Electric and magnetic phenomena are described by Maxwell's equations V.E = 47P (1)7×B-10E=477 (2) 7xE + 1 2B = 0 (3)73:0 (given in Gaussian units-more on Mis later) plus the Lorente force equation F= q(F+VxB) In Mese $\vec{E} = \vec{E}(\hat{x},t)$ and $\vec{B} = \vec{B}(\hat{x},t)$ are fields - which I am displaying explicitly. Just to make sure we agree on notation, p=plant) = electric charge donsity 1 = j(x,t) = electric ownert bousity c = speed of light = 2.99 x 108 m/s v = velocity of charge - q particle F = force due ExB fiells on said particle And $\vec{E} = (E_A, E_Y, E_E)$ etc are 3-vectors (we'll distinguish 3-vectors from other d-vectors) so that on a function ((x,y,z), \$\forall f = grad() is a vector (dxf, dyf, dzf) (gradient) on a restor E, $\vec{\nabla} \cdot \vec{E} = \text{div}(\vec{\epsilon})$ is a scalar (10, pure number) = $\partial_x E_x + \partial_y E_y + \partial_z E_z$ (divergence) and on a vector \(\vec{E} \), $(\vec{1}) \(\vec{E} \) = \(\vec{E} \) = \(\vec{E} \), <math>(\vec{E} \) = \(\vec{E} \), <math>(\vec{E} \) = \(\vec{E} \), <math>(\vec{E} \), <math>(\vec{E} \)$ (curl) We start our dircussion of Electrodynamics by exploring two key aspects of ess (1)-(5): (i) They are invariant under Loventz fransformations. (ii) The fundamental dynamical variables are fields. We will look at those to gether, moving back and tugh between thom. We will nate contact with the more familiar aspects of special relativity (eg, boss to on point particles) only at the end, for completeness.

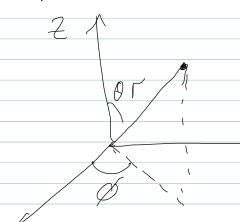
Same
Space-time Fields are functions of space and time. This is itself does not require we think of space and time continuum "space-timo". It is the
invariance of Exs. (1)-(5) where loventt pansformations, and that these mix
space and have, that lead us to consider space and have on an almost equal
joohng.
Walm-up: Rotations and space.
Points in space are accounted for with coordinates $\vec{X} = (x', x', x') \in \mathbb{R}^3$
There is much arbitrarines in how his is done. Given a coordinate system X
can define a new one \$\hat{x}' = \hat{x}'(\hat{x}) (3 functions of 3 variables), with the obvious
austraint that the map be 1-to-1, invertible (if you know about manifolds and
differential geometry, this can be done in patches). But we'd like to focus on
coordinates we can assign with a meter stick; call then "(aithosian"
con pringer we fail assign with a metricipical policy (Alfre) Juni
Given one such coordinate system, others are obtained by
- hand him 3/2 2 2 2 - had a de
- translations $\vec{x}' = \vec{x} + \vec{a}$ $\vec{a}' = \vec{h} \times \vec{e} + \vec{h} \times \vec{e}$
- potations Z'= RX R= orthogonal matrix
Here is another book at Mis. In our 'ruled' space distance is given by
$\frac{3}{5}(dxi)^2$
$ds^{2} = dx^{2} + dy^{2} + dz^{2} = \sum_{j=1}^{3} (dx^{j})^{2} $ (6)
OK, reall distance he ween 2-points, P, and Pz, is given by
$\frac{1}{2}$
ds along a straight line (or, equivalently, min all paths)
· · · · · · · · · · · · · · · · · · ·

Question: what is the set of transformations $\vec{x} \rightarrow \vec{y}(\vec{x})$ that proserve the $ds^2 = \frac{3}{2} (dx^2)^2 = \frac{3}{2} (dy^2)^2 \qquad ?$ Since $\hat{y} = \hat{y}(\hat{z})$ we have $\frac{3}{\sum_{i=1}^{3} (dy_i)^2} = \frac{3}{\sum_{i=1}^{3} (dy_i)^2} \left(\frac{3}{\sum_{i=1}^{3} \partial y_i} dx_i \right)^2 = \frac{3}{\sum_{i=1}^{3} (dy_i)^2} \left(\frac{3}{\sum_{i=1}^{3} \partial y_i} \frac{\partial y_i}{\partial x_i} \right) dx_i dx_i^k$ One can show $\frac{3}{2} \frac{\partial y^i}{\partial x^i} \frac{\partial y^i}{\partial x^k} = \delta_{jk} = \begin{bmatrix} 1 & \text{if } j \ge k \\ 0 & \text{j} \ne k \end{bmatrix}$ ("Knowerlar delfe") only if $\vec{y} = \vec{y}(\vec{x})$ is a linear transformation. $\vec{y}^i = \vec{\hat{y}} R^i$; $\vec{x}^j + \vec{a}^i$ with Rij a 3x3 matrix of numbers and an a 3-vector of numbers (by "numbers" we mean constants, independent of x) Moreover it is regulard that 3 Ri, Ri = 8ik which follows directly from (7). Note: the reason for the peculiar upper/lower indices will become Condition (8) de hues "orthogonal" ma hices. It is convenient to introduce a metric tensor Mij so Mat $dS^2 = \sum_{i=1}^{3} \sum_{i=1}^{3} M_{ii} dx^i dx^i$ Of rouse, Mij = Sij in our Carlhosian system. But we have already seen Mat If we go nully with coordinate choices, yi = yi(xi) then ds2 = \frac{3}{2} g_{ke} dyk dye with gke = \frac{3}{2} \frac{3x^2}{2y^2} \frac{3x^2}{2y^2} \frac{3x^2}{2y^2} \frac{3x^2}{2y^2} \frac{3x^2}{2y^2} \frac{3x^2}{2y^2} (10) (we used $x^i = x^i(\vec{y})$ as the inverse of $\vec{y} = \vec{y}(\vec{x})$). This can be convenient! We can relate the metric tensors in coordinate systems that are not Carthosian Examples follow:

* Cylindrical coordinates.

X = P 6056

 $y = p \leq |mp|$ $z = z \qquad \leftarrow ok, I \leq |mp| \leq |mp| \leq |mp| \leq |mp|$


labels, but why bother....

Then $ds^2 = (dp \cos \phi - p \sin \phi d\phi)^2 + (dp \sin \phi + p \cos \phi d\phi)^2 + (dz)^2$

$$= d\rho^2 + \rho^2 d\rho^2 + dz^2$$

and $g_{kz} = diag(1, p^2, 1)$ (rv $g_{pp} = 1, g_{\phi} = p^2, g_{zz} = 1, all ollers variosh)$

A Splencal coordinales

X = 15170 Cosd

4 = 1 5140 SIND

Z = (GSD)

Exercise: verify ds2 = dr2 + r2 do2 + r2 sind do2

We will make this useful momentarily.

But lets go back to rotations: consider xi - Ri; xi (his is often going to be shorthand, or shortspeak, for let yi= Ri; xi in a function of \$\overline{y}\$):

$$ds^{2} = \sum_{i,j=1}^{3} M_{ij} dx^{i} dx^{j} \longrightarrow \sum_{i,j=1}^{3} M_{ij} \left(\sum_{k=1}^{3} R^{i}_{k} dx^{k} \right) \left(\sum_{k=1}^{3} R^{i}_{k} dx^{k} \right) = \sum_{i,j=1}^{3} M_{ik} dx^{k} dx^{k}$$

Where
$$M_{\epsilon \ell} = \sum_{\lambda,j=1}^{j} R^{j}_{\epsilon} R^{j}_{\ell} M_{ij}$$
 (13)

The invariance condition (7) is now Mi = Mi

Notice Mat suce Mij = Sij, condition (15) is just the same as (8). But it tells us some thing interesting: or Mosonal transformation are those that leave the me his tensor invariant under transformations M-> M' given in (13)

Einstein convention: Repeated indices are prosumed summed ovor their understood range unless otherwise So $y^i = R^i \times i$ stands for $y^i = \sum_{i=1}^{3} R^i \times i$ and $ds^2 = M_{ij} dx^i dx^i$ stards for $ds^2 = \frac{3}{2} M_{ij} dx^i dx^i$ Some has we even imply the indies, Y=Rx means yi=Ri; xi RTMR = M chancleites hourspormations last leave melicinvariant and M=1 means RIR=1, a more families condition for ofthogonal matrix. Phys 15: let's consider a notation on Maxwell's equations. Start from Gass's law (1): ₩. Ē = 47P or rather

DiE' = 47p where $\partial_i = \frac{2}{2x^i}$, and the lower index on ∂_i , upper on x^i , will be explained later.

Cousiner a coordinate change $y^i = y^i(xi) = R^i, x^j$ We want to show that there is a matrix function of R, say $D(R)^i, j$ such Mat 11) is form invariant it $E'^{i}(\vec{y},t) = D^{i}_{i} E^{j}(\vec{x},t) = D^{i}_{i} E^{j}(R^{-i}\vec{y},t)$ Since t is going along for a ride, I will omit below. "Form invariant" or plainly "invariant" means $2' E' \dot{\lambda} = \frac{\partial}{\partial y} E' \dot{y} = 4\pi \rho(\bar{y})$ To see this is the case, and infer D(R), compute he divergence: $\partial_{i}^{\prime}E^{i}=D^{i}_{j}\partial_{i}^{\prime}E^{j}(R^{-i}y)=D^{i}_{j}\partial_{i}^{\prime}(R^{-i}y)^{k}\left(\partial_{k}E^{j}(x)\right)\Big|_{x=R^{-i}y}=D^{i}_{j}\left(R^{-i}\right)^{k}_{j}\left(\partial_{k}E^{j}(x)\right)\Big|_{x=R^{-i}y}$ We want his to equal 477 p(x)/x=p'y = d; E'(x)/x=p'y. Comparing we see that we used $(R^{-1})^k$: D^i : $= \delta^i$: $= D^i$: $= R^i$: or invaling 0 = R(So indeed, Dis a function of P, namely, D(R)=R).

Ke-cap: Eq (1) is invariant under the charge of coordinates ('ptatious') $\vec{y} = R\vec{x}$ If in he new coordinate system $\vec{E}'(\vec{y}) = R\vec{E}(\vec{x})$ and $p'(\vec{y}) = p(\vec{x})$.

Or simply, (1) is invariant under $\vec{E}'(\vec{y}) = R\vec{E}(R^2y)$ and $p'(\vec{y}) = p(R^2\vec{y})$. We say that \vec{E} is a vector because it transforms under so tations just like \vec{X} does (namely $\vec{X} \to R\vec{X}$, $\vec{E} \to R\vec{E}$). We say that p is a scalar: it transforms under rotations just as ds^2 (namely $p \rightarrow p$). Exercise: show that with ca scalar, and B, J, V and F rectors egs (2)-15) are also invariant. Maxwell equations are invariant under notations. This may seem thirid, particularly sine we have withen them in an explicitly covariant notation. Mat is, once we know Mat (i) Pot products are sculars (re, do not tousfirm) (ii) T is a rector (iii) cross polacts of rectors use vectors we can "see" that each equation is invariant because both sides of the egnality prastorm lip same way, eg Our aim is to show that Egs (1)-(5) are invariant under a bigger set of fransformations, namely Lorentz transpormations (plus translations in space-time, but these are already explicitly. The problem is much simpler if we can make the symmetry explicit, as we just showed by notations in Ampèrels law (Eq (2)) of they going Knowsh explicit competations as we did with Garsi's law (and I proposed as an Exercise pr Eq. (21-(5)),

Before learny rotations, let's use the technology we developed to derive a couple of use fil egrations. When going to currilinar courd mates (eg, spherical) we have to be more careful in defining vectors. It is not necessarily true mat new coordinates yi=yi(x) transform as vectors, what is always fre is that the infinitesimal displacement be tween two points is a vector, and the vector transformation is given by $dyi = \frac{\partial yi}{\partial x} dxi$ dri defines a tangest vector to a curved acci which corresponds to dyi = Pi, dxi for transformations $\overline{y} = \overline{y}(\overline{x})$ of the form $\overline{y} = R\overline{x}$ The dot-product of two vectors as bis aib = Mi aibi Recall ds2 = gij dyidyi has $9ii = \frac{3x^k}{3x^k} \frac{3x^k}{3x^k} M_{KR}$ (14) So if a'i = axi ak for vectors, Man $\vec{a}' \cdot \vec{b}' = g_{ij} \vec{a}' \cdot \vec{b}' = \left(\frac{\partial x^k}{\partial x^i} \frac{\partial x^0}{\partial x^j} M_{FL}\right) \left(\frac{\partial y^i}{\partial x^m} \vec{a}^m\right) \left(\frac{\partial y^j}{\partial x^n} \vec{b}^n\right) = M_{FL} \vec{a}^k \vec{b}^l = \vec{a} \cdot \vec{b}$ Consider the gradient dip of a scalar function, ie, d'(x) = p(x). $\frac{\partial}{\partial x} = \frac{\partial}{\partial y} \frac{\partial}{\partial y} = \frac{\partial}{\partial y} \frac{\partial}{\partial y} = \frac{\partial}{\partial y} \frac{\partial}{\partial y} = \frac{\partial}{\partial y} \frac{\partial}{\partial x} = \frac{\partial}{\partial y} \frac{\partial}{\partial x} = \frac{\partial}{\partial y} \frac{\partial}{\partial x} = \frac{\partial}{\partial y} \frac{\partial}{\partial y} = \frac{\partial}{\partial y} = \frac{\partial}{\partial y} \frac{\partial}{\partial y} = \frac{\partial}{\partial y} \frac{\partial}{\partial y} = \frac{$ Aha! This is NOT a vector of did = 3xi did instead of ois = 3xi ai In the language of differential geometry (hose are "1-forms" (goden "one forms"). In old physics language a' = contra - variant vector Jip = co-variant vector Any w: that from forms as w: = 3xi w; is a l-form (or a co-various vector) Note that wilds = w. ai , ie, the "contraction" of a l-primard a vector is a scalar (some homes his is used to de pro 1-forms). Note hithermore that a = giai transport as (and therefore is) a 1-form THIS IS WHY WE HAVE DIFFE RENTIATED BE TWEEN UPPER AN

LOWER INDICES.

Given a 1-form 9; can I make a vector ai? Yes! Let gij denote the inverse matrix to gij, so that so that $g^{ij} g_{ik} = \delta^{i}_{k} \qquad (g^{-1}g = 1)$ Then $a^{j} = g^{ij}a_{j}$ Exercise: Prove the above assertion. Invainant integrals. Gusias $\int_{V} \int_{V} dx \, dy \, dz = \int_{V}^{3} dx^{i}$ In changing variables to curvilinear wordinates $\vec{y} = \vec{y}(\vec{x})$ $\int dx = \int dy J$ J=Jacobian= | def (axi) Recall, if $ds = g_{ij} dy^i dy^j = M_{ij} dx^i dx^j$ then (eq(14)): $g_{ij} = \frac{\partial x^k}{\partial y_i} \frac{\partial x^k}{\partial y_j} M_{KR}$ That is $g = det g_{ij} = J^2$ set η (and det $\eta = 1$, but let's keep it explicit, for now) So J. dx Tm = Jdy Tg is the invariant integration volume. Examples:
(a) Cylindrical: $g = det \begin{pmatrix} 1 & 0 & 0 \\ 0 & f & 0 \end{pmatrix} = f' \Rightarrow volve = df dddz f = fd ddz$ (ii) Spherical: g = det (12 31,10) = 145140 vol = ardodo =25140 = 124 d(60) dp

Divergence in curvilinear coordinates Looks a priori messy, but negt hick: Consider Systy aid clearly invariant under word make hour formations Take of to vanish at spatial on and integral by parts (in fact me will mant of to have lad support); Moreover, comparing to Cartesian coordinates Misinvariantis what we colled divid $\operatorname{div}(\vec{a}) = \frac{1}{\sqrt{a}} \partial_{x} (\sqrt{g} q^{i})$ Examples: (1) (ylindrical: $div(\bar{a}) = \frac{1}{\rho} \partial_{\rho} (\rho a^{\rho}) + \partial_{\rho} a^{\phi} + \partial_{z} a^{z}$ (ii) Splence $div(\bar{a}) = \frac{1}{r^2} \partial_r(r^2a_r) + \frac{1}{5im\theta} \partial_{\theta}(5in\theta a^{\theta}) + \partial_{\theta}a^{\theta}$ Note: This rosult differs from many textbooks leg, Jackson or Garg). The reason is their meaning for ai is different - mine is better:) Suppose you want to write a = A' e: , where e: are or Monormal vectors in the Carthosian sense. For example, for cyllindrical coordinates Comitting the Z - direction) Then, for example and = gi, and = Ai Aj J. J. = Ar Aj Si. Since gi; is diagonal [a condition for this to work) we had $A^{i} = G_{i}$ as (no sum on i) and $div(a) = \frac{1}{\sqrt{g}} \frac{\partial_{i}}{\partial_{i}} \left(\sqrt{g} \frac{1}{\sqrt{g}} A^{i} \right)$ $(xy) \cdot \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right) + \frac{1}{\sqrt{g}} \frac{\partial_{g}}{\partial_{g}} \left(\sqrt{g} A^{g} + \frac{\partial_{g}}{\partial_{g}} A^{g} \right)$ spher: 1/2 dr (r2Ar) + rsind do (sno A0) + 1/ csind di A0

Lesson: make sure you know what your symbols mean lespecially when you use formulas from the back flap of a Lextbook)

Laplacian

A simple extension of the previous exercise: use ai = qi) df where f is a scalar. Then

 $\nabla^2(f) = \nabla \cdot \nabla f = \frac{1}{\sqrt{3}} \partial_x (\sqrt{g}g^{ij}\partial_y f)$

In Carthosian coordinates $\nabla^2 f = \eta^{ij} \partial_i \partial_j f = (\partial_i^2 + \partial_z^2 + \partial_z^2) f$

Exercise:

(yljudnicol: \$ = \frac{1}{p} \partial p \partial p \frac{1}{p} \frac{1}{p^2} \frac{1}{p^2} + \frac{1}{2^2} \frac{1}{p} \frac{1}{p} \frac{1}{p^2} + \frac{1}{2^2} \frac{1}{p} \

Spherical: $\nabla^2 f = \int_{\mathbb{R}^2} \partial_r (r^2 \partial_r f) + \int_{\mathbb{R}^2 \sin \theta} \partial_{\theta} (\sin \theta \partial_{\theta} f) + \int_{\mathbb{R}^2 \sin^2 \theta} \partial_{\theta} f$

Tensors, invariants and the peruliar cross product.

Restrict after from to relations, y'= R'; x'

Vectors a'= R' as

(so biai = Rin Ri, brai = Si, brai = b; a)

1-forms b: = R; b,

2-index fensors: T'ij = R'm R's Tmn

Oj = R; "R; " Omn

Note that gim gin Thin transforms just like Qi

Tensors are defined by their transformation properties, not by having indicos,

We can form a Z-index tensor from two vectors by a "tensor product"

Ti = aibi

Similarly Ti = 9.b; and Ti; = aib; are lensors. The latter, obviously hast Trij = Rin Rin Tmn.

3-index fensors: Tijk = Rig Rim Rkn Temm, etc. The generalization is obvious: Thimby = Rim Rimp Rim Ring T nomp nong alm = - and is an anti-symmetric tensor with generalizations to higher index fensors, eg 5 himin is completely symmetric it is invariant unles permutations of the indices. Usefi: If sam = 5me and and am = -ame => 5em ain =0. Doof: Somaem = - Som ame (anti-symmetry of ane) = - 5me 90m (dumny variables, charge labels) =- 5em agus (symme by of sem =- > num => 25lmqu=0 => 5lmqu=0 Invariant tensor: Pet: Trianing = Time We have already encountered one: Mi = Rim Rin Mmn = Mmn (where, of ourse, Minn = Simu), If you like math, this goveralizes to spaces in any number of dimensions: S: is always an invairant lensor. In 3-dimensions, there is another interesting tensor. Let Eijk = \(\) (ijk) an even per mutation of (173)

(ijk) an odd per mutation of (173)

otherwise This is the completely anti-symmetric 3-14 dx tensor, or Levi-Civita Lensor. Tyot 15 Eng = Gay = Gay = 1 Eng = Gaz = Gaz = -1 Eng = Enz = - = E333 = 0 Consider Tijk = Ril Rim Rim Elma First mole that if any two indices in Tijk are equal then it varishes, eg Tilk = RIRIN RK Elmn

symmetric anti-symmetric > 0

valelesm valelesm It is then easy to see Tijk is completely and symmetric

Now Tizz = R, & R, M R, M Elmn = det(R)

or, since Tijk is completely antisymmetric, like Eijk, and Elzs=+1,

Tijk = det(R) Enk

Furtheremore $M_{ij} = R_i^k R_j^l M_{kl} = R_i^k M_{kl} (R^T)^l = (RMR^T)_{ij}$

⇒ act m = det (RMRT) = detR duty detRt = (det R)2 dety

=> eletr = ±1


⇒ Under rotations + aet(F)=+1 €; jx is an invariant tensor.

Importantly, it flips sign under rotations with det(1)=-1.

let R(a) be a continuous function [0,1] -> {3x> oftogonal maprices}

such that R(0)=1. Then $det(R(\omega))$ is a continuous function $[0,1]\to\mathbb{R}$ which can only take values -1 and +1, and has $det(R(\omega))=det 1=+1 \Rightarrow det(R(\omega))=+1$

In words potations that can be resched from I autinously all have let R=+1.

If $R_1 + R_2$ but have det R=1 then so does $R_2 = R_1 R_2$: det $R_3 = art(R_1 R_2) = art(R_1 R_2 = art(R_1 R_2 = l+1)^2 = l+1$ but if both have det R=-1 then $R_3 = R_1 R_2$ has det $R_3 = +1$.

In fact every nations uch deter) =-1 can be written as P=(-1). R where aet(R)=+1.

(-1), of course, is a "spatial inversion", or "reflection", or "parity transformation"

Mally stuff: The set of obelows {3x3 mil nations | RTR=1 (11 Rm RT=m)} form a group,

called O(3), for "orthogonal poop in 3 dimensions".

Obvious oxlansion: O(N) ... N dimonsions.

The subset of matrix, with det R=+1 form a subgroup, SO(3), for special orthogonal.

The subject with detR=-1 does not form a group. (Question: why?).

```
Cross Product:
  For proper rotations (ie, with def(R)=+1) we have Eige is an invariant tensor.
  => Cu; = eij x aib transforms as a 1- form and ai = nij cu; transporms as a vector
  Also,
       (1) aj = Eijkb is a Z-judex antisymmetric ten sor
       (ii) If aid is a 2-index and - symmetric fensor, then \omega_{\epsilon} = \frac{1}{2} \epsilon_{\epsilon ij} a^{ij}
          is a 1-form
and ais = Eist we
That is, here is a 1-to-1, involable, correspondence between vectors and
           anti-somme hic 7-index tensors
Exercise: Show Eijk Emix = 28 m and hen aij = Eijk ( = Emm ann)
In Carthesian coordinates we do not distinguish ai form as since wis miscu; = sisu;
So Q = Eik aibt is a voctor a madent of a' IB with conjount
      \omega_1 = a_1 b_3 - a_3 b_1, \omega_2 = a_3 b_1 - a_1 b_3, \omega_3 = a_1 b_1 - a_2 b_1
denoted by = ax b
Space inversions: vectors vs yseudo-vectors (also called "axial" vectors)
Let P=-1 be a space inversion ("P" is for paint)
Vectors à → Rà transform as à → Pà = -à under space inversions.
 I sendovectors however, prinstoring as $\alpha + \alpha under space juversions.
 This is the statement that if a - Ra , B - RB
    Men
          axb - dut(R) R (axb)
 Exercise show Mis
    For improper rota hous (1e, Mose with outle) =-1) Mis means axb -- R(axb)
  In pulticular, under space inversions axb -> + (axb)
  The cross product vector x vector is pseudovectur
                             Vector x pseudovector is vector
                             pseudox pseudo is pseudovactor.
```

Teusors in curvilinear coordinates

The generalization is 5 traight forward. Lecall if y'=y'(x) then

$$a'i = \frac{\partial y_i}{\partial x_i} \alpha_j$$
 (just as $dy_i = \frac{\partial y_i}{\partial x_i} dx_i$)

and $\omega' = \frac{\partial x^i}{\partial y^i} \omega_j$

$$T'_{ij} = \frac{\partial y_{i}}{\partial x^{m}} \frac{\partial x_{i}}{\partial x^{n}} T^{m}_{n}$$

$$T'_{ij} = \frac{\partial x^m}{\partial y^i} \frac{\partial x^n}{\partial y^j} T_{mn}$$

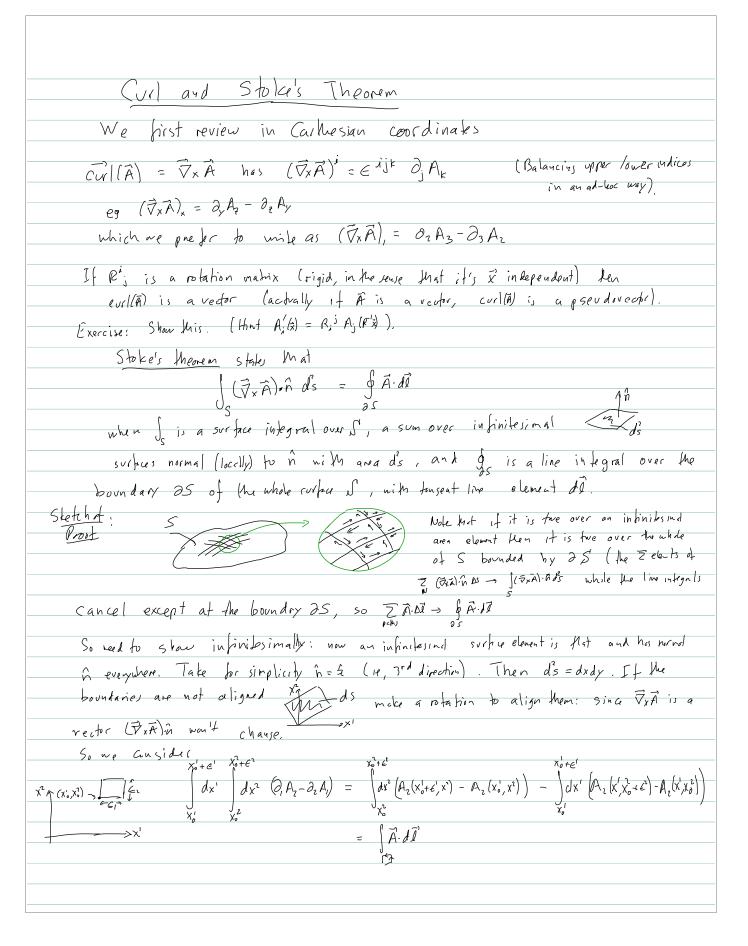
et.

Exercise: check that these are censistent with Tmn = gnk Tmk = gmd Tan That is, we can "raise" and "lawer" indices using the metric and its inverse to consistently make other tensors.

lecall that if $ds^2 = g_{mn}dy^mdy^n = M_{ij}dx^idx^j$ then $g_{mn} = \frac{\partial x^i}{\partial y^m}\frac{\partial x^j}{\partial y^n}M_{ij}$ \Rightarrow the metric tensor \underline{t}^s a tensor (not just in name).

It is not generally invariant. That $M_{ij} = \delta_{ij}$ is invariant under rotations in the statement that Phone 8 a special Set of coordinate transformations (rotations + translations) that leave M_{ij} invariant.

What about Eijk? By the same calculation as above


$$\frac{\partial x_{j}}{\partial x_{k}} \frac{\partial x_{j}}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{k}} \in \ell_{mn} = q_{0} + \left(\frac{\partial x}{\partial x}\right) \in \ell_{j} = \ell_{0}$$

That is, Eijk Tak = Eijk 2xi 2xi 2xi 2xi 2xi = out (2x) Esmu Tann = 1 Esmu 71mn

8 Mit Vg Eijk T'ijt = Vy Einn Tinn

=> In any forme there is a 3-form, coupletely anti-symmetric, given by aijk = Ig Eisk

This is called a (me hic) varue form

While Mis post may not seen grife general, the fact that we can always find a officer to put is in the 2 direction, and that this just consports to a change of variobles makes it a puly general agriment?

Note: I was a bit careless about direction of a vs orientation of loop (but I did it right).

The curl in curvilinear wordholes is Incky. The Meson is that when we see Mat it involves Eight we may think it involves the volume form Jg Eijk when going curvilinear.

But since Stoke's phoorem holds and should be generalized, and his involves a surpre integral of the (normal component of) the curl, it is actually the "volume" form of the Z-dimensional space of that should be involved. If the medic restricted to the surface 5 (at a point on the surface element) is his then we want 1 Eij D, a; for the component of curl(a) along the norm.

This is simple in althogonal coordinates (with gi; =0 if 17i), because the surface ebout dxidxi (i=i) has a normal along Exis (1e, he 3rd director).

So the 3 components of cull(a) one Etij & dia; And as before, expressing Mis in terms of components of vormalized metric, so that (Ai)2 = 9; (ai)2 = 9; (ai)2 = gi (ai)2

and noting that is the ij plane Th = T9;iJii we have

$$cwl(\vec{A})^k = e^{kij} \int_{g_{ij},g_{ij}} \partial_i(\sqrt{g_{ij}} \vec{A}^i)$$

Cy | |udircl: $\epsilon^{\rho \circ z} = \frac{1}{\left(\partial_{0}\left(\int_{22}A^{2}\right) - \partial_{z}\left(\int_{00}A^{0}\right)\right)} = (+1)\frac{1}{\sqrt{\rho^{2}+1}}\left(\partial_{0}\left(\int_{0}A^{2}\right) - \partial_{z}\left(\int_{0}A^{0}\right)\right) = \frac{1}{\rho}\partial_{0}A^{2} - \partial_{z}A^{0}$ a bit fisher... $\epsilon^{oz\rho} = \left(\partial_{z}A^{\rho} - \partial_{\rho}\int_{0}A^{\rho}\right) = \left(\partial_{z}A^{\rho} - \partial_{\rho}\int_{0}A^{\rho}\right)$

or $\operatorname{curl}(\vec{A}) = \left(\frac{1}{\rho}\partial_{\rho}A^{2} - \partial_{z}A^{0}, \partial_{z}A^{\rho} - \partial_{\rho}A^{z}, \frac{1}{\rho}\partial_{\rho}(\rho A^{0}) - \frac{1}{\rho}\partial_{\rho}A^{\rho}\right)$

Spherical: [cuil(A)]" = = (25140 [do(rsivo A) - do(rA) = = 10 [do(sivo A) - do A)

Exercise: Compute remaining components

ANS [cull(A)] = = 1 og Ar - 1 or (1 AP)

[cull(A)] = + de(rp) - + do Ar

Gauss's Theorem outury
Gauss's Theo tem prints rounting nome D A. n. ds = V. A. dV
bounday
This is easy to prove for on inphilosimal cope, and then extended
to finite volumes by summation, as in Stake's case
=> lest as exercise (but countless textbooks have it; still you should be able to construct the proof).
_
Explicit sample calculations using Stike's a Gouss's Melonem are given as part of Homework #1, and in problem session.

Back to Space-Time (it's about time).
To work to space (INC (1)) who is the first
Coordinates in space-time: (x=ct, x', x', x)
A point in space-time is called "an event"
Basic property of space-time: invarious of the intertal.
Interval between (x, \bar{x}) and $(x+dx, \bar{x}+d\bar{x})$ $d\bar{s} = (dx)^2 - (dx)^2 - (dx)^2 - (d\bar{x})^2$
Notation: greek indices M, v, ranse 0-3 (while lath indice id), rayse 1-3)
Einstein sumation convention as before, applied to any type of index.
Metric May is 4x4, diagonal with More (-1 merely)
So $ds^2 = M_{pr} dx^m dx^y = (dx^p)^2 - (dx^p)^2 - (dx^p)^2 - (dx^p)^2 - (dx^p)^2 - (dx^p)^2 - (dx^p)^2$
Lorentz transformations: $X^{\prime\prime\prime}=\Lambda^{\prime\prime\prime}$, $X^{\prime\prime}$, are defined to be those Mg+ leave ds^2
form invariant. As with notations this meany
Mr. is a Lovant transformation () My No = Mpo or MMA=M for short
1e, leave the metric invariant.
Vectors a tensors
A (contravariant) vector transvoims as an = an = nm, ar
Indias can be lowered with y, cg an = Man av
The inverse methical is denoted Mrv, ie, Mul Mar = 800
Alow in dex vector (ir covariant vector, or really, a 1-form) transform
so that chair an (invariant)
Cy' = Cos A'r Since MATAN=1 > Map Map No = Exp > (A') k v = Nx
00 cm = Nx w,
Indices can be raised with n': a" = n" av
Shorthand: $a^2 = M_{pr} a^{\mu} a^{\nu} = a^{\mu} a = M^{pr} a a $; $a \cdot b = m_{pr} a^{\mu} b = a^{\mu} = a^{\mu} b = m^{pr} a b$
Tensors: Thinks = Min My My My Thinks of my
eg Time = Amp No Tro . Again M, m' lower, raise indices, es Time Mup Timp

Many generalizations from the discussion of rotations are straightful ward, e.g.:

- A field is a function of spacetime. A scalar field of (xm) (or simply dus) soutisties

$$\phi'(x') = \phi(x)$$
 under $x' = \Lambda x$

This is often written as

$$\phi'(x) = \phi(\Lambda'x)$$

A vector field satisfies

$$A''(x) = A'' \cdot A' \cdot (A^{-1}x)$$

and
$$B'_{\mu}(x) = \Lambda_{\mu} + B_{\nu}(\Lambda^{-1}x)$$

- The gradient is a (co-variant) vector: On p franspirms as Bu above.

Some things are a little different.

- Eijk is not an invariant leasor. Neilheris Enro.

But Gurro is invariant under transformations with det(n)=+1.

As before det(a)=+1

Exercise: 5 how Mis

Bt now there are 4 connected components of the group of Lorentz transformations:

* Space invession: as before $\vec{X}' = -\vec{X}$ (and $\vec{L}' = \vec{L}$) gives out(N)=-1 but now

- Time reflection: t'=-t and $\overline{x}'=\overline{x}$ also gives d(t)=-1.

Are these disconnected? To understoud the meaning of the question go back to

rotations for a moment. Are

$$P = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
 and $P_z = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

in disconnected components, both with det(R) =-1? The auswer is no:

Back to 4D × Lorentz Trousformations: Since $M_{\nu} = M_{\rho\sigma} \Lambda^{\rho}$, Λ^{σ}_{ν} , $(\Lambda^{\sigma}_{0})^{2} - I(\Lambda^{\sigma}_{0})^{2} = 1 \Rightarrow \Lambda^{\sigma}_{0} = \pm \sqrt{1 + Z(\Lambda^{\sigma}_{0})^{2}}$ => cannot smoothly connect pox <-1 to No. >+1 And for fixed sign of 100, a space-inversion gives a plip in sign of det 1 So there are 4-connected components a subgroup of Lorentz,, "Proper LTS T= time reflection P= space inversion le + 1=-1 Nº, <0 $\alpha^{\circ} > |\vec{a}|$ or $\alpha^{\circ} < -|\vec{a}|$ Since a is invariant, if $a^1 > 0$ ao hobrelici light one Light-cene diagram time-like post l.c. (i) This diagram is for an arbitrary vector, not necessarily coordinates Remarks (ii) We still call he regions by Heir coordhote and ogs le spacelike and timelike regions). We also say am is timelike/lightlike/spacelike according to whether a'>o, a'=0, a'20. (iii) The Edin image above is limited: should down 4dim, but I can't Sorry? But it should be clear that he light come is a cone, a 3dim hypersurface. We can at less + draw a 2 din hypersurface in a 3 din spacetime: This should make it clear that the spacelike region is connected, while where and past light one, are not (they "forch" of the origin). Now, if A: a0 -> - a0, ai -> ai and a2 >0, if maps peture light cove -> post light cone. Connot go from one to the other continuously (going though origin is not allowed, since N=0 is not invertible, and loss not leave n invainant).

Explicit form of Lorentz Trans formations. Find explicit solutions to Mr = Mpo AP Nov (1) $\Lambda^{\circ} = 0$; $\Lambda^{\circ} = 0$ $\Lambda^{\circ}, \Lambda^{\circ}, -\sum_{i} \Lambda^{*}, \Lambda^{*}, =-\delta_{i}$ 13) Obserations, including some solutions: a) Rotations: No=1 No; =N', =O, N'; =R'; with Randation (REO(3)) ex, potations about zaris (z=x3) XIM = MXX is ct'=ct 2'=2 $x' = 600 \times -500 y$ y = ShOx + GOY (ii) Boosts: 10. = Gshy Z(Nio)? = sinhing solves (1)
eg in x director (x=x') So Hing x=0, the origin of un-primed system is moving with velocity $v=\beta c=c$ tanh q=c measured in primed system $x'=(c\sin b\eta)t=(c\sin b\eta)t'$ $1-\tan b\eta=c\sin \eta=\int c\sin \eta=\int$ (iii) Conting: how many independent parameters for L7's?

Warn-up: for rotations first RTR = 1 R is 3x1=9 entires. He condition is on a

Symmetric matrix, 1:e on 3x4 = 6 corporate => 9-6=3 independent parameters > Evlet Angles! V Similarly NMA = M puts 4x5 = 10 contains on 4x4=16 makin => 16-10=6 independent prave tos -> 3 Ever ayor + 3 boosts

(w) lodget of two hous prinction is a transformation While obvious physically, his can be expressed and shown mathen a fically: Execcise: If A. A. are LT's Show Mot A. Az is an LT. (ie sahisho) MMA=M). This makes LTs a group (called O(3,1)). One can use his to build LTs at of infinitesind ones N=1+E u.m. E infinites mod ñonñ=m ⇒ (1+E)om(1+E)=m → Em+mE=O Or love my indies Ex = Mg E'V Mis is Ex+En=0 = anti-symmetric A 4x4 anti-symmetric metrix has 4x3=6 interpendent parameters & same country as chorel Now N= (1+e)(1+e)...(1+E) is a transfurction and one can show $\Lambda = \lim_{n \to \infty} \left(1 + \frac{1}{n} \omega \right)^n = \exp(\omega)$ is , general expression for LT's. See es Sectson. Exercise: What is the andog in be case of rotations? Tensors a pseudo lensors. Tensors a pseudo lensors tranform the same way under proper LTs: $T'M_1\cdots = M_{\kappa_1}\cdots M_{\kappa_l}\cdots T_{\kappa_l}\cdots T$ Tensors still transform this way under any (not necessarily propor) LT. But for a pseudo-busor under space inversion $T'M_{i} = -P^{M_{i}} - P_{\nu_{i}} T^{k_{i} \cdots p_{i} \cdots p_{i}}$ where PM, = diag(1,-1,-1,-1), and a pseudo-leusor under time-roversal T'M" = - X" K, - X, P, Tk, " f, ... when X = diag (-1 1). Ex: Elardo = Endo is an invariant pseudo-tensor (una, both P.7)

θ
Particular examples: A vector $V^{m} = (v^{o}, v^{i}) = (v^{o}, \vec{r})$
A vector V" = (v°, v1) = (v°, v)
has $V'^{\circ} = V^{\circ}$ and $\vec{V}' = -\vec{V}$ under P
$V^{10} = -V^{0}$ and $\vec{V}' = \vec{V}$ under \vec{T}
An "axial" vector is a pseudo-vector under parity: A=(A°, A) has
A' =- A' and A'=A undip