
DPA notes April 2008 (updated November 14, 2019)

1 Line graphs: Kagomé and Checkerboard Lattices

A line graph is constructed by taking a given graph and associating a site to every link in
the graph. Two sites are connected if their corresponding links share a vertex in the original
graph. To every closed loop of even perimeter on the original graph there corresponds an
eigenstate of the adjacency matrix of the line graph, with eigenvalue λ = 2, provided those
closed loops are all even-membered .

1.1 Kagomé lattice

The Kagomé lattice, depicted in fig. 1, is a triangular Bravais lattice with a three element
basis. It is the line graph of the honeycomb lattice. Choosing primitive direct lattice vectors

a1 = x̂ and a2 =
1
2 x̂+

√
3
2 ŷ, we then write







aR
bR
cR






=

1√
N

∑

k

eik·R







ak

e
i
2
k·a

1 bk

e
i
2
k·a

2 ck






. (1)

The basis vectors here are 0, 1
2a1, and

1
2a2.

Figure 1: The Kagomé lattice, which is a triangular Bravais lattice with a three element
basis (A,B,C). The Kagomé lattice is the line graph of a honeycomb lattice.
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With θi = k · ai, we then have the Hamiltonian

Hk = −







0 2tc1 2tc2
2tc1 0 2tc12
2tc2 2tc12 0






, (2)

where as before ci = cos 1
2θi and cij = cos 1

2(θi − θj). The eigenvalues are

E1,2 = −t± t

√

3 + 2 cos θ1 + 2cos θ2 + 2cos(θ1 − θ2) (3)

and
E3 = +2t . (4)

Thus, there is a lower band with energies in the interval E1 ∈ [−4t , −t], a middle band

with E2 ∈ [−t , +2t], and a flat upper band with E3 = +2t.

1.2 Checkerboard lattice

The checkerboard lattice, also known as the planar pyrochlore structure, is depicted in fig.
2. It is the line graph of the square lattice. It may be represented as an underlying square
lattice with primitive direct lattice vectors a1 = x̂− ŷ and a2 = x̂+ ŷ, with a two element
basis 0 and x̂.

(

aR
bR

)

=
1√
N

∑

k

eik·R
(

ak
e

i
2
k·x̂ bk

)

. (5)

Figure 2: The checkerboard (planar pyrochlore) lattice, which is a square lattice with a two
element basis (A,B). The checkerboard lattice is the line graph of the square lattice.
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Figure 3: This fourfold coordinated lattice is the line graph of the square-octagon lattice.
The hopping along the blue links is t1 and that along the red links is t2.

It the hoppings are t along ±x̂ and ±ŷ, and t′ along ±a1 and ±a2, then the Hamiltonian
is

Hk = −
(

2t′ cos θ2 4t cos(12θ1) cos(
1
2θ2)

4t cos(12θ1) cos(
1
2θ2) 2t′ cos θ1

)

, (6)

with eigenvalues

E1,2 = −t′
(

cos θ1 + cos θ2
)

±
√

(

t′ cos θ1 − t′ cos θ2
)2

+ 4t2
(

1 + cos θ1
)(

1 + cos θ2
)

. (7)

When t = t′ this simplifies to

E1 = −2t
(

1 + cos θ1 + cos θ2
)

, E2 = +2t . (8)

Once again, as in the Kagomé and pyrochlore lattices, the top band is flat.
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1.3 Square-octagon lattice line graph

The line graph of the square-octagon lattice is shown in Fig. 3. The Hamiltonian is

Hk = −

















0 t1 t2 e
−ikx 0 t2 e

−iky t1
t1 0 t2 t1 t2 e

−iky 0

t2 e
ikx t2 0 t2 0 t2 e

ikx

0 t1 t2 0 t2 t1
t2 e

iky t2 e
iky 0 t2 0 t2

t1 0 t2 e
−ikx t1 t2 0

















, (9)

where t1 is the hopping along the blue links and t2 the hopping along the red links. When
t1 6= t2, the adjacency matrix has a flat band at λ = 2t1. When t1 = t2, the flat band is
doubly degenerate.

Figure 4: Energy bands for the line graph of the square-octagon lattice.
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2 Pyrochlore Lattice

The pyrochlore lattice (fig. 5) is a sixfold-coordinated structure whose underlying Bravais
lattice is FCC, with a four element basis. It is effectively described as a diamond lattice of
‘corner-sharing tetrahedra’. Recall that diamond is FCC with a two element basis. It can
be constructed as the line graph of the diamond lattice.

To apprehend the geometry better, consider the sketch in fig. 6. Let the center of the cube,
indicated by the yellow star, be located at the origin (0, 0, 0). Then the four corners of the
tetrahedron are located as

A = d
2 (+1,−1,+1) C = d

2 (+1,+1,−1)

B = d
2(−1,+1,+1) D = d

2 (−1,−1,−1) .

There are two species of tetrahedra in the pyrochlore lattice, which we call α and β (see
figure 7). We identify the tetrahedron depicted in fig. 6 as an α-tetrahedron. The centers
of the four neighboring β-tetrahedra are then located at 2A, 2B, 2C, and 2D. That is, to
move from the center of an α-tetrahedron to the center of a neighboring β-tetrahedron, we
displace by one of these four vectors. This set is not invariant under inversion. To move
from the center of a β-tetrahedron to the center of a neighboring α-tetrahedron, we displace
by the negative of one of these four vectors.

Figure 5: The pyrochlore lattice is an FCC Bravais lattice with a four element basis.
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Thus, the twelve nearest neighbor displacements on the underlying FCC Bravais lattice are
given by 2(A−B), 2(A −C), etc., since we move from (the center of) one α-tetrahedron
to another. These twelve vectors may be written as

2A− 2B =
a√
2
(+1,−1, 0) = −a1 + a2 (10)

2A− 2C =
a√
2
(0,−1,+1) = a2 − a3

2A− 2D =
a√
2
(+1, 0,+1) = a2

2B − 2C =
a√
2
(−1, 0,+1) = a1 − a3

2B − 2D =
a√
2
(0,+1,+1) = a1

2C − 2D =
a√
2
(+1,+1, 0) = a3 (11)

and their negatives, where a = 2
√
2 d is the FCC lattice constant. Here

a1 =
a√
2
(0, 1, 1) a2 =

a√
2
(1, 0, 1) a3 =

a√
2
(1, 1, 0) (12)

are primitive FCC direct lattice basis vectors. Note a = 2b relates the side length of the

Figure 6: A cube of side length d, containing a tetrahedron of side length b =
√
2 d. The

origin of coordinates is located at the yellow star, which lies at the geometric center of the
cube.
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Figure 7: The α and β tetrahedra are related by inversion. The colors of the sites show the
sublattice structure.

tetrahedra to the FCC lattice constant. The center of any α-tetrahedron is then located at

R = m1 a1 +m2 a2 +m3 a3 , (13)

and the four basis vectors are s1,2,3,4 = {A,B,C,D}, i.e.

s1 =
a

4
√
2
(1,−1, 1) s3 =

a

4
√
2
(1, 1,−1) (14)

s2 =
a

4
√
2
(−1, 1, 1) s4 =

a

4
√
2
(−1,−1,−1) .

The reciprocal lattice is BCC, with primitive vectors

b1 =

√
2π

a
(−1, 1, 1) , b2 =

√
2π

a
(1,−1, 1) , b3 =

√
2π

a
(1, 1,−1) , (15)

which satisfy bi · aj = 2π δij .

3 Adjacency Matrix

Let us label each vertex on the pyrochlore lattice by a Bravais lattice site R
m

1
,m

2
,m

3

(i.e.

the center of an α-tetrahedron) and by a sublattice index, with A ≡ 1, B ≡ 2, C ≡ 3, D ≡ 4.
The adjacency matrix is

Aij(R) =















0 δ
R,0

+ δ
R ,a

2
−a

1

δ
R,0

+ δ
R ,a

2
−a

3

δ
R,0

+ δ
R ,a

2

δ
R,0

+ δ
R ,a

1
−a

2

0 δ
R,0

+ δ
R ,a

1
−a

3

δ
R,0

+ δ
R ,a

1

δ
R,0

+ δ
R ,a

3
−a

2

δ
R,0

+ δ
R ,a

3
−a

1

0 δ
R,0

+ δ
R ,a

3

δ
R,0

+ δ
R ,−a

2

δ
R,0

+ δ
R ,−a

1

δ
R,0

+ δ
R ,−a

3

0















. (16)
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The definition of the adjacency matrix is that Aij(R) = 1 if sites si and R+ sj are nearest
neighbors.

The Fourier transform of the adjacency matrix is

Âij(k) =
∑

R

Aij(R) eik·R (17)

=













0 1 + ei(θ2−θ
1
) 1 + ei(θ2−θ

3
) 1 + eiθ2

1 + ei(θ1−θ
2
) 0 1 + ei(θ1−θ

3
) 1 + eiθ1

1 + ei(θ3−θ
2
) 1 + ei(θ3−θ

1
) 0 1 + eiθ3

1 + e−iθ
2 1 + e−iθ

1 1 + e−iθ
3 0













, (18)

where we define

k ≡ θ1 b1
2π

+
θ2 b2
2π

+
θ3 b3
2π

, (19)

so that
k ·R

m
1
,m

2
,m

3

= m1 θ1 +m2 θ2 +m3 θ3 . (20)

Note that the unitary transformation,

U =











eiθ2/2 0 0 0

0 eiθ1/2 0 0

0 0 eiθ3/2 0
0 0 0 1











(21)

has the effect

U † Âij(k)U = 2











0 c12 c23 c2
c12 0 c13 c1
c23 c13 0 c3
c2 c1 c3 0











, (22)

where ci = cos 1
2θi and cij = cos 1

2(θi − θj).

The characteristic polynomial is found to be

P (λ) = det
(

λ− Â
)

(23)

= λ4 − 4αλ2 − 16βλ+ 16γ ,

where

α = c21 + c22 + c23 + c212 + c213 + c223 (24)

β = c1 c2 c12 + c1 c3 c13 + c2 c3 c23 + c12 c13 c23

γ = c21 c
2
23 + c22 c

2
13 + c23 c

2
12 − 2 c1 c2 c13 c23 − 2 c1 c3 c12 c23 − 2 c2 c3 c12 c13 .
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Simplifying, using results such as

c21 + c22 + c212 = 1 + 2 c1 c2 c12 , (25)

we find

β = 1 + 1
2

(

cos θ1 + cos θ2 + cos θ3 + cos(θ1 − θ2) + cos(θ1 − θ3) + cos(θ2 − θ3)
)

(26)

and
α = 2 + β , γ = 1− β . (27)

The function β(θ) takes its minimum value of βmin = 0 at θ = π
2 (1, 1, 0) (and at symmetry-

related points in the Brillouin zone). The maximum occurs at the zone center θ = 0, where

βmax = 4.

The characteristic polynomial may be factored, using the results of eqn. 27. If we define
λ ≡ ε− 2, then

P (ε− 2) = ε4 − 8ε3 + 4(6 − α) ε2 + 16(2 + β − α) ε+ 16(1 − α+ 2β + γ)

= ε2
(

ε2 − 8 ε+ 4(4 − β)
)

, (28)

and thus with λ = ε− 2 we have the four bands

λ1 = −2 , λ2 = −2 , λ3 = 2− 2
√

β , λ4 = 2 + 2
√

β . (29)

Note that there are two flat bands at λ1,2 = −2. Note also that the largest eigenvalue is

λ4,max = 2 + 2β
1/2
max = 6, which is (correctly) the lattice coordination number. To make

contact with some results of ref. 1, the adjacency matrix in eqn. 4 of ref. 1 is equivalent to
Â+ 2, hence the eigenvalues are our ε1,2,3,4, which is to say ε1,2 = 0 and ε3,4 = 4± 2

√
β. I

presume that there is a typo and the eigenvalues ν1,2,3,4 in ref. 1 are for half the adjacency
matrix.

For the electronic hopping Hamiltonian H = −t
∑

〈ij〉

(

c
†
i cj+c

†
jci

)

on the pyrochlore lattice,

the energy eigenvalues are

E1 = −2t− 2t
√

β(θ) , E2 = −2t+ 2t
√

β(θ) , E3,4 = +2t , (30)

where β(θ) ∈ [0, 4], as discussed above.

3.1 The FCC lattice Brillouin zone

Fig. 8 shows the first Brillouin zone for a (real space) FCC structure. Note that

Γ = (0, 0, 0) (31)

L = 1
2

(

b1 + b2 + b3
)

=

√
2π

a

(

1, 1, 1
)

(32)

X = 1
2

(

b1 + b3) =

√
2π

a

(

0, 1, 0
)

. (33)
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Figure 8: First Brillouin zone for an FCC structure, with high symmetry points labeled.

Consider the point L′ residing in the center of the hexagonal face adjacent to that containing
L but with negative x coordinate. (This face is hidden in the figure.) One has

L′ = 1
2b1 =

√
2π

a

(

− 1, 1, 1
)

. (34)

To find W we note that it lies at the confluence of the two hexagonal faces containing L

and L′, respectively, and the square face containing X. We may therefore write

W = 1
2

(

b1 + b2 + b3
)

+ r · 1
2

(

b1 − b2
)

+ s · 1
2

(

b1 − b3
)

W = 1
2

(

b1 + b3
)

+ u · 1
2

(

b1 + b2
)

+ v · 1
2

(

b2 + b3
)

W = 1
2b1 + x · 1

2

(

b1 + b2 + 2 b3
)

+ y · 1
2

(

b2 − b3
)

,

(35)

where we must solve for (r, s, u, v, x, y). What we have done here is to write the location of
W as the location of each of the face centers plus an unknown vector lying in the plane of
that face. Since the elementary reciprocal lattice vectors b1,2,3 are a linearly independent
set, the coefficients of each elementary reciprocal lattice vector must independently sum to
zero in the two equations which result from equating the first and second, and the second
and third lines in eqn. 35. This yields six equations in our six unknowns, and solving for
the unknowns we obtain

r = 1
2 , s = 0 , u = 1

2 , v = 0 , x = 1
2 , y = 0 , (36)

and therefore

W = 3
4 b1 +

1
4 b2 +

1
2 b3 =

√
2π

a

(

0, 1, 12
)

. (37)
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Consider next the point W ′ lying on the other end of the edge containing U and K. We
have

W ′ = 1
2

(

b1 + b2 + b3
)

+ r · 1
2

(

b1 − b2
)

+ s · 1
2

(

b1 − b3
)

W ′ = 1
2

(

b1 + b2
)

+ u · 1
2

(

b2 + b3
)

+ v · 1
2

(

b1 + b3
)

W ′ = 1
2b1 + x · 1

2

(

b1 + b2 + 2 b3
)

+ y · 1
2

(

b2 − b3
)

.

(38)

Solving for the unknowns, we obtain

r = 1
2 , s = 1

2 , u = 0 , v = 1
2 , x = 1

2 , y = 1
2 , (39)

and therefore

W ′ = 3
4 b1 +

1
2 b2 +

1
4 b3 =

√
2π

a

(

0, 12 , 1
)

. (40)

Finally, consider the point W ′′ lying on the other end of the edge containing W and U . One
then has

W = 1
2

(

b1 + b2 + b3
)

+ r · 1
2

(

b1 − b2
)

+ s · 1
2

(

b1 − b3
)

W = 1
2

(

b1 + b3
)

+ u · 1
2

(

b1 + b2
)

+ v · 1
2

(

b2 + b3
)

W = 1
2b3 + x · 1

2

(

b1 − b2
)

+ y · 1
2

(

b1 + 2 b2 + b3
)

.

(41)

Solving for the unknowns, we obtain

r = 0 , s = −1
2 , u = 0 , v = 1

2 , x = 1
2 , y = 1

2 , (42)

and therefore

W ′′ = 1
2 b1 +

1
4 b2 +

3
4 b3 =

√
2π

a

(

1
2 , 1, 0

)

. (43)

Since K and U lie a the midpoints of WW ′ and WW ′′ respectively, we may now write

K = 3
4 b1 +

3
8 b3 +

3
8 b3 =

(

0, 34 ,
3
4

)

(44)

U = 5
8 b1 +

1
4 b2 +

5
8 b3 =

(

1
4 , 1,

1
4

)

. (45)

4 Depleted Pyrochlores

4.1 Pyrochlore with 16 element basis

We change notation slightly. We define

a1 =
1√
2
a
(

0, 1, 1
)

, a2 =
1√
2
a
(

1, 0, 1
)

, a3 =
1√
2
a
(

1, 1, 0
)

. (46)
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Figure 9: Supertetrahedron basis for the pyrochlore lattice.

Consider the 16 site basis for the pyrochlore lattice defined in Fig. 9, composed of a
‘supertetrahedron’ formed from four primary tetrahedra. The sites on each tetrahedron are
labeled {a,b, c,d} and the tetrahedra are labeled {A,B,C,D}. The origin is taken to be
site Dd. The supertetrahedra form a simple cubic lattice with primary direct lattice vectors

c1 = −a1 + a2 + a3 =
√
2 a (1, 0, 0)

c2 = +a1 − a2 + a3 =
√
2 a (0, 1, 0)

c3 = +a1 + a2 − a3 =
√
2 a (0, 0, 1) .

(47)

To see why the supertetrahedra fill all space with no missing tetrahedra, write the location
of Dd on supertetrahedron (n1, n2, n3) as

Rn
1
,n

2
,n

3

= n1 c1 + n2 c2 + n3 c3

= (−n1 + n2 + n3)a1 + (n1 − n2 + n3)a2 + (n1 + n2 − n3)a3

≡ ℓ1 a1 + ℓ2 a2 + ℓ3 a3 .

(48)

Thus,
ℓ1 = −n1 + n2 + n3 , ℓ2 = n1 − n2 + n3 , ℓ3 = n1 + n2 − n3 . (49)

Note that ℓ1 − ℓ2, ℓ2 − ℓ3, and ℓ3 − ℓ1 are all even integers. Rn
1
,n

2
,n

3

is the location of the

Dd site in unit cell (n1, n2, n3). The location of the Ad site is then Rn
1
,n

2
,n

3

+ a1. The
location of the Bd site is Rn

1
,n

2
,n

3

+a2. The location of the Cd site is Rn
1
,n

2
,n

3

+a3. Thus,
we have

(ℓ1 − ℓ2 , ℓ2 − ℓ3 , ℓ3 − ℓ1) = (odd , odd , even) (A)

= (odd , even , odd) (B)

= (even , odd , odd) (C)

= (even , even , even) (D) .

(50)

Since (ℓ1− ℓ2)+(ℓ2− ℓ3)+(ℓ3− ℓ1) = 0, there number of odd differences must itself be even
(i.e. 0 or 2). This exhausts all the possibilities for (ℓ1, ℓ2, ℓ3), so we have identified every
tetrahedron.
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The locations of the 16 sites in the (0, 0, 0) supertetrahedron are then

Aa = 3
2a1 Ab = a1 +

1
2a2 Ac = a1 +

1
2a3 Ad = a1 (51)

Ba = a2 +
1
2a1 Bb = 3

2a2 Bc = a2 +
1
2a3 Bd = a2 (52)

Ca = a3 +
1
2a1 Cb = a3 +

1
2a2 Cc = 3

2a3 Cd = a3 (53)

Da = 1
2a1 Db = 1

2a2 Dc = 1
2a3 Dd = 0 . (54)

The Fourier transform of the adjacency matrix is given by

M(θ) =






























































Aa Ab Ac Ad Ba Bb Bc Bd Ca Cb Cc Cd Da Db Dc Dd
Aa 0 1 1 1 0 z̄1z2 0 0 0 0 z̄1z3 0 0 0 0 z2z3
Ab 1 0 1 1 1 0 0 0 0 0 0 z3 0 0 z3 0
Ac 1 1 0 1 0 0 0 z2 1 0 0 0 0 z2 0 0
Ad 1 1 1 0 0 0 z̄1 0 0 z̄1 0 0 1 0 0 0
Ba 0 1 0 0 0 1 1 1 0 0 0 z3 0 0 z3 0
Bb z1z̄2 0 0 0 1 0 1 1 0 0 z̄2z3 0 0 0 0 z1z3
Bc 0 0 0 z1 1 1 0 1 0 1 0 0 z1 0 0 0
Bd 0 0 z̄2 0 1 1 1 0 z̄2 0 0 0 0 1 0 0
Ca 0 0 1 0 0 0 0 z2 0 1 1 1 0 z2 0 0
Cb 0 0 0 z1 0 0 1 0 1 0 1 1 z1 0 0 0
Cc z1z̄3 0 0 0 0 z2z̄3 0 0 1 1 0 1 0 0 0 z1z2
Cd 0 z̄3 0 0 z̄3 0 0 0 1 1 1 0 0 0 1 0
Da 0 0 0 1 0 0 z̄1 0 0 z̄1 0 0 0 1 1 1
Db 0 0 z̄2 0 0 0 0 1 z̄2 0 0 0 1 0 1 1
Dc 0 z̄3 0 0 z̄3 0 0 0 0 0 0 1 1 1 0 1
Dd z̄2z̄3 0 0 0 0 z̄1z̄3 0 0 0 0 z̄1z̄2 0 1 1 1 0































































where zj = eiθj with j ∈ {1, 2, 3}. The way to read this matrix is as follows. There are six
nonzero entries in each row and in each column, corresponding to coordination number six.
The rows correspond to sites Aa (1) through Dd (16). Reading along the first row, we see
that Aa has neighbors Ab, Ac, and Ad in the unit cell (0, 0, 0), as well as a neighbor Bb in
unit cell c2 − c1 (from M16 = z̄1z2), a neighbor Cc in unit cell c3 − c1, and a neighbor Dd
in unit cell c2 + c3. The Hamiltonian is then H(θ) = −tM(θ).

The high-symmetry points in the cubic lattice Brillouin zone are as follows:

Γ : (θ1, θ2, θ3) = (0, 0, 0) (zone center)

X : (θ1, θ2, θ3) = (π, 0, 0) (face center)

M : (θ1, θ2, θ3) = (π, π, 0) (edge center)

R : (θ1, θ2, θ3) = (π, π, π) (zone corner) .

(55)

In Fig. 10, we plot the dispersion for the tight binding Hamiltonian on the pyrochlore
lattice with t = 1 using both the 4-element FCC basis as well as the 16-element SC basis.
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Figure 10: Comparison of pyrochlore band structures computed in 4-element FCC basis
(left) and 16-element SC basis (right).

For the Kondo Hamiltonian with fixed local moments, we write

H(θ) = −t

16
∑

a,b=1

2
∑

µ=1

Mab(θ) c
†
a,µ(θ) cb,µ(θ)− J

16
∑

a=1

2
∑

µ,ν=1

n̂a · c†a,µ(θ)σµν ca,ν(θ) , (56)

where J is the Kondo coupling and n̂a is the direction of the local moment, with all local
moments assumed to be of unit magnitude. At each θ point in the Brillouin zone, the
Hamiltonian is a 32× 32 matrix.

4.2 Depleted pyrochlore

To deplete the pyrochlore, we knock out rows and columns of M . Equivalently, we can add
an infinite on-site energy to the diagonal elements Haa(θ). For the Kondo Hamiltonian,
we add the infinite on-site energy to Ha↑,a↑(θ) and Ha↓,a↓(θ). In Fig. 11 we plot the band
structures for two depleted pyrochlore structures, one in which sites Aa, Bb, Cc, and Dd
have been removed (I), and another in which sites Ab, Bc, Ca, and Dd have been removed
(II). The resulting structures may not have the full cubic lattice symmetry.

Eliminating the necessary rows and columns fromM(θ), we arrive at the adjacency matrices
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Figure 11: Comparison of depleted pyrochlore band structures (t = 1, J = 0). Left panel:
sites Aa, Bb, Cc, Dd removed. Right panel: sites Ab, Bc, Ca, Dd removed.

for the two depleted structures (I) and (II). We find for (I),

M (I)(θ) =















































Ab Ac Ad Ba Bc Bd Ca Cb Cd Da Db Dc
Ab 0 1 1 1 0 0 0 0 z3 0 0 z3
Ac 1 0 1 0 0 z2 1 0 0 0 z2 0
Ad 1 1 0 0 z̄1 0 0 z̄1 0 1 0 0
Ba 1 0 0 0 1 1 0 0 z3 0 0 z3
Bc 0 0 z1 1 0 1 0 1 0 z1 0 0
Bd 0 z̄2 0 1 1 0 z̄2 0 0 0 1 0
Ca 0 1 0 0 0 z2 0 1 1 0 z2 0
Cb 0 0 z1 0 1 0 1 0 1 z1 0 0
Cd z̄3 0 0 z̄3 0 0 1 1 0 0 0 1
Da 0 0 1 0 z̄1 0 0 z̄1 0 0 1 1
Db 0 z̄2 0 0 0 1 z̄2 0 0 1 0 1
Dc z̄3 0 0 z̄3 0 0 0 0 1 1 1 0















































.

This corresponds to a five-fold coordinated structure, since there are five nonzero elements
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Figure 12: Comparison of two additional depleted pyrochlore band structures III and IV
(t = 1, J = 0).

in each row and each column. For the (II) structure, we have

M (II)(θ) =















































Aa Ac Ad Ba Bb Bd Cb Cc Cd Da Db Dc
Aa 0 1 1 0 z̄1z2 0 0 z̄1z3 0 0 0 0
Ac 1 0 1 0 0 z2 0 0 0 0 z2 0
Ad 1 1 0 0 0 0 z̄1 0 0 1 0 0
Ba 0 0 0 0 1 1 0 0 z3 0 0 z3
Bb z1z̄2 0 0 1 0 1 0 z̄2z3 0 0 0 0
Bd 0 z̄2 0 1 1 0 0 0 0 0 1 0
Cb 0 0 z1 0 0 0 0 1 1 z1 0 0
Cc z1z̄3 0 0 0 z2z̄3 0 1 0 1 0 0 0
Cd 0 0 0 z̄3 0 0 1 1 0 0 0 1
Da 0 0 1 0 0 0 z̄1 0 0 0 1 1
Db 0 z̄2 0 0 0 1 0 0 0 1 0 1
Dc 0 0 0 z̄3 0 0 0 0 1 1 1 0















































,

corresponding to a four-fold coordinated structure, known as the hyperkagome lattice.
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The energy bands for two additional structures are shown in Fig. 12. We find

M (III)(θ) =















































Aa Ac Ad Ba Bb Bd Ca Cb Cc Db Dc Dd
Aa 0 1 1 0 z̄1z2 0 0 0 z̄1z3 0 0 z2z3
Ac 1 0 1 0 0 z2 1 0 0 z2 0 0
Ad 1 1 0 0 0 0 0 z̄1 0 0 0 0
Ba 0 0 0 0 1 1 0 0 0 0 z3 0
Bb z1z̄2 0 0 1 0 1 0 0 z̄2z3 0 0 z1z3
Bd 0 z̄2 0 1 1 0 z̄2 0 0 1 0 0
Ca 0 1 0 0 0 z2 0 1 1 z2 0 0
Cb 0 0 z1 0 0 0 1 0 1 0 0 0
Cc z1z̄3 0 0 0 z2z̄3 0 1 1 0 0 0 z1z2
Db 0 z̄2 0 0 0 1 z̄2 0 0 0 1 1
Dc 0 0 0 z̄3 0 0 0 0 0 1 0 1
Dd z̄2z̄3 0 0 0 z̄1z̄3 0 0 0 z̄1z̄2 1 1 0















































In this structure, nine of the 12 sites are 5-fold coordinated, and the remaining three are
3-fold coordinated. What seems to be an equivalent structure is (IV):

M (IV)(θ) =















































Aa Ab Ac Ba Bc Bd Ca Cb Cd Db Dc Dd
Aa 0 1 1 0 z̄1z2 0 0 0 0 0 0 z2z3
Ab 1 1 1 1 0 0 0 0 z3 0 z3 0
Ac 1 0 1 0 0 z2 1 0 0 z2 0 0
Ba 0 0 0 0 1 1 0 0 z3 0 z3 0
Bc 0 0 z1 1 1 1 0 1 0 0 0 0
Bd 0 z̄2 0 1 1 0 z̄2 0 0 1 0 0
Ca 0 1 0 0 0 z2 0 1 1 z2 0 0
Cb 0 0 z1 0 0 0 1 0 1 0 0 0
Cd 0 0 0 z̄3 0 0 1 1 0 0 1 0
Db 0 z̄2 0 0 0 1 z̄2 0 0 0 1 1
Dc 0 0 0 z̄3 0 0 0 0 1 1 0 1
Dd z̄2z̄3 0 0 0 z̄1z̄3 0 0 0 0 1 1 0















































5 References

[1] S. Isakov, K. Gregor, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett. 93, 106702
(2004).

17


