Physics 216/116

Topics

- 1. Overview, Equations, Ideal Fluids
 - OV of phenomenology, especially current research
 - Euler Equations derivation, conservation laws
 - Potential flow, induced mass
- 2. Vorticity and Viscous Flow
 - Stress Tensor, Constitutive Relation, Navier–Stokes Equations, Viscous Flow, Stokesian Dynamics and Drag, Clamshell Theorem
 - Kelvin's Theorem, Induction Equation, Freezing-in Law, Boundaries
 - Stress vs. Strain or Rate-of-Strain?, Relation to Elasticity
- 3. Instabilities
 - Generalized Interchanges: Rayleigh–Bénard convection and extensions
 - Rotating Convection; Taylor-Proudman Theorem
 - Interfacial Instability: Rayleigh–Taylor, Kelvin–Helmholtz
- 4. Boundary Layers
 - Basics of Drag, Laminar Wake
 - Blasius Boundary Layer, Drag
 - Drag Crisis
- 5. Turbulence I Microscopics
 - Basic ideas, K41 Model, Richardson Phenomenology, 4/5 Law
 - 2D Turbulence
 - Asymptotics, Scaling, and Anomalous Exponents, Implications for Turbulence
- 6. Turbulence II Macroscopics
 - Pipe Flow Turbulence, Prandtl Law of Wall, Mixing Length Models
 - Turbulent Wakes, Wake Structure
 - Thermal Boundary Layers

7. Basics of Elasticity

- Fundamentals: Stress-Strain, Hooke's Law
- Deformation with Temperature
- Equilibrium general theory
- Plates and Shells, Rods
- Stability

8. Topics in Elasticity

- Elastic Waves and Vibration of Rods and Plates
- Elastic Limit, Plasticity, Strength
- Visoelasticity Oldroyd-B