Hw 4:

- 1. This problem is taken from Jackson. It is abit ill worded, but part of the point is to make sense of the wording. The last item is reworded and simplified.
 - (a) Show that the Lorentz invariant lagrangian

$$L = -\frac{m}{2}U_{\alpha}U^{\alpha} - \frac{q}{c}U^{\alpha}A_{\alpha}$$

gives the correct relativistic equations of motion for a particle of mass m and charge q interacting with an external field described by the 4-vector potential $A^{\alpha}(x)$.

- (b) Define the canonical momenta and write the Hamiltonian.
- 2. (Pollack & Stump, 12.19) An observer measures the electric and magnetic field of a large charged plate, which is at rest in the xy plane with uniform charge density σ , in a region far from the edges of the plate.
 - (a) What are her measured field \vec{E} and \vec{B} ?
 - (b) Another observer is moving with speed v in the direction of the *x*-axis relative the first observer, and also measures the fields. What are these fields, $\vec{E'}$ and $\vec{B'}$ measured by the second observer?
 - (c) The second observer attributes the fields to a surface charge density σ' and a current surface density $\vec{K'}$. Relate these quantities to σ .
- 3. Determine the motion of a particle of mass m and charge q moving in a constant (space and time independent) electric field \vec{E} .