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1 Quadratic Hamiltonians

1.1 Bosonic Models

The general noninteracting bosonic Hamiltonian is written

Ĥ = 1
2Ψ

†
r HrsΨs , (1)

where Ψ is a rank-2N column vector whose Hermitian conjugate is the row vector

Ψ† =
(
ψ†
1 , · · · , ψ†

N , ψ1 , · · · , ψN

)
. (2)

Since
[
ψi , ψ

†
j

]
= δij , we have

[
Ψr , Ψ

†
s

]
= Σrs , Σ =

(
IN×N 0

0 −IN×N

)
, (3)

with I the identity matrix. Note that the indices r and s run from 1 to 2N , while i and j
run from 1 to N . The matrix H is of the form

H =

(
A B
B∗ A∗

)
(4)

where A = A† is Hermitian and B = Bt is symmetric.

The Hamiltonian is brought to diagonal form by a canonical transformation:

(
ψ
ψ†

)
=

S︷ ︸︸ ︷(
U V ∗

V U∗

) (
φ
φ†

)
, (5)

which is to say Ψ = S Φ, or in component form

ψi = Uia φa + V ∗
ia φ

†
a

ψ†
i = Via φa + U∗

ia φ
†
a ,

(6)

where a, like i, runs from 1 to N . In order that the transformation be canonical, we must
preserve the commutation relations, meaning

[
φa , φ

†
b

]
= δab, i.e.

[
Φr , Φ

†
s

]
= Σrs . (7)

This then requires
S Σ S† = S†Σ S = Σ , (8)
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which entails

U †U − V †V = I U tV − V tU = 0 (9)

UU † − V ∗V t = I U∗V t − V U † = 0 . (10)

Note that Σ2 = I, where I =

(
I 0
0 I

)
, hence

S−1 = Σ S†Σ =

(
U † −V †

−V t U t

)
. (11)

Thus, the inverse relation between the Ψ and Φ operators is Φ = S−1Ψ = Σ S†ΣΨ, or

φa = U∗
ia ψi − V ∗

ia ψ
†
i

φ†a = −Via ψi + Uia ψ
†
i ,

(12)

1.1.1 Bogoliubov equations

We are now in the position to demand

S†HS = E =

(
E 0
0 E

)
, (13)

where E is a diagonal N ×N matrix. Thus,

HS = S†−1E = Σ S Σ E , (14)

which is to say (
A B
B∗ A

)(
U V ∗

V U∗

)
=

(
U −V ∗

−V U∗

)(
E 0
0 E

)
. (15)

If the bosonic system is stable, each of the eigenvalues Ea is nonnegative. In component
form, this yields the Bogoliubov equations,

Aij Uja +Bij Vja = +UiaEa

B∗
ij Uja +A∗

ij Vja = −ViaEa ,
(16)

with no implied sum on a on either RHS. The Hamiltonian is then

Ĥ =
∑

a

Ea

(
φ†aφa +

1
2

)
. (17)

At temperature T , we have 〈
φ†a φb

〉
= n(Ea) δab , (18)

where

n(E) =
1

exp(E/k
B
T )− 1

(19)

2



is the Bose distribution. The anomalous correlators all vanish, e.g. 〈φaφb〉 = 0. The finite
temperature two-point correlation functions are then

〈ψ†
iψj〉 =

∑

a

{
naU

∗
ia Uja + (1 + na)Via V

∗
ja

}
(20)

〈ψiψj〉 =
∑

a

{
na V

∗
ia Uja + (1 + na)Uia V

∗
ja

}
, (21)

where na ≡ n(Ea).

1.1.2 Ground state

We have found
Φ = S−1Ψ = Σ S†ΣΨ , (22)

hence

φa = U †
ai ψi − V †

ai ψ
†
i

= ψi U
∗
ia − ψ†

i V
∗
ia .

(23)

We assume the following Bogoliubov form for the ground state of Ĥ:

|G 〉 = C exp
(
1
2Qij ψ

†
iψ

†
j

)
| 0 〉 , (24)

where C is a normalization constant, Q is a symmetric matrix, and | 0 〉 is the vacuum for
the ψ bosons: ψi| 0 〉 = 0. We now demand that |G 〉 be the vacuum for the φ bosons:
φa|G 〉 ≡ 0. This means

φa e
Q̂ | 0 〉 = eQ̂

(
e−Q̂ φa e

Q̂
)
| 0 〉 , (25)

where
Q̂ ≡ 1

2Qij ψ
†
iψ

†
j . (26)

We now define
ψi(x) ≡ e−xQ̂ ψi e

xQ̂ (27)

and we find
dψi(x)

dx
= e−xQ̂

[
ψi , Q̂

]
exQ̂ = Qij ψ

†
j , (28)

and integrating1 we obtain

ψi(x) ≡ e−xQ̂ ψi e
xQ̂ = ψi(x) + xQij ψ

†
j . (29)

We may now write

e−Q̂ φa e
Q̂ = U †

ai ψi +
(
U †
aiQij − V †

aj

)
ψ†
j , (30)

1Note that e−xQ̂ ψ
†
i e

xQ̂ = ψ
†
i since

[

ψ
†
i , Q̂

]

= 0.
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and we demand that the coefficient of ψ†
j vanish for all a, which yields

Q =
(
U †
)−1

V † , (31)

or, equivalently, Q† = V U−1. Note that Qt = V ∗(U∗)−1 = Q since U †V ∗ = V †U∗.

1.1.3 A final note on the boson problem

Note that S†HS has the same eigenvalues as H only if S† = S−1, i.e. only if S is Hermitian.
We have S† = ΣS−1Σ and therefore

S†HS = Σ S−1ΣHS . (32)

Now

ΣH =

(
A B

−B∗ −A∗

)
. (33)

Consider the characteristic polynomial P (E) = det(E −ΣH). Since det(M) = det(M t) for
any matrix M , we consider

(ΣH)t =

(
At −B†

Bt −A†

)
=

(
A∗ −B∗

B −A

)
= −J−1(ΣH)J , (34)

where

J =

(
0 I

−I 0

)
(35)

and J−1 = −J , i.e. J 2 = −I. But then we have

P (E) = det(E −ΣH) = det(E + J −1ΣHJ ) = det(E +ΣH) = P (−E) . (36)

We conclude that the eigenvalues of ΣH come in (+E,−E) pairs. To obtain the eigenener-
gies for the bosonic Hamiltonian Ĥ, however, as per eqn. 32, we must multiply S−1ΣHS on
the left by Σ, which reverses the sign of the negative eigenvalues, resulting in a nonnegative
definite spectrum of bosonic eigenoperators (for stable bosonic systems).

1.2 Fermionic Models

The general noninteracting fermionic Hamiltonian is written

Ĥ = 1
2Ψ

†
r HrsΨs , (37)

where once again Ψ is a rank-2N column vector whose Hermitian conjugate is the row
vector

Ψ† =
(
ψ†
1 , · · · , ψ

†
N , ψ1 , · · · , ψN

)
. (38)
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In contrast to the bosonic case, we now have
{
ψi , ψ

†
j

}
= δij with the anticommutator,

hence {
Ψr , Ψ

†
s

}
= δrs . (39)

The matrix H is of the form

H =

(
A B

−B∗ −A∗

)
, (40)

where A = A† is Hermitian and B = −Bt is antisymmetric. Since this is of the same form
as eqn. 33, we conclude that the eigenvalues of H come in (+E,−E) pairs2.

As with the bosonic case, the Hamiltonian is brought to diagonal form by a canonical
transformation:

(
ψ
ψ†

)
=

S︷ ︸︸ ︷(
U V ∗

V U∗

) (
φ
φ†

)
, (41)

which is to say Ψ = S Φ, or in component form

ψi = Uia φa + V ∗
ia φ

†
a

ψ†
i = Via φa + U∗

ia φ
†
a .

(42)

In order that the transformation be canonical, we must preserve the anticommutation rela-
tions, i.e.

{
φa , φ

†
b

}
= δab, meaning

{
Φr , Φ

†
s

}
= δrs , (43)

which requires that S is unitary:

S†S = SS† = I , (44)

where I is again the identity matrix of rank 2N . Thus,

U †U + V †V = I U tV + V tU = 0 (45)

UU † + V ∗V t = I U∗V t + V U † = 0 . (46)

The inverse relation between the operators follows from Φ = S−1Ψ = S†Ψ:

φa = U∗
ia ψi + V ∗

ia ψ
†
i

φ†a = Via ψi + Uia ψ
†
i ,

(47)

The transformed Hamiltonian matrix is

S†HS = E ≡
(
E 0
0 −E

)
. (48)

2This is true even though B in eqn. 33 is symmetric rather than antisymmetric. In proving the evenness
of the characteristic polynomial P (E) = P (−E), we did not appeal to the symmetry or antisymmetry of B.
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Without loss of generality, we may take E to be a diagonal matrix with nonnegative entries.
In component notation, the eigenvalue equations are

Aij Uja +Bij Vja = UiaEa

−B∗
ij Uja −A∗

ij Vja = ViaEa .
(49)

The Hamiltonian then takes the form

Ĥ =
∑

a

Ea

(
φ†aφa − 1

2

)
. (50)

At temperature T , we have 〈
φ†aφb

〉
= f(Ea) δab , (51)

where

f(E) =
1

exp(E/k
B
T ) + 1

(52)

is the Fermi distribution. As for bosons, the anomalous correlators all vanish: 〈φaφb〉 = 0.
The finite temperature two-point correlation functions are then

〈ψ†
iψj〉 =

∑

a

{
faU

∗
ia Uja + (1− fa)Via V

∗
ja

}

〈ψiψj〉 =
∑

a

{
fa V

∗
ia Uja + (1− fa)Uia V

∗
ja

}
,

(53)

where fa = f(Ea).

1.2.1 Ground state

We write
|G 〉 = C exp

(
1
2Qij ψ

†
iψ

†
j

)
| 0 〉 , (54)

with Q = −Qt, and we demand, as in the bosonic case, that φa |G 〉 ≡ 0. Again we define

Q̂ = 1
2Qij ψ

†
iψ

†
j , and

ψi(x) = e−xQ̂ ψi e
xQ̂ . (55)

We then have

dψi(x)

dx
= e−xQ̂

[
ψi, Q̂

]
exQ̂ = Qij ψ

†
j ⇒ ψi(x) = ψi + xQij ψ

†
j . (56)

Thus,

e−Q̂ φa e
Q̂ = U †

ai ψi +
(
V †
aj + U †

aiQij

)
ψ†
j , (57)

from which we obtain
Q = −

(
U †
)−1

V † . (58)

Since U †V ∗ + V †U∗ = 0, we recover Q = −Qt.
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1.3 Majorana Fermion Models

Majorana fermions satisfy the anticommutation relations
{
θi , θj

}
= 2δij . Thus, (θi)

2 = 1

for every i. We also have θ†i = θi and for this reason they are sometimes called ‘real’
fermions. If c is the annihilator for a Dirac particle, with

{
c , c†

}
= 1, we may define

Majorana fermions η and η̃ as follows:

η = c+ c† c = 1
2(η − iη′) (59)

η̃ = i(c− c†) c† = 1
2(η + iη̃) . (60)

The most general noninteracting Majorana Hamiltonian is of the form

Ĥ = i
4Mij θi θj , (61)

where M = −M t = M∗ is a real antisymmetric matrix of even dimension 2N . This is
brought to canonical form by a real orthogonal transformation,

θi = Ria ξa , (62)

where RtR = I, and where
{
ξa , ξb

}
= 2δab. We have

RtMR = E ⊗ iσy =




0 −E1 0 0 · · ·
E1 0 0 0 · · ·
0 0 0 −E2 · · ·
0 0 E2 0 · · ·
...

...
...

...
. . .




. (63)

Thus,

Ĥ = − i
2

N∑

a=1

Ea ξ2a−1 ξ2a =
∑

a

Ea

(
c†aca − 1

2

)
, (64)

where
ca ≡ 1

2

(
ξ2a−1 − i ξ2a

)
, c†a ≡ 1

2

(
ξ2a−1 + i ξ2a

)
. (65)

1.4 Majorana chain

Consider the Hamiltonian

Ĥ = −i
N∑

n=1

σn αn αn+1 (66)

where σn = ±1 is a Z2 gauge field and {αm, αn} = 2 δmn is the Majorana fermion anti-

commutator. Periodic boundary conditions are assumed, i.e. αN+1 = α1. We now make a
gauge transformation to a new set of Majorana fermions,

θ1 ≡ α1 , θ2 ≡ σ1α2 , θ3 ≡ σ1σ2 α3 , . . . , θN ≡ σ1σ2 · · · σN−1 αN . (67)
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The Hamiltonian may now be written as

Ĥ = −i
N∑

n=1

θn θn+1 , (68)

where θN+1 = σ θ1, with σ =
∏N

j=1 σj. So the boundary conditions on the θ Majoranas are
either periodic (σ = +1) or antiperiodic (σ = −1). We now switch to crystal momentum
space, defining

θ̂k =
1√
N

N∑

n=1

e−ikn θn , θn =
1√
N

∑

k

eikn θ̂k . (69)

The k-values are quantized according to eikN = σ. The anticommutators are

{
θm , θn

}
= 2 δm−n , 0modN ,

{
θ̂k , θ̂p

}
= 2 δk+p , 0mod 2π . (70)

There are four cases to consider:

Case I : σ = +1, N even. We have eikN = +1, and the N allowed k values are

k ∈ ±2π

N
×
{
1 , . . . , 1

2N − 1
}

, k = 0 , k = π . (71)

Note that the allowed crystal momenta all occur in {+k,−k} pairs, with the exception of
k = 0 and k = π, which are unpaired.

Case II : σ = +1, N odd. We have eikN = +1, and the N allowed k values are

k ∈ ±2π

N
×
{
1 , . . . , 1

2 (N − 1)
}

, k = 0 . (72)

Only k = 0 is unpaired.

Case III : σ = 1, N even. We have eikN = −1, and the N allowed k values are

k ∈ ±2π

N
×
{

1
2 , . . . ,

1
2(N − 1)

}
. (73)

All the crystal momenta are paired.

Case IV : σ = 1, N odd. We have eikN = −1, and the N allowed k values are

k ∈ ±2π

N
×
{

1
2 , . . . ,

1
2N − 1

}
, k = π . (74)

Only k = π is unpaired.
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We may now write

Ĥ = −i
∑

k

e−ik θ̂k θ̂−k

= −i
∑

k∈(0,π)

(
eik θ̂−k θ̂k + e−ik θ̂k θ̂−k

)
− i
∑

k∈U

e−ik θ̂2k

=
∑

k∈(0,π)

2 sin k θ̂−k θ̂k − 2i
∑

k∈(0,π)

e−ik − i
∑

k∈U

e−ik .

(75)

where U denotes the set of unpaired (or self-paired) crystal momenta, i.e. the set of k

for which eik = e−ik. Note that
{
θ̂−k , θ̂k′

}
= 2 δk,k′ and θ̂−k = θ̂†k, so we may define

θ̂−k ≡
√
2 c†k and θ̂k ≡

√
2 ck, where ck is a complex fermion. Thus, we have

Ĥ =
∑

k∈(0,π)

4 sin k c†k ck + E0 , (76)

where
E0 = −2i

∑

k∈(0,π)

e−ik − i
∑

k∈U

e−ik . (77)

We now proceed to evaluate E0 for our four cases.

Case I : Since U = {0, π}, we have
∑

k∈U e
−ik = 0. For k ∈ (0, π) we may write k = 2πℓ/N

with ℓ ∈
{
1 , . . . , 1

2N − 1
}
. We then have

E
(I)
0 = −2i

N
2
−1∑

ℓ=1

e−2πiℓ/N = −2 ctn
( π
N

)
. (78)

Note that we have used the identity

J−1∑

ℓ=1

xℓ =
x− xJ

1− x
. (79)

Case II : We have U = {0}. For the main set k ∈ (0, π) we may write k = 2πℓ/N with
ℓ ∈

{
1 , . . . , 1

2(N − 1)
}
. We then have

E
(II)
0 = −2i

N+1

2
−1∑

ℓ=1

e−2πiℓ/N − i = −2i

(
e−2πi/N + e−iπ/N

1− e−2πi/N

)
− i = − ctn

( π

2N

)
. (80)

Case III : We have U = {∅}. For k ∈ (0, π) we may write k = 2πℓ/N + π/N with
ℓ ∈

{
0 , . . . , 1

2N − 1
}
. Then

E
(III)
0 = −2i e−iπ/N

N
2
−1∑

ℓ=0

e−2πℓ/N = −2 csc
( π
N

)
. (81)
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Case IV : We have U = {π}. For k ∈ (0, π) we may write k = 2πℓ/N − π/N with
ℓ ∈

{
1 , . . . , 1

2(N − 1)
}
. Thus,

E
(IV)
0 = −2i eiπ/N

N+1

2
−1∑

ℓ=1

e−2πiℓ/N + i = −2i

(
e−iπ/N + 1

1− e−2πi/N

)
+ i = − ctn

( π

2N

)
. (82)

Note that in the N → ∞ limit, in all four cases we have E0 = 2N/π +O(1).

2 Jordan-Wigner Transformation

The Jordan-Wigner transformation is an equivalence, in one-dimensional lattice systems,
between the S = 1

2 SU(2) algebra and the algebra of spinless fermions. Explicitly, we have

S+
n = exp

(
iπ

n−1∑

j=1

c†jcj

)
c†n

S−
n = exp

(
iπ

n−1∑

j=1

c†jcj

)
cn

Sz
n = c†ncn − 1

2 .

(83)

The inverse is then

c†n = exp

(
iπ

n−1∑

j=1

(
Sz
j +

1
2

))
S+
n

cn = exp

(
iπ

n−1∑

j=1

(
Sz
j +

1
2

))
S−
n .

(84)

Note that eiπc
†c has eigenvalues ±1, and that

c eiπc
†c = −c , c†eiπc

†c = c† . (85)

Taking the Hermitian conjugate,

eiπc
†c c† = −c† , eiπc

†c c = c . (86)

The expression

exp

(
iπ

n−1∑

j=1

(
Sz
j +

1
2

))
=

n−1∏

j=1

exp
(
iπ
(
Sz
j +

1
2

))
(87)

is known as a Jordan-Wigner string .
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The nearest-neighbor bilinear transverse spin interaction terms are

S+
n S

−
n+1 = c†n e

iπc†ncn cn+1 = c†n cn+1

S−
n S

+
n+1 = cn e

iπc†ncn c†n+1 = c†n+1 cn

S+
n S

+
n+1 = c†n e

iπc†ncn c†n+1 = c†n c
†
n+1

S−
n S

+
n+1 = cn e

iπc†ncn cn+1 = cn+1 cn .

(88)

On an N -site ring, however, on the ‘last’ link, which connects site N back to site 1, yields

S+
N S−

1 = −eiπM̂ c†N c1

S−
N S+

1 = −eiπM̂ c†1cN

S+
N S+

1 = −eiπM̂ c†N c
†
1

S−
N S+

1 = −eiπM̂ c1cN .

(89)

where

M̂ =

N∑

j=1

c†jcj . (90)

Note that eiπM̂ = (−1)M̂ must commute with every possible term we could write, since
fermion number parity must be conserved.

2.1 Anisotropic XY model

Consider the anisotropic XY model in a perpendicular field on an N -site chain3, with

Ĥchain =
N−1∑

n=1

{
Jx S

x
n S

x
n+1 + Jy S

y
n S

y
n+1

}
+ h

N∑

n=1

Sz
n (91)

= 1
2

N−1∑

n=1

{
J+
(
c†n cn+1 + c†n+1 cn

)
+ J−

(
c†n c

†
n+1 + cn+1 cn

)}
+ h

N∑

n=1

(
c†n cn − 1

2

)
,

where J± = 1
2(Jx ± Jy). On an N -site ring, we add the term

∆H = Jx S
x
N S

x
1 + Jy S

y
N S

y
1

= −1
2 e

iπM̂
{
J+
(
c†N c1 + c†1 cN

)
+ J−

(
c†N c†1 + c1 cN

)}
.

(92)

Since eiπM̂ commutes with Ĥchain and with all fermion bilinears (hence with ∆H as well),

we can specify the eigenvalues as η ≡ eiπM̂ = ±1, which are the even and odd fermion

3See E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).
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number sectors, respectively. We then define

c1 ≡
{
−cN+1 if η = +1

+cN+1 if η = −1 .
(93)

If we write

cn =
1√
N

∑

k

eikn ck , (94)

where the index n refers to real space and k to momentum space, we have the wave vector
quantization rule eikN = −η, i.e. for even and odd sectors

kj =

{
2π(j + 1

2)/N if η = +1

2πj/N if η = −1 .
(95)

Thus, the Hamiltonian becomes

Ĥring =
∑

k

{
(J+ cos k + h) c†k ck +

1
2J− e

ik c†k c
†
−k +

1
2J− e

−ik c−k ck

}
+ 1

2Nh

=
∑

k>0

(
c†k c−k

)
Hk︷ ︸︸ ︷(

ωk ∆k

∆∗
k −ωk

) (
ck
c†−k

)
,

(96)

where
ωk = J+ cos k + h . ∆k = i J− sin k . (97)

Diagonalizing via a unitary transformation, we obtain

Ĥring =
∑

k

Ek

(
γ†kγk − 1

2

)
, (98)

where the dispersion relation is

Ek =
√
ω2
k + |∆k|2 =

√
(J+ cos k + h)2 + J2

− sin2k . (99)

Note that S†
kHk Sk = diag(Ek,−Ek), where

Sk =

(
uk −v∗k
vk uk

)
(100)

where

uk =
Ek + ωk√

2Ek(Ek + ωk)
, vk =

∆∗
k√

2Ek(Ek + ωk)
. (101)

Thus,

γk = uk ck − v∗k c
†
−k

γ†k = −vk c−k + uk c
†
k .

(102)
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Note that u−k = uk = u∗k while v−k = −vk = v∗k , and that

ck = uk γk + v∗k γ
†
−k

c†k = vk γ−k + uk γ
†
k .

(103)

When we compute correlation functions, we use the fact that

eiπc
†c = (c† + c)(c† − c) = −(c† − c)(c† + c) , (104)

and, defining Aj ≡ c†j + cj and Bj ≡ c†j − cj , Then the correlation functions are

ρx(ℓ) =
〈
Sx
n S

x
n+ℓ

〉
= 1

4

〈
BnAn+1Bn+1 · · ·An+ℓ−1Bn+ℓ−1An+ℓ

〉

ρy(ℓ) =
〈
Sy
n S

y
n+ℓ

〉
= 1

4 (−1)ℓ
〈
AnBn+1An+1 · · ·Bn+ℓ−1An+ℓ−1Bn+ℓ

〉

ρz(ℓ) =
〈
Sz
n S

z
n+ℓ

〉
= 1

4

〈
AnBnAn+ℓBn+ℓ

〉
,

(105)

where, without loss of generality, we presume ℓ > 0. These expressions may be evaluated
using Wick’s theorem,

〈
O1 O2 · · · O2m

〉
=
∑

σ∈C
2r

(−1)σ
〈
Oσ(1) Oσ(2)

〉
· · ·
〈
Oσ(2r−1) Oσ(2r)

〉
, (106)

where σ is one of a special set of permutations C2r of the set {1, . . . , 2r} called contractions,
which are arrangements of the 2r indices into r pairs. Exchanging any two pairs, or ex-
changing the indices within a pair results in the same contraction, so the number of such
contractions is |C2r| = (2r)!/(2r · r!) . Here (−1)σ is the sign of the permutation σ. As an
example, for r = 2 there are 4!/(4 · 2) = 3 contractions. We then have

ρz(ℓ) =
1
4

〈
AnBn

〉〈
An+ℓBn+ℓ

〉
− 1

4

〈
AnAn+ℓ

〉〈
BnBn+ℓ

〉
+ 1

4

〈
AnBn+ℓ

〉〈
BnAn+ℓ

〉
. (107)

Now we need the following:
〈
AnAn′

〉
= δnn′ ,

〈
BnBn′

〉
= −δnn′ ,

〈
AnBn′

〉
≡ G(n′ − n) (108)

The first two of these relations follow by inversion symmetry, i.e.
〈
AnAn′

〉
=
〈
An′An

〉
⇒

〈
AnAn′

〉
= 1

2

〈
{An , An′}

〉
= δnn′ , (109)

with a corresponding argument showing
〈
BnBn′

〉
= −δnn′ . We then have

G(n′ − n) =
〈
(c†n + cn) (c

†
n′ − cn′)

〉

=
1

N

∑

k,k′

(〈
c†k c

†
k′

〉
−
〈
c−kck′

〉
+
〈
c−kc

†
−k

〉
−
〈
c†kck

〉)
eik(n

′−n)

=
1

N

∑

k

(
u2k − |vk|2 + 2ukvk

)
e−ikn eik

′n′

=
1

N

∑

k

(
ωk +∆k

Ek

)
eik(n

′−n)

(110)
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for n 6= n′, and at T = 0. Note that
〈
Bn′An

〉
= −G(n−n′) for n 6= n′ and that G(0) = 1−2ν

where ν = 〈c†jcj〉 is the fermion occupation per site, which is translationally invariant. Thus,
we have

ρz(ℓ) =
1
4 G

2(0)− 1
4 G(ℓ)G(−ℓ) (111)

The transverse spin correlations may be expressed as determinants, viz.

ρx(ℓ) = det




G(1) G(2) · · · G(ℓ)
G(0) G(1) · · · G(ℓ− 1)
...

...
. . .

...
G(2− ℓ) G(3 − ℓ) · · · G(1)


 (112)

and

ρy(ℓ) = det




G(−1) G(0) · · · G(ℓ− 2)
G(−2) G(−1) · · · G(ℓ− 3)

...
...

. . .
...

G(−ℓ) G(1 − ℓ) · · · G(−1)


 . (113)

Matrices like these which are constant along the diagonals are called Toeplitz matrices. A
matrix M is Toeplitz if Mi,j =Mi+1,j+1 = m(i− j).

2.2 Majorana representation of the JW transformation

With Eqn. 65, which describes how one can write a single Dirac fermion with operators c
and c† in terms of two Majorana fermions α and β, i.e. α = c + c† and β = i(c − c†), we
can write the JW transformation as follows:

Xn = (i α1 β1) (i α2 β2) · · · (i αn−1 βn−1)αn

Yn = (i α1 β1) (i α2 β2) · · · (i αn−1 βn−1)βn

Zn = −i αn βn .

(114)

Here we write (Xn, Yn, Zn) for the Pauli matrices (σxn , σ
y
n , σ

z
n) = (2Sx

n , 2S
y
n , 2S

z
n). Note that

Xn Yn = i Zn . Thus, we have written the N spin operators along the chain in terms of
2N Majorana fermions {α1, β1, . . . , αN , βN}, and, through the relations αn = cn + c†n and

βn = i(cn − c†n), in terms of N Dirac fermions
{
(c1, c

†
1), . . . , (cN , c

†
N )
}
. Note that

i αn βn = −Zn = exp(iπc†ncn) = 1− 2 c†ncn , (115)

and we thereby recover Eqn. 84.
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