes below kF and electrons above kF. All we have done,
then, is to effect a particle-hole transformation on those states lying within the Fermi sea.

12.6 Self-Consistency

We now demand that the following two conditions hold:

N =
∑

k,σ

〈c†kσ ckσ〉 , ∆k =
∑

k′

Vk,k′ 〈c−k′↓ ck′↑〉 , (12.66)
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the second of which is from Eqn. 12.51. Thus, we need

〈c†kσ ckσ〉 =
〈
(cos ϑk γ

†
kσ − σ sin ϑk e

−iφ
k γ−k−σ)(cosϑk γkσ − σ sinϑk e

iφ
k γ†−k−σ)

〉

= cos2ϑk fk + sin2ϑk (1− fk) =
1

2
− ξk

2Ek

tanh
(
1
2
βEk

)
,

(12.67)

where

fk = 〈γ†kσ γkσ〉 =
1

eβEk + 1
= 1

2
− 1

2
tanh

(
1
2
βEk

)
(12.68)

is the Fermi function, with β = 1/k
B
T . We also have

〈c−k−σ ckσ〉 =
〈
(cos ϑk γ−k−σ + σ sin ϑk e

iφ
k γ†kσ)(cosϑk γkσ − σ sin ϑk e

iφ
k γ†−k−σ)

〉

= σ sinϑk cosϑk e
iφ

k

(
2fk − 1

)
= −σ∆k

2Ek

tanh
(
1
2
βEk

)
.

(12.69)

Let’s evaluate at T = 0 :

N =
∑

k

(
1− ξk

Ek

)
, ∆k = −

∑

k′

Vk,k′

∆k′

2Ek′

. (12.70)

The second of these is known as the BCS gap equation. Note that ∆k = 0 is always a solution
of the gap equation. To proceed further, we need a model for Vk,k′ . We shall assume

Vk,k′ =

{
−v/V if |ξk| < ~ω

D
and |ξk′| < ~ω

D

0 otherwise .
(12.71)

Here v > 0, so the interaction is attractive, but only when ξk and ξk′ are within an energy ~ω
D

of
zero. For phonon-mediated superconductivity, ω

D
is the Debye frequency, which is the phonon

bandwidth.

12.6.1 Solution at zero temperature

We first solve the second of Eqns. 12.70, by assuming

∆k =

{
∆ eiφ if |ξk| < ~ω

D

0 otherwise ,
(12.72)

with ∆ real. We then have9

∆ = +v

∫
d3k

(2π)3
∆

2Ek

Θ
(
~ω

D
− |ξk|

)
= 1

2
v g(ε

F
)

~ω
D∫

0

dξ
∆√

ξ2 +∆2
. (12.73)

9We assume the density of states g(ε) is slowly varying in the vicinity of the chemical potential and approximate it

at g(εF). In fact, we should more properly call it g(µ), but as a practical matter µ ≃ εF at temperatures low enough
to be in the superconducting phase. Note that g(εF) is the total DOS for both spin species. In the literature, one
often encounters the expression N(0), which is the DOS per spin at the Fermi level, i.e. N(0) = 1

2
g(εF).
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Cancelling out the common factors of ∆ on each side, we obtain

1 = 1
2
v g(ε

F
)

~ω
D
/∆∫

0

ds (1 + s2)−1/2 = 1
2
v g(ε

F
) sinh−1

(
~ω

D
/∆
)

. (12.74)

Thus, writing ∆0 ≡ ∆(0) for the zero temperature gap,

∆0 =
~ω

D

sinh
(
2/g(εF) v

) ≃ 2~ω
D
exp

(
− 2

g(εF) v

)
, (12.75)

where g(εF) is the total electronic DOS (for both spin species) at the Fermi level. Notice that, as
promised, the argument of the exponent is one half as large as what we found in our solution
of the Cooper problem, in Eqn. 12.25.

12.6.2 Condensation energy

We now evaluate the zero temperature expectation of K̂
BCS

from Eqn. 12.62. To get the correct
answer, it is essential that we retain the term corresponding to the constant energy shift in the
mean field Hamiltonian, i.e. the last term on the RHS of Eqn. 12.62. Invoking the gap equation

∆k =
∑

k′ Vk,k′ 〈c−k′↓ ck′↑〉, we have

〈G | K̂
BCS

|G 〉 =
∑

k

(
ξk − Ek +

|∆k|2
2Ek

)
. (12.76)

From this we subtract the ground state energy of the metallic phase, i.e. when ∆k = 0, which is

2
∑

k ξk Θ(kF − k). The difference is the condensation energy. Adopting the model interaction
potential in Eqn. 12.71, we have

Es − En =
∑

k

(
ξk −Ek +

|∆k|2
2Ek

− 2ξk Θ(k
F
− k)

)

= 2
∑

k

(
ξk − Ek) Θ(ξk) Θ(~ω

D
− ξk) +

∑

k

∆2
0

2Ek

Θ
(
~ω

D
− |ξk|

)
,

(12.77)

where we have linearized about k = kF. We then have

Es − En = V g(ε
F
)∆2

0

~ω
D
/∆

0∫

0

ds

(
s−

√
s2 + 1 +

1

2
√
s2 + 1

)

= 1
2
V g(ε

F
)∆2

0

(
x2 − x

√
1 + x2

)
≈ −1

4
V g(ε

F
)∆2

0 ,

(12.78)
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where x ≡ ~ω
D
/∆0. The condensation energy density is therefore −1

4
g(εF)∆

2
0, which may be

equated with −H2
c /8π, where Hc is the thermodynamic critical field. Thus, we find

Hc(0) =

√
2πg(εF) ∆0 , (12.79)

which relates the thermodynamic critical field to the superconducting gap, at T = 0.

12.7 Coherence factors and quasiparticle energies

When ∆k = 0, we have Ek = |ξk|. When ~ω
D
≪ εF, there is a very narrow window surrounding

k = kF where Ek departs from |ξk|, as shown in the bottom panel of Fig. 12.4. Note the energy
gap in the quasiparticle dispersion, where the minimum excitation energy is given by10

min
k
Ek = E

k
F

= ∆0 . (12.80)

In the top panel of Fig. 12.4 we plot the coherence factors sin2ϑk and cos2ϑk. Note that sin2ϑk
approaches unity for k < kF and cos2ϑk approaches unity for k > kF, aside for the narrow

window of width δk ≃ ∆0/~vF . Recall that

γ†kσ = cosϑk c
†
kσ + σ sin ϑk e

−iφ
k c−k−σ . (12.81)

Thus we see that the quasiparticle creation operator γ†kσ creates an electron in the state | k σ 〉
when cos2ϑk ≃ 1, and a hole in the state | −k −σ 〉 when sin2ϑk ≃ 1. In the aforementioned
narrow window |k − kF|<∼∆0/~vF , the quasiparticle creates a linear combination of electron

and hole states. Typically ∆0 ∼ 10−4 εF, since metallic Fermi energies are on the order of tens of

thousands of Kelvins, while ∆0 is on the order of Kelvins or tens of Kelvins. Thus, δk <∼ 10−3kF.
The difference between the superconducting state and the metallic state all takes place within
an onion skin at the Fermi surface!

Note that for the model interaction Vk,k′ of Eqn. 12.71, the solution ∆k in Eqn. 12.72 is actually

discontinuous when ξk = ±~ω
D

, i.e. when k = k∗± ≡ kF±ωD
/vF. Therefore, the energy dispersion

Ek is also discontinuous along these surfaces. However, the magnitude of the discontinuity is

δE =
√
(~ω

D
)2 +∆2

0 − ~ω
D
≈ ∆2

0

2~ω
D

. (12.82)

Therefore δE/Ek∗
±

≈ ∆2
0

/
2(~ω

D
)2 ∝ exp

(
−4/g(εF) v

)
, which is very tiny in weak coupling,

where g(εF) v ≪ 1. Note that the ground state is largely unaffected for electronic states in the
vicinity of this (unphysical) energy discontinuity. The coherence factors are distinguished from

10Here we assume, without loss of generality, that ∆ is real.
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Figure 12.4: Top panel: BCS coherence factors sin2ϑk (blue) and cos2ϑk (red). Bottom panel:
the functions ξk (black) and Ek (magenta). The minimum value of the magenta curve is the
superconducting gap ∆0.

those of a Fermi liquid only in regions where 〈c†k↑c
†
−k↓〉 is appreciable, which requires ξk to be

on the order of ∆k. This only happens when |k − kF|<∼∆0/~vF , as discussed in the previous
paragraph. In a more physical model, the interaction Vk,k′ and the solution ∆k would not be
discontinuous functions of k.

12.8 Number and Phase

The BCS ground state wavefunction |G 〉 was given in Eqn. 12.63. Consider the state

|G(α) 〉 =
∏

k

(
cosϑk − eiα eiφk sinϑk c

†
k↑ c

†
−k↓
)
| 0 〉 . (12.83)

This is the ground state when the gap function ∆k is multiplied by the uniform phase factor
eiα. We shall here abbreviate |α 〉 ≡ |G(α) 〉.
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Now consider the action of the number operator on |α 〉 :

N̂ |α 〉 =
∑

k

(
c†k↑ck↑ + c†−k↓c−k↓

)
|α 〉 (12.84)

= −2
∑

k

eiα eiφk sinϑk c
†
k↑ c

†
−k↓

∏

k′ 6=k

(
cosϑk′ − eiα eiφk′ sin ϑk′ c

†
k′↑ c

†
−k′↓

)
| 0 〉 = 2

i

∂

∂α
|α 〉 .

If we define the number of Cooper pairs as M̂ ≡ 1
2
N̂ , then we may identify M̂ = 1

i
∂
∂α

. Further-
more, we may project |G 〉 onto a state of definite particle number by defining

|M 〉 =
π∫

−π

dα

2π
e−iMα |α 〉 . (12.85)

The state |M 〉 has N = 2M particles, i.e. M Cooper pairs. One can easily compute the number
fluctuations in the state |G(α) 〉 :

〈α | N̂2 |α 〉 − 〈α | N̂ |α 〉2

〈α | N̂ |α 〉
=

2
∫
d3k sin2ϑk cos2ϑk∫
d3k sin2ϑk

=
4∆0

~ωD

tan−1

(
~ω

D

∆0

)
≃ 2π∆0

~ω
D

. (12.86)

Thus, (∆N)
RMS

∝ 〈N〉1/2. Note that (∆N)
RMS

= 0 in the normal state, where sin ϑk cosϑk = 0.

12.9 Finite Temperature

The gap equation at finite temperature takes the form

∆k = −
∑

k′

Vk,k′

∆k′

2Ek′

tanh

(
Ek′

2k
B
T

)
. (12.87)

It is easy to see that we have no solutions other than the trivial one ∆k = 0 in the T → ∞ limit,
for the gap equation then becomes

∑
k′ Vk,k′ ∆k′ = −4k

B
T ∆k, and if the eigenspectrum of Vk,k′

is bounded, there is no solution for k
B
T greater than the largest eigenvalue of −Vk,k′ .

To find the critical temperature where the gap collapses, again we assume the forms in Eqns.
12.71 and 12.72, in which case we have

1 = 1
2
g(ε

F
) v

~ω
D∫

0

dξ√
ξ2 +∆2

tanh

(√
ξ2 +∆2

2k
B
T

)
. (12.88)

It is clear that ∆(T ) is a decreasing function of temperature, which vanishes at T = Tc, where
Tc is determined by the equation

Λ/2∫

0

ds s−1 tanh(s) =
2

g(εF) v
, (12.89)
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Figure 12.5: Temperature dependence of the energy gap in Pb as determined by tunneling
versus prediction of BCS theory. From R. F. Gasparovic, B. N. Taylor, and R. E. Eck, Sol. State
Comm. 4, 59 (1966). Deviations from the BCS theory are accounted for by numerical calcula-
tions at strong coupling by Swihart, Scalapino, and Wada (1965).

where Λ = ~ω
D
/k

B
Tc . One finds, for large Λ ,

I(Λ) =

Λ/2∫

0

ds s−1 tanh(s) = ln
(
1
2
Λ
)
tanh

(
1
2
Λ
)
−

Λ/2∫

0

ds
ln s

cosh2s

= lnΛ + ln
(
2 eC/π

)
+O

(
e−Λ/2

)
,

(12.90)

where C = 0.57721566 . . . is the Euler-Mascheroni constant. One has 2 eC/π = 1.134, so

k
B
Tc = 1.134 ~ω

D
e−2/g(ε

F
) v . (12.91)

Comparing with Eqn. 12.75, we obtain the famous result

2∆(0) = 2πe−C k
B
Tc ≃ 3.52 k

B
Tc . (12.92)

As we shall derive presently, just below the critical temperature, one has

∆(T ) = 1.734∆(0)

(
1− T

Tc

)1/2
≃ 3.06 k

B
Tc

(
1− T

Tc

)1/2

. (12.93)
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12.9.1 Isotope effect

The prefactor in Eqn. 12.91 is proportional to the Debye energy ~ω
D

. Thus,

lnTc = lnω
D
− 2

g(εF) v
+ const. . (12.94)

If we imagine varying only the mass of the ions, via isotopic substitution, then g(εF) and v do
not change, and we have

δ lnTc = δ lnω
D
= −1

2
δ lnM , (12.95)

where M is the ion mass. Thus, isotopically increasing the ion mass leads to a concomitant
reduction in Tc according to BCS theory. This is fairly well confirmed in experiments on low Tc
materials.

12.9.2 Landau free energy of a superconductor

Quantum statistical mechanics of noninteracting fermions applied to K̂
BCS

in Eqn. 12.62 yields
the Landau free energy

Ωs = −2k
B
T
∑

k

ln
(
1 + e−E

k
/k

B
T
)
+
∑

k

{
ξk −Ek +

|∆k|2
2Ek

tanh

(
Ek

2k
B
T

)}
. (12.96)

The corresponding result for the normal state (∆k = 0) is

Ωn = −2k
B
T
∑

k

ln
(
1 + e−|ξ

k
|/k

B
T
)
+
∑

k

(
ξk − |ξk|

)
. (12.97)

Thus, the difference is

Ωs −Ωn = −2k
B
T
∑

k

ln

(
1 + e−E

k
/k

B
T

1 + e−|ξ
k
|/k

B
T

)
+
∑

k

{
|ξk| − Ek +

|∆k|2
2Ek

tanh

(
Ek

2k
B
T

)}
. (12.98)

We now invoke the model interaction in Eqn. 12.71. Recall that the solution to the gap equation
is of the form ∆k(T ) = ∆(T ) Θ

(
~ω

D
− |ξk|

)
. We then have

Ωs −Ωn

V
=

∆2

v
− 1

2
g(ε

F
)∆2

{
~ω

D

∆

√

1 +

(
~ω

D

∆

)2
−
(
~ω

D

∆

)2
+ sinh−1

(
~ω

D

∆

)}
(12.99)

− 2 g(ε
F
) k

B
T ∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/k

B
T
)
+ 1

6
π2 g(ε

F
) (k

B
T )2 + . . . ,
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where the terms in the ellipsis are of O(T 4), arising from the Sommerfeld expansion of the low
temperature normal state free energy. We now expand this result in the vicinity of T = 0 and
T = Tc. In the weak coupling limit, throughout this entire region we have ∆ ≪ ~ω

D
, so we

proceed to expand in the small ratio, writing

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

{
1 + 2 ln

(
∆0

∆

)
−
(

∆

2~ω
D

)2

+O
(
∆4
)
}

(12.100)

− 2 g(ε
F
) k

B
T∆

∞∫

0

ds ln
(
1 + e−

√
1+s2 ∆/k

B
T
)
+ 1

6
π2 g(ε

F
) (k

B
T )2 + . . . ,

where ∆0 = ∆(0) = πe−C k
B
Tc. The asymptotic analysis of this expression in the limits T → 0+

and T → T−
c is discussed in the appendix §12.14.

T → 0
+

In the limit T → 0, we find

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

{
1 + 2 ln

(
∆0

∆

)
+O

(
∆2
)
}

(12.101)

− g(ε
F
)
√

2π(k
B
T )3∆ e−∆/k

B
T + 1

6
π2 g(ε

F
) (k

B
T )2 + . . . .

Differentiating the above expression with respect to ∆, we obtain a self-consistent equation for
the gap ∆(T ) at low temperatures:

ln

(
∆

∆0

)
= −

√
2πk

B
T

∆
e−∆/k

B
T

(
1− k

B
T

2∆
+ . . .

)
(12.102)

Thus,
∆(T ) = ∆0 −

√
2π∆ 0kB

T e−∆
0
/k

B
T + . . . . (12.103)

Substituting this expression into Eqn. 12.101, we find

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

0 − g(ε
F
)
√

2π∆0 (kB
T )3 e−∆

0
/k

B
T + 1

6
π2 g(ε

F
) (k

B
T )2 + . . . . (12.104)

Equating this with the condensation energy density, −H2
c (T )/8π , and invoking our previous

result, ∆0 = πe−C k
B
Tc , we find

Hc(T ) = Hc(0)

{
1−

≈1.057︷ ︸︸ ︷
1
3
e2C

(
T

Tc

)2
+ . . .

}
, (12.105)

where Hc(0) =

√
2π g(εF) ∆0.
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T → T−

c

In this limit, one finds

Ωs −Ωn

V
= 1

2
g(ε

F
) ln

(
T

Tc

)
∆2 +

7 ζ(3)

32π2

g(εF)

(k
B
T )2

∆4 +O
(
∆6
)

. (12.106)

This is of the standard Landau form,

Ωs −Ωn

V
= ã(T )∆2 + 1

2
b̃(T )∆4 , (12.107)

with coefficients

ã(T ) = 1
2
g(ε

F
)

(
T

Tc
− 1

)
, b̃ =

7 ζ(3)

16π2

g(εF)

(k
B
Tc)

2
, (12.108)

working here to lowest nontrivial order in T − Tc. The head capacity jump, according to Eqn.
1.44, is

cs(T
−
c )− cn(T

+
c ) =

Tc
[
ã′(Tc)

]2

b̃(Tc)
=

4π2

7 ζ(3)
g(ε

F
) k2

B
Tc . (12.109)

The normal state heat capacity at T = Tc is cn = 1
3
π2g(εF) k

2
B
Tc , hence

cs(T
−
c )− cn(T

+
c )

cn(T
+
c )

=
12

7 ζ(3)
= 1.43 . (12.110)

This universal ratio is closely reproduced in many experiments; see, for example, Fig. 12.6.

The order parameter is given by

∆2(T ) = − ã(T )
b̃(T )

=
8π2(k

B
Tc)

2

7 ζ(3)

(
1− T

Tc

)
=

8 e2C

7 ζ(3)

(
1− T

Tc

)
∆2(0) , (12.111)

where we have used ∆(0) = π e−C k
B
Tc. Thus,

∆(T )

∆(0)
=

≈ 1.734︷ ︸︸ ︷(
8 e2C

7 ζ(3)

)1/2 (
1− T

Tc

)1/2
. (12.112)

The thermodynamic critical field just below Tc is obtained by equating the energies −ã2/2b̃ and
−H2

c /8π. Therefore

Hc(T )

Hc(0)
=

(
8 e2C

7 ζ(3)

)1/2(
1− T

Tc

)
≃ 1.734

(
1− T

Tc

)
. (12.113)
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Figure 12.6: Heat capacity in aluminum at low temperatures, from N. K. Phillips, Phys. Rev.
114, 3 (1959). The zero field superconducting transition occurs at Tc = 1.163K. Comparison
with normal state C below Tc is made possible by imposing a magnetic field H > Hc. This
destroys the superconducting state, but has little effect on the metal. A jump ∆C is observed
at Tc, quantitatively in agreement BCS theory.

12.10 Paramagnetic Susceptibility

Suppose we add a weak magnetic field, the effect of which is described by the perturbation
Hamiltonian

Ĥ1 = −µ
B
H
∑

k,σ

σ c†kσ ckσ = −µ
B
H
∑

k,σ

σ γ†kσ γkσ . (12.114)

The shift in the Landau free energy due to the field is then ∆Ωs(T, V, µ,H) = Ωs(T, V, µ,H) −
Ωs(T, V, µ, 0). We have

∆Ωs(T, V, µ,H) = −k
B
T
∑

k,σ

ln

(
1 + e−β(E

k
+σµ

B
H)

1 + e−βE
k

)

= −β (µ
B
H)2

∑

k

eβEk

(
eβEk + 1

)2 +O(H4) .

(12.115)
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The magnetic susceptibility is then

χs = − 1

V

∂2∆Ωs

∂H2
= g(ε

F
)µ2

B
Y(T ) , (12.116)

where

Y(T ) = 2

∞∫

0

dξ

(
− ∂f

∂E

)
= 1

2
β

∞∫

0

dξ sech2
(

1
2
β
√
ξ2 +∆2

)
(12.117)

is the Yoshida function. Note thatY(Tc) =
∞∫
0

du sech2u = 1 , and Y(T → 0) ≃ (2πβ∆)1/2 exp(−β∆) ,

which is exponentially suppressed. Since χn = g(εF)µ
2
B

is the normal state Pauli susceptibil-
ity, we have that the ratio of superconducting to normal state susceptibilities is χs(T )/χn(T ) =
Y(T ). This vanishes exponentially as T → 0 because it takes a finite energy ∆ to create a
Bogoliubov quasiparticle out of the spin singlet BCS ground state.

In metals, the nuclear spins experience a shift in their resonance energy in the presence of an
external magnetic field, due to their coupling to conduction electrons via the hyperfine interac-
tion. This is called the Knight shift, after Walter Knight, who first discovered this phenomenon at
Berkeley in 1949. The magnetic field polarizes the metallic conduction electrons, which in turn
impose an extra effective field, through the hyperfine coupling, on the nuclei. In superconduc-
tors, the electrons remain unpolarized in a weak magnetic field owing to the superconducting
gap. Thus there is no Knight shift.

As we have seen from the Ginzburg-Landau theory, when the field is sufficiently strong, su-
perconductivity is destroyed (type I), or there is a mixed phase at intermediate fields where
magnetic flux penetrates the superconductor in the form of vortex lines. Our analysis here is
valid only for weak fields.

12.11 Finite Momentum Condensate

The BCS reduced Hamiltonian of Eqn. 12.43 involved interactions between q = 0 Cooper pairs
only. The reduced BCS Hamiltonian was given by

Ĥred =
∑

k,σ

εk c
†
kσ ckσ +

∑

k,k′,p

Vk,k′ b
†
k,p bk′,p . (12.118)

where bk,p = c−k+ 1

2
p ↓ ck+ 1

2
p ↑ , and with zero momentum pairing, 〈 bk,p 〉 = 〈 bk,0 〉 δp,0. The gap

∆k is then given by ∆k =
∑

k′ Vk,k′〈 bk′,0 〉 . What happens, though, if we take

〈 bk,p 〉 =
〈
c−k+ 1

2
q ↓ ck+ 1

2
q ↑
〉
δp,q , ∆k,q =

∑

k′

Vk,k′

〈
c−k+ 1

2
q ↓ ck+ 1

2
q ↑
〉

, (12.119)



12.11. FINITE MOMENTUM CONDENSATE 25

corresponding to a finite momentum condensate? We then obtain

K̂
BCS

=
∑

k

(
c†
k+ 1

2
q ↑ c−k+ 1

2
q ↓

)(ωk,q + νk,q ∆k,q

∆∗
k,q −ωk,q + νk,q

)( c
k+ 1

2
q ↑

c†−k+ 1

2
q ↓

)
+
∑

k

(
ξk−∆k,q 〈 b†k,q 〉

)
,

(12.120)
where

ωk,q =
1
2

(
ξ
k+ 1

2
q
+ ξ−k+ 1

2
q

)
ξ
k+ 1

2
q
= ωk,q + νk,q (12.121)

νk,q =
1
2

(
ξ
k+ 1

2
q
− ξ−k+ 1

2
q

)
ξ−k+ 1

2
q
= ωk,q − νk,q . (12.122)

Note that ωk,q is even under reversal of either k or q, while νk,q is odd under reversal of either
k or q. That is,

ωk,q = ω−k,q = ωk,−q = ω−k,−q , νk,q = −ν−k,q = −νk,−q = ν−k,−q . (12.123)

We now make a Bogoliubov transformation,

c
k+ 1

2
q ↑ = cosϑk,q γk,q,↑ − sin ϑk,q e

iφ
k,q γ†−k,q,↓

c†−k+ 1

2
q ↓ = cosϑk,q γ

†
−k,q,↓ + sinϑk,q e

iφ
k,q γk,q,↑

(12.124)

with

cos ϑk,q =

√
Ek,q + ωk,q

2Ek,q

φk,q = arg(∆k,q) (12.125)

sin ϑk,q =

√
Ek,q − ωk,q

2Ek,q

Ek,q =
√
ω2
k,q + |∆k,q|2 . (12.126)

We then obtain

K̂
BCS

=
∑

k,σ

(Ek,q + νk,q) γ
†
k,q,σγk,q,σ +

∑

k

(
ξk − Ek,q +∆k,q 〈b†k,q〉

)
. (12.127)

Next, we compute the quantum statistical averages

〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉
= cos2ϑk,q f(Ek,q + νk,q) + sin2ϑk,q

[
1− f(Ek,q − νk,q)

]
(12.128)

=
1

2

(
1 +

ωk,q

Ek,q

)
f(Ek,q + νk,q) +

1

2

(
1−

ωk,q

Ek,q

)[
1− f(Ek,q − νk,q)

]

and
〈
c†
k+ 1

2
q ↑ c

†
−k+ 1

2
q ↓
〉
= − sinϑk,q cosϑk,q e

−iφ
k,q

[
1− f(Ek,q + νk,q)− f(Ek,q − νk,q)

]

= −
∆∗

k,q

2Ek,q

[
1− f(Ek,q + νk,q)− f(Ek,q − νk,q)

]
. (12.129)
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12.11.1 Gap equation for finite momentum condensate

We may now solve the T = 0 gap equation,

1 = −
∑

k′

Vk,k′

1

2Ek′,q

= 1
2
g(ε

F
) v

~ω
D∫

0

dξ√
(ξ + ηq)

2 + |∆0,q|2
. (12.130)

Here we have assumed the interaction Vk,k′ of Eqn. 12.71, and we take

∆k,q = ∆0,q Θ
(
~ω

D
− |ξk|

)
. (12.131)

We have also written ωk,q = ξk+ηq. This form is valid for quadratic ξk = ~
2k2

2m∗ −µ , in which case
ηq = ~

2q2/8m∗. We take ∆0,q ∈ R . We may now compute the critical wavevector qc at which
the T = 0 gap collapses:

1 = 1
2
g(ε

F
) v ln

(
~ω

D
+ ηqc
ηqc

)
⇒ ηqc ≃ ~ω

D
e−2/g(ε

F
) v = 1

2
∆0 , (12.132)

whence qc = 2
√
m∗∆0 /~ . Here we have assumed weak coupling, i.e. g(εF) v ≪ 1

Next, we compute the gap ∆0,q . We have

sinh−1

(
~ω

D
+ ηq

∆0,q

)
=

2

g(εF) v
+ sinh−1

(
ηq
∆0,q

)
. (12.133)

Assuming ηq ≪ ∆0,q , we obtain

∆0,q = ∆0 − ηq = ∆0 −
~
2q2

8m∗ . (12.134)

12.11.2 Supercurrent

We assume a quadratic dispersion εk = ~
2k2/2m∗ , so vk = ~k/m∗. The current density is then

given by

j =
2e~

m∗V

∑

k

(
k + 1

2
q
)〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉
=
ne~

2m∗ q +
2e~

m∗V

∑

k

k
〈
c†
k+ 1

2
q ↑ ck+ 1

2
q ↑
〉

, (12.135)

where n = N/V is the total electron number density. Appealing to Eqn. 12.128, we have

j =
e~

m∗V

∑

k

k

{[
1 + f(Ek,q + νk,q)− f(Ek,q − νk,q)

]
(12.136)

+
ωk,q

Ek,q

[
f(Ek,q + νk,q) + f(Ek,q − νk,q)− 1

]}
+
ne~

2m∗ q .
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We now write f(Ek,q ± νk,q) = f(Ek,q)± f ′(Ek,q) νk,q + . . ., obtaining

j =
e~

m∗V

∑

k

k

[
1 + 2 νk,q f

′(Ek,q)
]
+
ne~

2m∗ q . (12.137)

For the ballistic dispersion, νk,q = ~
2k · q/2m∗, so

j − ne~

2m∗ q =
e~

m∗V

~
2

m∗

∑

k

(q · k) k f ′(Ek,q)

=
e~3

3m∗2V
q
∑

k

k2 f ′(Ek,q) ≃
ne~

m∗ q

∞∫

0

dξ
∂f

∂E
,

(12.138)

where we have set k2 = k2
F

inside the sum, since it is only appreciable in the vicinity of k = kF,

and we have invoked g(εF) = m∗kF/π
2
~
2 and n = k3

F
/3π2. Thus,

j =
ne~

2m∗

(
1 + 2

∞∫

0

dξ
∂f

∂E

)
q ≡ ns(T ) e~q

2m∗ . (12.139)

This defines the superfluid density,

ns(T ) = n

(
1 + 2

∞∫

0

dξ
∂f

∂E

)
. (12.140)

Note that the second term in round brackets on the RHS is always negative. Thus, at T = 0,
we have ns = n, but at T = Tc, where the gap vanishes, we find ns(Tc) = 0, since E = |ξ| and
f(0) = 1

2
. We may write ns(T ) = n− nn(T ), where nn(T ) = nY(T ) is the normal fluid density.

Ginzburg-Landau theory

We may now expand the free energy near T = Tc at finite condensate q. We will only quote the
result. One finds

Ωs −Ωn

V
= ã(T ) |∆|2 + 1

2
b̃(T ) |∆|4 + n b̃(T )

g(εF)

~
2q2

2m∗ |∆|2 , (12.141)

where the Landau coefficients ã(T ) and b̃(T ) are given in Eqn. 12.108. Identifying the last term
as K̃ |∇∆|2, where K̃ is the stiffness, we have

K̃ =
~
2

2m∗
n b̃(T )

g(εF)
. (12.142)
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12.12 Effect of Repulsive Interactions

Let’s modify our model in Eqns. 12.71 and 12.72 and write

Vk,k′ =

{
(v

C
− vp)/V if |ξk| < ~ω

D
and |ξk′| < ~ω

D

v
C
/V otherwise

(12.143)

and

∆k =

{
∆0 if |ξk| < ~ω

D

∆1 otherwise .
(12.144)

Here −vp < 0 is the attractive interaction mediated by phonons, while v
C
> 0 is the Coulomb

repulsion. We presume vp > v
C

so that there is a net attraction at low energies, although below
we will show this assumption is overly pessimistic. We take ∆0,1 both to be real.

At T = 0, the gap equation then gives

∆0 =
1
2
g(ε

F
) (vp − v

C
)

~ω
D∫

0

dξ
∆0√
ξ2 +∆2

0

− 1
2
g(ε

F
) v

C

B∫

~ω
D

dξ
∆1√
ξ2 +∆2

1

∆1 = −1
2
g(ε

F
) v

C

~ω
D∫

0

dξ
∆0√
ξ2 +∆2

0

− 1
2
g(ε

F
) v

C

B∫

~ω
D

dξ
∆1√
ξ2 +∆2

1

,

(12.145)

where ~ω
D

is once again the Debye energy, and B is the full electronic bandwidth. Performing
the integrals, and assuming ∆0,1 ≪ ~ω

D
≪ B, we obtain

∆0 =
1
2
g(ε

F
) (vp − v

C
)∆0 ln

(
2~ω

D

∆0

)
− 1

2
g(ε

F
) v

C
∆1 ln

(
B

~ω
D

)

∆1 = −1
2
g(ε

F
) v

C
∆0 ln

(
2~ω

D

∆0

)
− 1

2
g(ε

F
) v

C
∆1 ln

(
B

~ω
D

)
.

(12.146)

The second of these equations gives

∆1 = −
1
2
g(εF) vC

ln(2~ω
D
/∆0)

1 + 1
2
g(εF) vC

ln(B/~ω
D
)
∆0 . (12.147)

Inserting this into the first equation then results in

2

g(εF) vp
= ln

(
2~ω

D

∆0

)
·
{
1− v

C

vp
· 1

1 + 1
2
g(εF) ln(B/~ωD

)

}
. (12.148)
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This has a solution only if the attractive potential vp is greater than the repulsive factor v
C

/[
1+

1
2
g(εF) vC

ln(B/~ω
D
)
]
. Note that it is a renormalized and reduced value of the bare repulsion v

C

which enters here. Thus, it is possible to have

v
C
> vp >

v
C

1 + 1
2
g(εF) vC

ln(B/~ω
D
)

, (12.149)

so that v
C
> vp and the potential is always repulsive, yet still the system is superconducting!

Working at finite temperature, we must include factors of tanh
(

1
2
β
√
ξ2 +∆2

0,1

)
inside the ap-

propriate integrands in Eqn. 12.145, with β = 1/k
B
T . The equation for Tc is then obtained by

examining the limit ∆0,1 → 0 , with the ratio r ≡ ∆1/∆0 finite. We then have

2

g(εF)
= (vp − v

C
)

Ω̃∫

0

ds s−1 tanh(s)− r v
C

B̃∫

Ω̃

ds s−1 tanh(s)

2

g(εF)
= −r−1 v

C

Ω̃∫

0

ds s−1 tanh(s)− v
C

B̃∫

Ω̃

ds s−1 tanh(s) ,

(12.150)

where Ω̃ ≡ ~ω
D
/2k

B
Tc and B̃ ≡ B/2k

B
Tc. We now use

Λ∫

0

ds s−1 tanh(s) = lnΛ + ln
(

≈ 2.268︷ ︸︸ ︷
4eC/π

)
+O

(
e−Λ
)

(12.151)

to obtain

2

g(εF) vp
= ln

(
1.134 ~ω

D

k
B
Tc

)
·
{
1− v

C

vp
· 1

1 + 1
2
g(εF) vC

ln(B/~ω
D
)

}
. (12.152)

Comparing with Eqn. 12.148, we see that once again we have 2∆0(T = 0) = 3.52 k
B
Tc. Note,

however, that

k
B
Tc = 1.134 ~ω

D
exp

(
− 2

g(εF) veff

)
, (12.153)

where

v
eff

= vp −
v
C

1 + 1
2
g(εF) vC

ln(B/~ω
D
)

. (12.154)

It is customary to define

λ ≡ 1
2
g(ε

F
) vp , µ ≡ 1

2
g(ε

F
) v

C
, µ∗ ≡ µ

1 + µ ln(B/~ω
D
)

, (12.155)
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so that

k
B
Tc = 1.134 ~ω

D
e−1/(λ−µ∗) , ∆0 = 2~ω

D
e−1/(λ−µ∗) , ∆1 = − µ∗∆0

λ− µ∗ . (12.156)

Since µ∗ depends on ω
D
, the isotope effect is modified:

δ lnTc = δ lnω
D
·
{
1− µ2

1 + µ ln(B/~ω
D
)

}
. (12.157)

12.13 Appendix I : General Variational Formulation

We consider a more general grand canonical Hamiltonian of the form

K̂ =
∑

kσ

(εk − µ) c†kσ ckσ +
1

2V

∑

k,p,q

∑

σ,σ′

ûσσ′(k, p, q) c
†
k+q σ c

†
p−q σ′ cp σ′ ck σ . (12.158)

In order that the Hamiltonian be Hermitian, we may require, without loss of generality,

û∗σσ′(k, p, q) = ûσσ′(k + q , p− q , −q) . (12.159)

In addition, spin rotation invariance says that û↑↑(k, p, q) = û↓↓(k, p, q) and û↑↓(k, p, q) = û↓↑(k, p, q).

We now take the thermal expectation of K̂ using a density matrix derived from the BCS Hamil-
tonian,

K̂
BCS

=
∑

k

(
c†k↑ c−k↓

)(
ξk ∆k

∆∗
k −ξk

)(
ck↑
c†−k↓

)
+K0 . (12.160)

The energy shift K0 will not be important in our subsequent analysis. From the BCS Hamilto-
nian,

〈c†kσ ck′σ′〉 = nk δk,k′ δσσ′ , 〈c†kσ c
†
k′σ′〉 = Ψ∗

k δk′,−k εσσ′ , (12.161)

where εσσ′ =

(
0 1
−1 0

)
. We don’t yet need the detailed forms of nk and Ψk either. Using Wick’s

theorem, we find

〈K̂〉 =
∑

k

2(εk − µ)nk +
∑

k,k′

Wk,k′ nk nk′ −
∑

k,k′

Vk,k′ Ψ∗
k Ψk′ , (12.162)

where

Wk,k′ =
1

V

{
û↑↑(k, k

′, 0) + û↑↓(k, k
′, 0)− û↑↑(k, k

′, k′ − k)
}

Vk,k′ = − 1

V
û↑↓(k

′,−k′, k− k′) .

(12.163)
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We may assume Wk,k′ is real and symmetric, and Vk,k′ is Hermitian.

Now let’s vary 〈K̂〉 by changing the distribution. We have

δ〈K̂〉 = 2
∑

k

(
εk − µ+

∑

k′

Wk,k′ nk′

)
δnk +

∑

k,k′

Vk,k′

(
Ψ∗

k δΨk′ + δΨ∗
k Ψk′

)
. (12.164)

On the other hand,

δ〈K̂
BCS

〉 = 2
∑

k

(
ξk δnk +∆k δΨ

∗
k +∆∗

k δΨk

)
. (12.165)

Setting these variations to be equal, we obtain

ξk = εk − µ+
∑

k′

Wk,k′ nk′

= εk − µ+
∑

k′

Wk,k′

[
1

2
− ξk′

2Ek′

tanh
(
1
2
βEk′

)
] (12.166)

and

∆k =
∑

k′

Vk,k′ Ψk′ = −
∑

k′

Vk,k′

∆k′

2Ek′

tanh
(
1
2
βEk′

)
. (12.167)

These are to be regarded as self-consistent equations for ξk and ∆k.

12.14 Appendix II : Superconducting Free Energy

We start with the Landau free energy difference from Eqn. 12.100,

Ωs −Ωn

V
= −1

4
g(ε

F
)∆2

{
1 + 2 ln

(
∆0

∆

)
−
(

∆

2~ω
D

)2
+O

(
∆4
)
}

(12.168)

− 2 g(ε
F
)∆2 I(δ) + 1

6
π2 g(ε

F
) (k

B
T )2 ,

where

I(δ) =
1

δ

∞∫

0

ds ln
(
1 + e−δ

√
1+s2

)
. (12.169)

We now proceed to examine the integral I(δ) in the limits δ → ∞ (i.e. T → 0+) and δ → 0+ (i.e.
T → T−

c , where ∆ → 0).

When δ → ∞, we may safely expand the logarithm in a Taylor series, and

I(δ) =
∞∑

n=1

(−1)n−1

nδ
K1(nδ) , (12.170)
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Figure 12.7: Contours for complex integration for calculating I(δ) as described in the text.

where K1(δ) is the modified Bessel function, also called the MacDonald function. Asymptoti-
cally, we have11

K1(z) =

(
π

2z

)1/2
e−z ·

{
1 +O

(
z−1
)}

. (12.171)

We may then retain only the n = 1 term to leading nontrivial order. This immediately yields
the expression in Eqn. 12.101.

The limit δ → 0 is much more subtle. We begin by integrating once by parts, to obtain

I(δ) =

∞∫

1

dt

√
t2 − 1

eδt + 1
. (12.172)

We now appeal to the tender mercies of Mathematica. Alas, this avenue is to no avail, for
the program gags when asked to expand I(δ) for small δ. We need something better than
Mathematica. We need Professor Michael Fogler.

Fogler says12: start by writing Eqn. 12.170 in the form

I(δ) =
∞∑

n=1

(−1)n−1

nδ
K1(nδ) = +

∫

C
1

dz

2πi

π

sin πz

K1(δz)

δz
. (12.173)

The initial contour C1 consists of a disjoint set of small loops circling the points z = πn, where
n ∈ Z+. Note that the sense of integration is clockwise rather than counterclockwise. This
accords with an overall minus sign in the RHS above, because the residues contain a factor of
cos(πn) = (−1)n rather than the desired (−1)n−1. Following Fig. 12.7, the contour may now be
deformed into C2, and then into C3. Contour C3 lies along the imaginary z axis, aside from a
small semicircle of radius ǫ → 0 avoiding the origin, and terminates at z = ±iA. We will later
take A→ ∞, but for the moment we consider 1 ≪ A≪ δ−1. So long asA≫ 1, the denominator
sin πz = i sinh πu, with z = iu, will be exponentially large at u = ±A, so we are safe in making

11See, e.g., the NIST Handbook of Mathematical Functions, §10.25.
12M. Fogler, private communications.



12.14. APPENDIX II : SUPERCONDUCTING FREE ENERGY 33

this initial truncation. We demand A≪ δ−1, however, which means |δz| ≪ 1 everywhere along
C3. This allows us to expand K1(δz) for small values of the argument. One has

K1(w)

w
=

1

w2
+ 1

2
lnw

(
1 + 1

8
w2 + 1

192
w4 + . . .

)
+
(
C− ln 2− 1

2

)
(12.174)

+ 1
16

(
C − ln 2− 5

4

)
w2 + 1

384

(
C − ln 2− 5

3

)
w4 + . . . ,

where C ≃ 0.577216 is the Euler-Mascheroni constant. The integral is then given by

I(δ) =

A∫

ǫ

du

2πi

π

sinh πu

[
K1(iδu)

iδu
− K1(−iδu)

−iδu

]
+

π/2∫

−π/2

dθ

2π

πǫ eiθ

sin
(
πǫ eiθ

) K1

(
δǫ eiθ

)

δǫ eiθ
. (12.175)

Using the above expression for K1(w)/w, we have

K1(iδu)

iδu
− K1(−iδu)

−iδu =
iπ

2

(
1− 1

8
δ2u2 + 1

192
δ4u4 + . . .

)
. (12.176)

At this point, we may take A → ∞. The integral along the two straight parts of the C3 contour
is then

I1(δ) =
1
4
π

∞∫

ǫ

du

sinh πu

(
1− 1

8
δ2u2 + 1

192
δ4u4 + . . .

)

= −1
4
ln tanh

(
1
2
πǫ
)
− 7 ζ(3)

64 π2
δ2 +

31 ζ(5)

512 π4
δ4 +O

(
δ6
)

.

(12.177)

The integral around the semicircle is

I2(δ) =

π/2∫

−π/2

dθ

2π

1

1− 1
6
π2ǫ2 e2iθ

{
1

δ2ǫ2 e2iθ
+ 1

2
ln
(
δǫ eiθ

)
+ 1

2
(C− ln 2− 1

2
) + . . .

}

=

π/2∫

−π/2

dθ

2π

(
1 + 1

6
π2ǫ2 e2iθ + . . .

) {e−2iθ

δ2ǫ2
+ 1

2
ln(δǫ) + i

2
θ + 1

2
(C− ln 2− 1

2
) + . . .

}

=
π2

12 δ2
+ 1

4
ln δ + 1

4
ln ǫ+ 1

4
(C− ln 2− 1

2
) +O

(
ǫ2
)

. (12.178)

We now add the results to obtain I(δ) = I1(δ)+ I2(δ). Note that there are divergent pieces, each
proportional to ln ǫ , which cancel as a result of this addition. The final result is

I(δ) =
π2

12 δ2
+ 1

4
ln

(
2δ

π

)
+ 1

4
(C− ln 2− 1

2
)− 7 ζ(3)

64 π2
δ2 +

31 ζ(5)

512 π4
δ4 +O

(
δ6
)

. (12.179)

Inserting this result in Eqn. 12.168 above, we thereby recover Eqn. 12.106.
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