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ABSTRACT

We describe an analytic distribution function of a finite, oblate stellar system, which is
useful for the practical modelling of dark haloes. The function is determined by
lowering Evans’s distribution function of a flattened, cored isothermal system in
analogy with the lowering of the singular, isothermal sphere in the definition of the
King models. We derive analytic expressions for the density, maximal streaming
velocity and velocity dispersion profiles as functions of the potential. As for the King
models, the potential must be calculated numerically. We also present a recipe for
generating N-body realizations of this distribution function, and examine the stability
in three models with dimensionless spins 4 = 0.0, 0.05 and 0.18 using N-body simula-
tions with 50 000 particles. The A=0.18 model is unstable to the formation of a
triaxial bar within ~ 5 King radii, while the other models appear stable. We conclude
that the slowly rotating systems are useful for modelling flattened dark haloes.

Key words: methods: numerical - celestial mechanics, stellar dynamics - galaxies:

elliptical and lenticular, cD - galaxies: kinematics and dynamics - galaxies: structure.

1 INTRODUCTION

The dark haloes surrounding disc galaxies are probably not
spherical. In order to simulate the effects of non-spherical
haloes on discs, it is useful to have an analytic distribution
function (DF) for flattened haloes. Such models do exist, but
they are either not very realistic models for galaxy haloes
[such as the flattened Plummer models by Lynden-Bell
(1962)] or infinite in extent [for example, the scale-free
logarithmic models by Toomre (1982)]. In this paper we
construct a set of analytic DFs for finite-radius, oblate galac-
tic halo models, and show that they can be sampled
efficiently for use as an equilibrium starting condition in
N-body simulations.

Distribution functions are most useful when specified as
functions of integrals of motion. While most realistic galaxy
potentials admit three integrals, explicit expressions only
exist for two of these in general axisymmetric models [special
cases, in which all three integrals are known analytically, are
listed by Hietarinta (1987)]. The DFs that we construct here
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1Hubble Fellow.

will therefore be functions only of the two classical integrals
of motion, namely the particle energy E and angular
momentum about the symmetry axis L,. As shown by
Lynden-Bell (1962) and Hunter & Qian (1993), there is a
unique relation between the even part of the DF, f(E, |L,]|),
and the density p(R, ¥) in the meridional plane when
expressed as a function of the potential and cylindrical
radius. Arbitrary terms that are odd in L, may be added to
the DF without affecting the density o; since such terms
effectively change the azimuthal direction in which some
orbits are traversed, they set the total angular momentum of
the system.

In this paper, we modify an existing analytic DF for
infinite flattened halo models, due to Evans (1993), making it
finite in extent. The resulting models have a range of flatten-
ings, central densities, outer radii and concentration para-
meters. Evans’s model is described in Section 2, and our
modification of it in Section 3. Section 4 contains a recipe for
generating N-body realizations of the models, and the results
of N-body experiments to test the stability of several of the
models. We find that, as long as the mean rotation of the
models is kept within reasonable cosmological expectations,
there is no sign of large-scale bar instability. A summary is
provided in Section 5.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

020z Atenuga4 Qg uo Jasn obaip ues ejuloyl|ed jo Ausianlun Aq G/ 00L/E L/1L/69ZA0BNSqe-a]d11ie/Seluwl/wod dno-olwapede//:sdijy woly papeojumoq


http://adsabs.harvard.edu/abs/1994MNRAS.269...13K

FT99AWNRAS, Z69C ~.J13K

14 K. Kuijken and J. Dubinski

2 EVANS’S DISTRIBUTION FUNCTION FOR
THE BINNEY POTENTIALS

Evans (1993) found the exact two-integral distribution
function for all axisymmetric Binney (1981) potentials, by
applying Lynden-Bell’s (1962) Laplace transform method.
His models are among the few fully analytic axisymmetric
potential-density-DF sets that can be written down, and
they are very simple: Binney’s potential is

(1)

R§+R2+<z/q)2]
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the mass density is

o(R,z)=
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and the two-integral DF has the form
flE,L)=AL? exp(—2E/03)+ Bexp(—2E/o})
+ Cexp(—E/o}). (3)

The constant R, (which Evans set to 1) is introduced here in
the potential for consistency of units. The related density,

2
[

=90 4
2nGR>’ “)
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serves as a density scale parameter for the models. The
constants A, B and C depend on p,, the velocity dispersion
0,, the axial ratio of the equipotentials q and the core radius
R, as follows:

4 _8(1-¢°)Gpi _4R:Gpi
nl/zqzag > nl/zqzag >
(2‘12_1);01
d C=-"""5753. 5
an (231:)3/2(]203 (5)

In particular, spherical models have A =0 and coreless
models have B=0. The familiar isothermal sphere DF is
recovered when both these constants are zero; in that case,
the DF is a Maxwellian with velocity dispersion ¢, and
density o,exp(—W/o}). The coreless, B=0 models were
first discovered by Toomre (1982).

3 LOWERED EVANS MODELS

All the models (3) are infinite in extent; moreover, at larger
radii the mass density falls as the inverse square of the radius,
implying that they have infinite mass. These models are
useful for the purposes of modelling galactic haloes, since
they have an adjustable core radius and a flat rotation curve
at large radii. Nevertheless, for many applications it would be
more convenient to have a finite-mass model, which none the
less has a flat rotation curve over an appreciable radial range.
In analogy with the lowered isothermal (or King 1966)
models, we were therefore motivated to construct finite
oblate halo models by ‘lowering’ Evans’s DF, in effect
imposing a maximum energy on the stars in the model. Thus

we write
[(AL2+ B) exp(— E/a})+ C]

x[exp(— E/03)—1] if E<0,

f(E? Lz)= (6)

0 otherwise.

Only stars with negative energy are included in these models.
There are many other ways of accomplishing an energy cut-
off in the DF, or indeed of limiting the DF differently (Binney
& Tremaine 1987; Kashlinsky 1988; Rowley 1988), but we
follow King’s lead. The outermost radius at which the
potential is negative (and hence the density non-zero) is
usually called the tidal radius.

The lowered DF (equation 6) no longer corresponds to a
self-gravitating system in Binney’s potential (equation 1). To
construct self-consistent models with this DF, we use the fact
that the DF determines the mass density in terms of the
gravitational potential:

p(R, Z) =J’ dvR dv¢ dvzf

_Zn

R Lz\w(l/zm,/mz

Therefore we can achieve self-consistency by combining this
expression with the Poisson equation, to yield

V2W¥ =41Gp(W, R), (8)

and solving for the potential.

In the case of the lowered Evans DF, some algebra shows
the corresponding density in an arbitrary potential (see
equation 7) to be

o(¥, R)
=132 03(AR? 6%+ 2B) erf ({— 2W/0,) exp (— 2%/ a2)
+(2n)203(C—B—AR20?) erf (Y= W/ 0,) exp (— W/0?)
+7J—2W[03(3AR?03 +2B—4C)+$W(2C— AR%03)],
9)
where erf(x)=2n"'2 [5exp(—1t?)dt is the usual error

function. The maximum streaming velocity is obtained by
inserting an extra factor of | L,|/R in the integral (7); then

PUgmax
=2n¥?(AR?0% - C)+2aWo3(2C—B—3AR?0})
+no$(TAR?*03+3B—-4C)
+4n0{(C—B—2AR*a}) exp(— E/0})
+n0§(AR?0% + B) exp(—2E/0}). (10)
The velocity dispersions follow similarly. They are given by
di=p1 [ du ok
00%=po?=En¥? - 2W(AR?*¢2-2C)
+2nW ol - 2W(— AR?03 —3B+4C)
+no8/—2W (3AR?0}+3B—4C)
+(2n)*?03(— AR?0% — B+ C)
X erf({ = W/o,) exp (—W/o3)
+3m%2 63(AR? 6% +2B) erf (Y= 2%/ 0,)
xexp(—2¥/of) (11)

dL,dE f=p(¥, R). (7)
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and

po}=Hnw?{-2W(3AR? 03 - 2C)
+2nWot[— 2% (- 3AR%0% - 1B +4C)
+nod - 2W ($AR?03 +3B—4C)
+(2nP2 03( - 3AR20% — B+ C)
X erf({~W/0,) exp (—¥/a3)
+in32 g3(3AR2 03+ 2B) erf (= 2W/q,)
x exp(—2%¥/0d). ' (12)

At R =0, all three dispersions are the same (as they are in all
non-singular two-integral models). The difference oo — oo%
indicates the anisotropy of the velocity dispersion. This
expression is proportional to AR?o?% (the case A=0 corre-
sponds to spherical models, since the B- and C-terms are
isotropic), with a coefficient that is positive for all ¥ <0;
therefore all oblate non-rotating models (A >0 in equation
3) satisfy 0,= oy everywhere, while the converse holds for
the prolate models.

The King (1966) models are just the special case
A =B=0. These models are spherical, with R_= 0. (Note the
distinction between the core radius R, of the Binney poten-
tial before lowering the DF, and the ‘King’ radius of the
density, which measures the core radius of the self-consistent
mass density of the model. Both these radii lose their mean-
ing somewhat in the lowered models.) In the spherical case it
is possible to solve Poisson’s equations (equation 8) as a
simple forward integration in radius. Given choices for the
density scale 0, and the velocity dispersion parameter oy, the
central potential energy ¥, (we have fixed the cut-off energy
at zero) may be specified as a boundary condition for this
integration. A deeper central potential depth implies a higher
central density and a larger tidal radius, and therefore leads
to a more centrally condensed model.

Calculation of the two-dimensional models is a little
harder, since we cannot now integrate the Poisson equation
directly. However, the principle remains the same: when we
have chosen the scale parameters 0, and R, and the flatten-
ing g, every value of the central potential (or density) implies
a unique non-singular self-consistent model. In practice,
numerical iterations are required to obtain the density and
potential: a guess is made at the potential, the density corre-
sponding to the DF in this potential is calculated from
equation (6), Poisson’s equation is solved for the potential
corresponding to this density, and this new potential is taken
as the start of the next iteration. In this work we have used a
multipole expansion (Prendergast & Tomer 1970) to solve
for the potential; the models are quite smooth, and hence it
was profitable to solve for the radial dependences of the
dominant harmonic terms (a few one-dimensional functions)
rather than attacking a two-dimensional grid calculation. For
finite-extent systems, the multipole expansion has the further
advantage that boundary conditions at infinity are automati-
cally handled correctly. To ease numerical convergence, the
higher harmonics were introduced one at a time, allowing a
few iterations for any oscillations to stabilize before the next
term was added. Potentials of the models were calculated up
to /=4, and the densities were then derived using equation

(9).

Lowered Evans models 15

King models have non-singular cores, in spite of the fact
that the DF does not contain the B-term (the only term
proportional to the Binney potential core radius R_). For
very deep central potentials these models have sharply
peaked densities, approaching the limit of the singular
isothermal sphere in their central regions. The central core
radius, or King radius, of the King model potential is related
to the central density o by

_ 90(2, 12
rK_(4nGpc) ' (13)

At this radius the gravitational potential has risen by about
20% over the central value, provided that the potential well
depth is well above 03. A concentration parameter is usually
defined as the ratio of the outer radius of the model and the
King radius.

The flattened models with B=0 also become more
centrally concentrated as the depth of the potential is
increased. However, these models are not very satisfactory:
the central density contours have undesirable depressions on
the symmetry axis. It turns out that a small B-term (i.e. non-
zero R,) suffices to remove this effect, since the addition of
this isotropic term, more centrally concentrated than the C-
term, serves to round off the central density figure. Some
experimentation shows that the choice R ,=rx results in a
more elliptical central core, but does not affect the flattening
of the halo model at larger energies too drastically. Addition
of a B-term affects the central density; in practice, a
quadratic equation in R?2 needs to be solved to find the core
radius that yields a central density whose King radius is equal
to R, The isodensity contours for ¢=0.8, ¥,=—603

~ models with and without such a B-term are shown in Fig. 1,
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Figure 1. Isodensity contours for two ¢=0.8, ¥, = — 663 models.
The densities on adjacent contours differ by a factor of 2. The left-
hand panels show the model with a B-term (which has King radius
0.053), the right-hand panels the one without (in this case
rg =0.163). Both models have similar shapes outside the core, but
the addition of the B-term removes the strong ‘peanut’ dimples in
the central regions.
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illustrating the rounding effect in the central regions. For
shallower models (¥, = —303), it is better to take R, = kry
with k<1, otherwise all the models end up rather round. As
a rough guide, the ellipticity (i.e. 1 minus the axial ratio) of
the isodensity contours at 10 per cent of the truncation
radius for R, <r¢ models is 2-3 times (1 — q) for models with
central potentials deeper than about —502. Shallower
central potentials and larger core radii rapidly lead to
rounder models.

Our models, in summary, are the self-consistent realiza-
tions of the axisymmetric distribution functions (6). The
parameters oy, 0, ¥, and g may be chosen freely, after
which the constant R, is adjusted until the central density o,
is equal to (9k2 0% /4 GR?), i.e. until the King radius is equal
to R_/k, where k lies between 0.3 and 1. Of course, only
models in which the mass density is non-negative everywhere
are physical. Evans showed that the untruncated physical
models satisfy 27'2<¢<1.08; truncation relaxes these
conditions only very slightly unless the potential well is made
very shallow.

The choice of the four parameters p,, 0y, ¢ and ¥, is
equivalent to picking a tidal radius, a concentration para-
meter, a flattening and a central density (or a total mass) for
the system. Figs 2 and 3 present some of the relevant rela-
tions: they show the dependences of the concentration
parameters r,/r¢ and of the scaled central density as a func-
tion of the scaled potential well depth ¥,/03. Fig. 4 shows
the circular velocity curves in the equatorial plane of the
models of Fig. 1.

4 N-BODY REALIZATIONS

The lowered Evans models is useful for examining galactic
dynamical problems that depend on flattened potentials,
such as disc warping or polar rings. The model is finite in
extent, making it ideal for use in N-body simulations. In this
section, we present a recipe for generating an N-body realiz-
ation of a lowered Evans model. We then test the stability of
three sample models using g = 0.8 with different amounts of
spin: a non-rotating model, a maximally streaming model and
a model with spin corresponding to the cosmological expec-
tations of the dimensionless spin parameter, 4 =0.05.

4.1 Initial conditions

We can generate an N-body realization from any DF of the
form f(E, L,) by sampling from it in two stages. First, we
sample values of R and z from the density distribution
o(R, z), to find the particle positions. Then, for each posi-
tion, the DF and the gravitational potential define the distri-
bution of velocities, and we sample from this function to
assign the velocity of each particle.

We use the acceptance-rejection technique for sampling
the distributions (e.g. Press et al. 1993), which works as
follows. Let F,,, be the maximum value of the distribution
function. Then we randomly select, with a uniform distribu-
tion, a point in the allowed domain of the independent
variable(s), and we also sample a ‘test’ value F from the range
[0, F,,,] of the distribution function. The value of F deter-

logyo (rt/rx)

T LB T

Figure 2. Concentration versus central potential, for different choices of flattening. The dotted line represents the original King (1966) models.
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logio (pe/p1)

‘I’o/ a o2

Figure 4. Circular velocity curves in the equatorial plane of the g = 0.8, ¥, = — 6 0% models.

mines whether the sampled point will be included or not: if F
is less than the value of the distribution function at the
sampled point, that point is accepted as valid, otherwise it is
rejected and another point is sampled. If the distribution
being sampled is very non-uniform, this process may be quite
inefficient, with many of the sampled points being rejected.
To avoid this situation, it is worthwhile to transform the
independent variables to coordinates whose distribution is as
uniform as possible.

The distribution of the particle positions (up to a normal-
ization) is the density p(R, z). For the lowered Evans model,
©0~r~2 so it is convenient to introduce the variable
u=tan~! z/R which makes the mass element almost uniform:

o(R,z)dRdz=p(u, R)(R?+z?) dR du. (14)

The domains of R and u are 0<R<r,and —n/2 <u <m;/2.
For every (u, R)-point sampled, we also sample an independ-
ent random azimuthal angle ¢, finally allowing us to define
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x=Rcos¢, y=Rsin ¢ and z=Rtanu. Each particle thus
sampled is then assigned a velocity vector, in essentially the
same way: the velocity distribution function at the position of
each particle is known from the DF (equation 6), where
E=102+W¥(R, z) and L=Ru,, and the velocity is always less
than the local escape speed, v, =+y—2%. The velocity
vector can thus be sampled with the acceptance-rejection
technique from inside a sphere of this radius.

The DF of equation (6) does not depend on the sign of L,
~ consequently it has no net streaming, We can introduce
azimuthal streaming into the model by varying the number of
particles with v, positive and negative. In a non-rotating
model, there are equal numbers of particles with v4 going in
opposite directions, while, for a maximally streaming model,
the sign of v, is the same for all the particles. All intermediate
cases have varying fractions of v, going in opposite direc-
tions.

4.2 Stability

Although it is easy to formulate an equilibrium DF, it is not
guaranteed that the resulting system is stable. We therefore
tested the stability of rotating and non-rotating models with
50 000-particle N-body simulations. Initial conditions were
generated with the procedure described above (Fig, 5). We

worked in units in which G=1 and p; =(4x)~, and investi-
gated models with g,=27172, flattening g=0.8 and central
potential ¥, = —6.003. The parameter R, was chosen to be
equal to the King radius, as described in Section 3. The base
model has the following properties: (i) the central density is
0.=126 so that the equivalent King radius from equation
(13) is rg=0.053; (ii) the model extends to a ‘tidal’ radius
r,=2.14; (iii) the core crossing time is T, =(3n/Gp,)/*=
0.30; and (iv) the system crossing time is Ty, =2r,/0,=6.0.
We introduced varying degrees of rotation in three models by
varying the fraction of particles going in opposite directions.
We parametrized the rotation using the dimensionless, spin
parameter, A= G~ !L|E|'2M~5?2 which is used to quantify
spin in dark haloes formed in cosmological models. The
typical value for a cosmological dark halo is thought to be
A=0.05 (e.g. Barnes & Efstathiou 1987; Warren et al. 1992).
The three models we investigated have 4 =0.0 (a non-rotat-
ing halo), 4 =0.05 (a ‘cosmological’ halo) and A =0.18 (the
maximally streaming halo).

We then used a tree code (Barnes & Hut 1986; Dubinski
1988) to simulate the models for 24 units of time, corre-
sponding to 80 core crossing times and 4 system crossing
times. We used an opening angle tolerance 6=1.0 and
calculated cell-particle forces to quadrupole order with a
particle softening radius 7, =0.005. We integrated the tra-

t= 0.0

Figure 5. Edge-on view of the 50 000-particle model used in the simulations. The box width is 4.0 units (80 King radii). The flattening in the
density is about g, =0.6 in the centre, increasing to g, =0.8 as the tidal radius.
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jectories using a leap-frog integrator with a time-step
At =0.02, corresponding to 12 steps per core crossing time.
The error in the total energy of the systems was no more than
2.5 per cent by the end of each run.

We measured the stability of the models by comparing the
density and velocity dispersion profiles, averaged over
spherical shells, at early and late times. Shell averages are
trivial to compute from N-body simulations, requiring a
simple binning of the particles by radius. The exact shell
averages that correspond to the initial analytic DF are also
straightforward to obtain: one can show that, for a given
cylindrically symmetric function g(R, z), the spherically
averaged function g(r) found by averaging the function g
within a thin spherical shell at radius r is

gr) =1 J gl — 222, 2] dz. (15)

rjo

We can therefore calculate the averaged density profile o(r)
and velocity dispersion profiles 0%, 02 and o3 by inserting
the functions from equations (9), (11) and (12) into this
integral.

Fig. 6 compares the expected averaged density profiles to
measurements from the rotating and non-rotating models at
the final time r=24.0. The density profiles remain
unchanged over a large range in radii, except near the centres
of the models. The density declines slightly in the centre,
probably in response to the greater degree of integration
error within the core. Nevertheless, the mass profiles of the
models appear stable over at least four system crossing times.

A more refined indication of stability is provided by a
study of quadrupole terms in the mass distribution. We there-
fore estimate the axial ratio profile of the dark haloes using
the technique described by Dubinski & Carlberg (1991). In

Lowered Evans models 19

this algorithm, initial values for the axial ratios g, and g, are
assumed, and used to calculate a starting approximation to
the modified inertia tensor, ;=3 x,x;/a? for particles in
ellipsoidal shells of axial ratios g, and g, (x; is the particle
position and a?=x?+y?/q? +2z%/q3 is the particle elliptical
radius). New axial ratios, and the orientation of the ellip-
soidal figure, are then estimated from I; through g7 =1, /I,
and g3=1,/I,,, and used to calculate an improved approxi-
mation to the modified inertia tensor. Starting with particles
in a spherical shell (g, = g,= 1), this process is repeated for
several iterations until the axial ratios and the shell orienta-
tion converge to values within a specified tolerance
(Ag=0.001).

Fig. 7 presents the axial ratio profiles measured from the
simulations at the initial and final times. The isodensity
contours of the dark halo are slightly peanut-shaped near the
centre, so that the estimate of the axial ratio from the modi-
fied inertia tensor (which assumes that the density contours
are ellipsoidal) will underestimate somewhat the ratio of the
extents of the isodensity contours along the R- and z-axes.
The axial ratio profile does not change dramatically for the
A=0.0 and 4 =0.05 models, suggesting that these systems
are not susceptible to strong bar instabilities, although a
careful look at the 4 =0.0 and 4 =0.05 haloes reveals a small
hint of a bar within one King radius. Since it does not extend
far beyond the core, it is difficult to say whether this feature
is real, or a result of integration error and particle noise. On
the other hand, the A=0.18 model is clearly unstable,
forming a distinct triaxial central bar with an axial ratio
¢,=0.7 and g, = 0.5 within 5 King radii. A particle plot at the
end of the simulation (Fig. 8) shows this bar clearly; inspec-
tion of earlier snapshots reveals that the bar grows during the
first system crossing time. It is not too surprising that the
4=0.18 model is bar-unstable, since this type of instability

log p(r)

log r/rg

Figure 6. The spherically averaged density profiles from the three models, normalized to the central density. The profiles of the different
models are offset by 1 dex for illustration. The curves represent the theoretical expectation and the points represent the density at the end of the
simulation, estimated by binning particles in spherical shells. The agreement is very good over a large range in radii, except for a slight dip in the

core which is probably due to integration error.
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generically affects fast-rotating systems; although it is
perhaps remarkable that even a system as hot as this one
cannot quench it. The empirical test for bar instability in flat-
tened rotating systems is the Ostriker-Peebles (1973)
criterion, which predicts that a system will form a bar if the
ratio of the rotational kinetic energy to the total potential
energy T,./|W|>0.14. The 12=0.18 model has T,/
|W|=0.40 so it fails the test and forms a bar. Rotating
models with 2> 0.06 will fail the Ostriker-Peebles criterion
and probably form central bars.

The spherically averaged velocity dispersion profiles (Fig.
9) provide further evidence for the stability of the slowly
rotating models, although there is a slight deviation within a
King radius, again probably reflecting some integration error
within the core. The instability in the A=0.18 model, in
contrast, shows up clearly as it develops a noticeable dip in
the o, profile.

In conclusion, the lowered Evans models appear to be
stable when the rotation rate is small, but they may suffer bar
instabilities in the extreme case of maximal streaming or even

b/a, c/a

b/a, c/a

0.4 1 1 L 1 |

0 10

20 30
r/rK

Figure 7. Axial ratio profiles of density contours at =0.0 and ¢ =24.0 for the three models. The profiles for the (a) 4=0.0 and (b) A=0.05
models remain fairly constant. There is a hint of a bar forming within r = ry, although it is difficult to judge if this is real because of integration
and measurement errors. The 4 =0.18 model (c) shows a distinct bar out to = 5ry, indicating the onset of the bar instability.
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Figure 7 - continued

Figure 8. Particle plot of the centre of the 4 =0.18 model as viewed down the z-axis at #=0.0 and ¢ =24.0. The length of the box is / =20r.

At t=24.0, a triaxial bar is visible in the centre of the system.

partial streaming if the Ostriker-Peebles criterion is applic-
able. We recommend the non-rotating and cosmological
haloes for application to halo modelling, but urge caution in
the use of more rapidly rotating models. In any case, the bar
instability becomes apparent within a crossing time, and can
be checked in practice before applying the model to a
problem.

5 SUMMARY

The lowered Evans distribution function provides equilib-
rium oblate stellar systems which are a flattened analogue of
the spherical King models. The density and velocity disper-
sion profiles can be expressed analytically in terms of the
potential, although the calculation of the potential still
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requires a fair amount of numerical computational effort.
The pay-off for this effort is a finite model, ideal for N-body
simulations of galactic systems involving flattened dark
haloes. Furthermore, we provide a simple recipe for generat-
ing an N-body realization of the distribution function.

A sample of N-body simulations shows that the models
are stable for slowly rotating models with spin corresponding
to cosmological dark haloes. The maximally streaming model
is unstable to bar formation despite its high dynamical
temperature. We therefore caution users of these models to

watch out for the bar instability in rapidly rotating models. In
the near future, we plan to apply these models to the forma-
tion of warps in disc/halo systems.

After this paper was first submitted, we learned that Evans
(1993) has extended his models to the so-called ‘power-law’
galaxies. These models, like the flattened Binney models
which they include, are infinite in extent, but they have one
more parameter which can be viewed as the logarithmic
slope of the density at large radii. It is possible to follow the
methods of the present paper and lower the power-law
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Figure 9. Spherically averaged velocity dispersion profiles for the three models. The curves represent the theoretical shell-averaged profiles,
while the points represent the dispersion of the R-, ¢- and z-components of velocity at the end of the simulation, measured by binning particles
in shells. The profiles remain unchanged for the (a) A=0.0 and (b) 4 =0.05 models over most radii, although there is a slight deviation within
the core, again a reflection of integration and measurement errors. The systematic dip in o, in the 2 =0.18 model (c) is another manifestation of

the bar instability.

log r/rg
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a(r)/ o,

log r/rg

Figure 9 - continued

models too; this will result in a class of models in which the
rotation curve slope can be chosen independently from other
parameters.
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