1 Quadratic Hamiltonians

1.1 Bosonic Models

The general noninteracting bosonic Hamiltonian is written

$$
\hat{H} = \frac{1}{2} \Psi_r^{\dagger} \mathcal{H}_{rs} \Psi_s \quad , \tag{1}
$$

where Ψ is a rank-2N column vector whose Hermitian conjugate is the row vector

$$
\Psi^{\dagger} = (\psi_1^{\dagger}, \cdots, \psi_N^{\dagger}, \psi_1, \cdots, \psi_N) \quad . \tag{2}
$$

Since $[\psi_i, \psi_j^{\dagger}] = \delta_{ij}$, we have

$$
\left[\Psi_r, \Psi_s^{\dagger}\right] = \Sigma_{rs} \quad , \quad \Sigma = \begin{pmatrix} \mathbb{I}_{N \times N} & 0 \\ 0 & -\mathbb{I}_{N \times N} \end{pmatrix} \quad , \tag{3}
$$

with I the identity matrix. Note that the indices r and s run from 1 to $2N$, while i and j run from 1 to N. The matrix $\mathcal H$ is of the form

$$
\mathcal{H} = \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \tag{4}
$$

where $A = A^{\dagger}$ is Hermitian and $B = B^{\dagger}$ is symmetric.

The Hamiltonian is brought to diagonal form by a canonical transformation:

$$
\begin{pmatrix} \psi \\ \psi^{\dagger} \end{pmatrix} = \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} \begin{pmatrix} \phi \\ \phi^{\dagger} \end{pmatrix} , \qquad (5)
$$

which is to say $\Psi = \mathcal{S} \Phi$, or in component form

$$
\psi_i = U_{ia} \phi_a + V_{ia}^* \phi_a^\dagger \n\psi_i^\dagger = V_{ia} \phi_a + U_{ia}^* \phi_a^\dagger ,
$$
\n(6)

where a , like i , runs from 1 to N . In order that the transformation be canonical, we must preserve the commutation relations, meaning $[\phi_a, \phi_b^{\dagger}] = \delta_{ab}$, *i.e.*

$$
\left[\Phi_r, \Phi_s^{\dagger}\right] = \Sigma_{rs} \quad . \tag{7}
$$

This then requires

$$
S \Sigma S^{\dagger} = S^{\dagger} \Sigma S = \Sigma , \qquad (8)
$$

which entails

$$
U^{\dagger}U - V^{\dagger}V = \mathbb{I} \qquad U^{\dagger}V - V^{\dagger}U = 0 \qquad (9)
$$

$$
UU^{\dagger} - V^*V^{\dagger} = \mathbb{I} \qquad \qquad U^*V^{\dagger} - VU^{\dagger} = 0 \quad . \tag{10}
$$

Note that $\Sigma^2 = \mathcal{I}$, where $\mathcal{I} = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{pmatrix}$ 0 I \setminus , hence

$$
S^{-1} = \Sigma S^{\dagger} \Sigma = \begin{pmatrix} U^{\dagger} & -V^{\dagger} \\ -V^{\dagger} & U^{\dagger} \end{pmatrix} . \tag{11}
$$

Thus, the inverse relation between the Ψ and Φ operators is $\Phi = \mathcal{S}^{-1}\Psi = \Sigma \mathcal{S}^{\dagger} \Sigma \Psi$, or

$$
\phi_a = U_{ia}^* \psi_i - V_{ia}^* \psi_i^\dagger \n\phi_a^\dagger = -V_{ia} \psi_i + U_{ia} \psi_i^\dagger ,
$$
\n(12)

1.1.1 Bogoliubov equations

We are now in the position to demand

$$
\mathcal{S}^{\dagger} \mathcal{H} \mathcal{S} = \mathcal{E} = \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} , \qquad (13)
$$

where E is a diagonal $N \times N$ matrix. Thus,

$$
\mathcal{HS} = \mathcal{S}^{\dagger - 1} \mathcal{E} = \Sigma \, \mathcal{S} \, \Sigma \, \mathcal{E} \quad , \tag{14}
$$

which is to say

$$
\begin{pmatrix} A & B \\ B^* & A \end{pmatrix} \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} = \begin{pmatrix} U & -V^* \\ -V & U^* \end{pmatrix} \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} . \tag{15}
$$

If the bosonic system is stable, each of the eigenvalues E_a is nonnegative. In component form, this yields the Bogoliubov equations,

$$
A_{ij} U_{ja} + B_{ij} V_{ja} = +U_{ia} E_a
$$

\n
$$
B_{ij}^* U_{ja} + A_{ij}^* V_{ja} = -V_{ia} E_a ,
$$
\n(16)

with no implied sum on a on either RHS. The Hamiltonian is then

$$
\hat{H} = \sum_{a} E_a \left(\phi_a^{\dagger} \phi_a + \frac{1}{2} \right) \quad . \tag{17}
$$

At temperature T , we have

$$
\langle \phi_a^{\dagger} \phi_b \rangle = n(E_a) \delta_{ab} \quad , \tag{18}
$$

where

$$
n(E) = \frac{1}{\exp(E/k_{\rm B}T) - 1}
$$
\n(19)

is the Bose distribution. The anomalous correlators all vanish, e.g. $\langle \phi_a \phi_b \rangle = 0$. The finite temperature two-point correlation functions are then

$$
\langle \psi_i^{\dagger} \psi_j \rangle = \sum_a \left\{ n_a U_{ia}^* U_{ja} + (1 + n_a) V_{ia} V_{ja}^* \right\} \tag{20}
$$

$$
\langle \psi_i \psi_j \rangle = \sum_a \left\{ n_a V_{ia}^* U_{ja} + (1 + n_a) U_{ia} V_{ja}^* \right\} , \qquad (21)
$$

where $n_a \equiv n(E_a)$.

1.1.2 Ground state

We have found

$$
\Phi = \mathcal{S}^{-1} \Psi = \Sigma \, \mathcal{S}^{\dagger} \Sigma \, \Psi \quad , \tag{22}
$$

hence

$$
\begin{aligned} \phi_a &= U_{ai}^\dagger \psi_i - V_{ai}^\dagger \psi_i^\dagger \\ &= \psi_i U_{ia}^* - \psi_i^\dagger V_{ia}^* \end{aligned} \tag{23}
$$

We assume the following Bogoliubov form for the ground state of \hat{H} :

$$
|G\rangle = C \exp\left(\frac{1}{2}Q_{ij}\,\psi_i^{\dagger}\psi_j^{\dagger}\right)|0\rangle \quad , \tag{24}
$$

where C is a normalization constant, Q is a symmetric matrix, and $|0\rangle$ is the vacuum for the ψ bosons: $\psi_i|0\rangle = 0$. We now demand that $|G\rangle$ be the vacuum for the ϕ bosons: $\phi_a | G \rangle \equiv 0$. This means

$$
\phi_a e^{\hat{Q}} |0\rangle = e^{\hat{Q}} \left(e^{-\hat{Q}} \phi_a e^{\hat{Q}} \right) |0\rangle , \qquad (25)
$$

where

$$
\hat{Q} \equiv \frac{1}{2} Q_{ij} \psi_i^{\dagger} \psi_j^{\dagger} \quad . \tag{26}
$$

We now define

$$
\psi_i(x) \equiv e^{-x\hat{Q}} \psi_i \, e^{x\hat{Q}} \tag{27}
$$

and we find

$$
\frac{d\psi_i(x)}{dx} = e^{-x\hat{Q}} \left[\psi_i \, , \, \hat{Q} \right] e^{x\hat{Q}} = Q_{ij} \, \psi_j^{\dagger} \quad , \tag{28}
$$

and integrating¹ we obtain

$$
\psi_i(x) \equiv e^{-x\hat{Q}} \psi_i e^{x\hat{Q}} = \psi_i(x) + x Q_{ij} \psi_j^{\dagger} \quad . \tag{29}
$$

We may now write

$$
e^{-\hat{Q}} \phi_a e^{\hat{Q}} = U_{ai}^\dagger \psi_i + \left(U_{ai}^\dagger Q_{ij} - V_{aj}^\dagger\right) \psi_j^\dagger \quad , \tag{30}
$$

¹Note that $e^{-x\hat{Q}} \psi_i^{\dagger} e^{x\hat{Q}} = \psi_i^{\dagger}$ since $[\psi_i^{\dagger}, \hat{Q}] = 0$.

and we demand that the coefficient of ψ_i^{\dagger} j vanish for all a, which yields

$$
Q = \left(U^{\dagger}\right)^{-1}V^{\dagger} \quad , \tag{31}
$$

or, equivalently, $Q^{\dagger} = VU^{-1}$. Note that $Q^{\dagger} = V^*(U^*)^{-1} = Q$ since $U^{\dagger}V^* = V^{\dagger}U^*$.

1.1.3 A final note on the boson problem

Note that S^{\dagger} HS has the same eigenvalues as H only if $S^{\dagger} = S^{-1}$, *i.e.* only if S is Hermitian. We have $S^{\dagger} = \Sigma S^{-1} \Sigma$ and therefore

$$
S^{\dagger} \mathcal{H} S = \Sigma S^{-1} \Sigma \mathcal{H} S \quad . \tag{32}
$$

Now

$$
\Sigma \mathcal{H} = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \tag{33}
$$

Consider the characteristic polynomial $P(E) = det(E - \Sigma \mathcal{H})$. Since $det(M) = det(M^t)$ for any matrix M , we consider

$$
(\Sigma \mathcal{H})^{\mathrm{t}} = \begin{pmatrix} A^{\mathrm{t}} & -B^{\dagger} \\ B^{\mathrm{t}} & -A^{\dagger} \end{pmatrix} = \begin{pmatrix} A^* & -B^* \\ B & -A \end{pmatrix} = -\mathcal{J}^{-1}(\Sigma \mathcal{H}) \mathcal{J} , \qquad (34)
$$

where

$$
\mathcal{J} = \begin{pmatrix} 0 & \mathbb{I} \\ -\mathbb{I} & 0 \end{pmatrix} \tag{35}
$$

and $\mathcal{J}^{-1} = -\mathcal{J}$, *i.e.* $\mathcal{J}^2 = -\mathcal{I}$. But then we have

$$
P(E) = \det(E - \Sigma \mathcal{H}) = \det(E + \mathcal{J}^{-1} \Sigma \mathcal{H} \mathcal{J}) = \det(E + \Sigma \mathcal{H}) = P(-E) \quad . \tag{36}
$$

We conclude that the eigenvalues of $\Sigma \mathcal{H}$ come in $(+E, -E)$ pairs. To obtain the eigenenergies for the bosonic Hamiltonian \hat{H} , however, as per eqn. 32, we must multiply $\mathcal{S}^{-1} \Sigma \mathcal{H} \mathcal{S}$ on the left by Σ , which reverses the sign of the negative eigenvalues, resulting in a nonnegative definite spectrum of bosonic eigenoperators (for stable bosonic systems).

1.2 Fermionic Models

The general noninteracting fermionic Hamiltonian is written

$$
\hat{H} = \frac{1}{2} \Psi_r^{\dagger} \mathcal{H}_{rs} \Psi_s \quad , \tag{37}
$$

where once again Ψ is a rank-2N column vector whose Hermitian conjugate is the row vector

$$
\Psi^{\dagger} = (\psi_1^{\dagger}, \cdots, \psi_N^{\dagger}, \psi_1, \cdots, \psi_N) \quad . \tag{38}
$$

In contrast to the bosonic case, we now have $\{\psi_i, \psi_j^{\dagger}\} = \delta_{ij}$ with the anticommutator, hence

$$
\left\{\Psi_r \, , \, \Psi_s^{\dagger}\right\} = \delta_{rs} \quad . \tag{39}
$$

The matrix H is of the form

$$
\mathcal{H} = \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \quad , \tag{40}
$$

where $A = A^{\dagger}$ is Hermitian and $B = -B^{\dagger}$ is antisymmetric. Since this is of the same form as eqn. 33, we conclude that the eigenvalues of H come in $(+E, -E)$ pairs².

As with the bosonic case, the Hamiltonian is brought to diagonal form by a canonical transformation:

$$
\begin{pmatrix} \psi \\ \psi^{\dagger} \end{pmatrix} = \begin{pmatrix} U & V^* \\ V & U^* \end{pmatrix} \begin{pmatrix} \phi \\ \phi^{\dagger} \end{pmatrix} , \qquad (41)
$$

which is to say $\Psi = \mathcal{S} \Phi$, or in component form

$$
\psi_i = U_{ia} \phi_a + V_{ia}^* \phi_a^\dagger
$$

\n
$$
\psi_i^\dagger = V_{ia} \phi_a + U_{ia}^* \phi_a^\dagger
$$
 (42)

In order that the transformation be canonical, we must preserve the anticommutation relations, *i.e.* $\{\phi_a, \phi_b^{\dagger}\} = \delta_{ab}$, meaning

$$
\left\{\Phi_r \,,\,\Phi_s^{\dagger}\right\} = \delta_{rs} \quad , \tag{43}
$$

which requires that $\mathcal S$ is unitary:

$$
S^{\dagger}S = SS^{\dagger} = \mathcal{I} \quad , \tag{44}
$$

where $\mathcal I$ is again the identity matrix of rank $2N$. Thus,

$$
U^{\dagger}U + V^{\dagger}V = \mathbb{I} \qquad U^{\dagger}V + V^{\dagger}U = 0 \qquad (45)
$$

$$
UU^{\dagger} + V^*V^{\dagger} = \mathbb{I} \qquad \qquad U^*V^{\dagger} + VU^{\dagger} = 0 \quad . \tag{46}
$$

The inverse relation between the operators follows from $\Phi = \mathcal{S}^{-1} \Psi = \mathcal{S}^{\dagger} \Psi$:

$$
\phi_a = U_{ia}^* \psi_i + V_{ia}^* \psi_i^\dagger
$$

\n
$$
\phi_a^\dagger = V_{ia} \psi_i + U_{ia} \psi_i^\dagger ,
$$
\n(47)

The transformed Hamiltonian matrix is

$$
\mathcal{S}^{\dagger} \mathcal{H} \mathcal{S} = \mathcal{E} \equiv \begin{pmatrix} E & 0 \\ 0 & -E \end{pmatrix} . \tag{48}
$$

²This is true even though B in eqn. 33 is symmetric rather than antisymmetric. In proving the evenness of the characteristic polynomial $P(E) = P(-E)$, we did not appeal to the symmetry or antisymmetry of B.

Without loss of generality, we may take E to be a diagonal matrix with nonnegative entries. In component notation, the eigenvalue equations are

$$
A_{ij} U_{ja} + B_{ij} V_{ja} = U_{ia} E_a
$$

-
$$
B_{ij}^* U_{ja} - A_{ij}^* V_{ja} = V_{ia} E_a
$$
 (49)

The Hamiltonian then takes the form

$$
\hat{H} = \sum_{a} E_a \left(\phi_a^{\dagger} \phi_a - \frac{1}{2} \right) \quad . \tag{50}
$$

At temperature T , we have

$$
\langle \phi_a^{\dagger} \phi_b \rangle = f(E_a) \, \delta_{ab} \quad , \tag{51}
$$

where

$$
f(E) = \frac{1}{\exp(E/k_{\rm B}T) + 1}
$$
\n(52)

is the Fermi distribution. As for bosons, the anomalous correlators all vanish: $\langle \phi_a \phi_b \rangle = 0$. The finite temperature two-point correlation functions are then

$$
\langle \psi_i^{\dagger} \psi_j \rangle = \sum_a \left\{ f_a U_{ia}^* U_{ja} + (1 - f_a) V_{ia} V_{ja}^* \right\}
$$

$$
\langle \psi_i \psi_j \rangle = \sum_a \left\{ f_a V_{ia}^* U_{ja} + (1 - f_a) U_{ia} V_{ja}^* \right\} ,
$$
 (53)

where $f_a = f(E_a)$.

1.2.1 Ground state

We write

$$
| G \rangle = C \exp \left(\frac{1}{2} Q_{ij} \psi_i^{\dagger} \psi_j^{\dagger} \right) | 0 \rangle \quad , \tag{54}
$$

with $Q = -Q^t$, and we demand, as in the bosonic case, that $\phi_a | G \rangle \equiv 0$. Again we define $\hat{Q}=\frac{1}{2}Q_{ij}\,\psi_i^\dagger\psi_j^\dagger$ j , and

$$
\psi_i(x) = e^{-x\hat{Q}} \psi_i e^{x\hat{Q}} \quad . \tag{55}
$$

We then have

$$
\frac{d\psi_i(x)}{dx} = e^{-x\hat{Q}} [\psi_i, \hat{Q}] e^{x\hat{Q}} = Q_{ij} \psi_j^{\dagger} \Rightarrow \psi_i(x) = \psi_i + x Q_{ij} \psi_j^{\dagger} . \tag{56}
$$

Thus,

$$
e^{-\hat{Q}} \phi_a e^{\hat{Q}} = U_{ai}^\dagger \psi_i + \left(V_{aj}^\dagger + U_{ai}^\dagger Q_{ij}\right) \psi_j^\dagger \quad , \tag{57}
$$

from which we obtain

$$
Q = -\left(U^{\dagger}\right)^{-1}V^{\dagger} \quad . \tag{58}
$$

Since $U^{\dagger}V^* + V^{\dagger}U^* = 0$, we recover $Q = -Q^{\dagger}$.

1.3 Majorana Fermion Models

Majorana fermions satisfy the anticommutation relations $\{\theta_i, \theta_j\} = 2\delta_{ij}$. Thus, $(\theta_i)^2 = 1$ for every *i*. We also have $\theta_i^{\dagger} = \theta_i$ and for this reason they are sometimes called 'real' fermions. If c is the annihilator for a Dirac particle, with $\{c, c^{\dagger}\} = 1$, we may define Majorana fermions η and $\tilde{\eta}$ as follows:

$$
\eta = c + c^{\dagger} \qquad c = \frac{1}{2} (\eta - i \eta') \tag{59}
$$

$$
\tilde{\eta} = i(c - c^{\dagger}) \qquad c^{\dagger} = \frac{1}{2}(\eta + i\tilde{\eta}) \qquad (60)
$$

The most general noninteracting Majorana Hamiltonian is of the form

$$
\hat{H} = \frac{i}{4} M_{ij} \theta_i \theta_j \quad , \tag{61}
$$

where $M = -M^t = M^*$ is a real antisymmetric matrix of even dimension 2N. This is brought to canonical form by a real orthogonal transformation,

$$
\theta_i = \mathcal{R}_{ia} \, \xi_a \quad , \tag{62}
$$

where $\mathcal{R}^{\dagger} \mathcal{R} = \mathcal{I}$, and where $\{\xi_a, \xi_b\} = 2\delta_{ab}$. We have

$$
\mathcal{R}^{\mathfrak{t}}\mathcal{M}\mathcal{R}=E\otimes i\sigma^{y}=\begin{pmatrix}0&-E_{1}&0&0&\cdots\\E_{1}&0&0&0&\cdots\\0&0&0&-E_{2}&\cdots\\0&0&E_{2}&0&\cdots\\ \vdots&\vdots&\vdots&\vdots&\ddots\end{pmatrix}.
$$
 (63)

Thus,

$$
\hat{H} = -\frac{i}{2} \sum_{a=1}^{N} E_a \, \xi_{2a-1} \, \xi_{2a} = \sum_a E_a \left(c_a^{\dagger} c_a - \frac{1}{2} \right) \quad , \tag{64}
$$

where

$$
c_a \equiv \frac{1}{2} (\xi_{2a-1} - i \xi_{2a}) \quad , \quad c_a^{\dagger} \equiv \frac{1}{2} (\xi_{2a-1} + i \xi_{2a}) \quad . \tag{65}
$$

1.4 Majorana chain

Consider the Hamiltonian

$$
\hat{H} = -i \sum_{n=1}^{N} \sigma_n \,\alpha_n \,\alpha_{n+1} \tag{66}
$$

where $\sigma_n = \pm 1$ is a \mathbb{Z}_2 gauge field and $\{\alpha_m, \alpha_n\} = 2 \delta_{mn}$ is the Majorana fermion anticommutator. Periodic boundary conditions are assumed, *i.e.* $\alpha_{N+1} = \alpha_1$. We now make a gauge transformation to a new set of Majorana fermions,

$$
\theta_1 \equiv \alpha_1 \quad , \quad \theta_2 \equiv \sigma_1 \alpha_2 \quad , \quad \theta_3 \equiv \sigma_1 \sigma_2 \alpha_3 \quad , \quad \dots \quad , \quad \theta_N \equiv \sigma_1 \sigma_2 \cdots \sigma_{N-1} \alpha_N \quad . \tag{67}
$$

The Hamiltonian may now be written as

$$
\hat{H} = -i \sum_{n=1}^{N} \theta_n \theta_{n+1} \quad , \tag{68}
$$

where $\theta_{N+1} = \sigma \theta_1$, with $\sigma = \prod_{j=1}^N \sigma_j$. So the boundary conditions on the θ Majoranas are either periodic ($\sigma = +1$) or antiperiodic ($\sigma = -1$). We now switch to crystal momentum space, defining

$$
\hat{\theta}_k = \frac{1}{\sqrt{N}} \sum_{n=1}^N e^{-ikn} \theta_n \qquad , \qquad \theta_n = \frac{1}{\sqrt{N}} \sum_k e^{ikn} \hat{\theta}_k \quad . \tag{69}
$$

The k-values are quantized according to $e^{ikN} = \sigma$. The anticommutators are

$$
\{\theta_m, \theta_n\} = 2\,\delta_{m-n,0 \,\text{mod}\, N} \qquad , \qquad \{\hat{\theta}_k, \hat{\theta}_p\} = 2\,\delta_{k+p,0 \,\text{mod}\, 2\pi} \quad . \tag{70}
$$

There are four cases to consider:

<u>Case I</u>: $\sigma = +1$, N even. We have $e^{ikN} = +1$, and the N allowed k values are

$$
k \in \pm \frac{2\pi}{N} \times \left\{ 1, \ldots, \frac{1}{2}N - 1 \right\}
$$
, $k = 0$, $k = \pi$. (71)

Note that the allowed crystal momenta all occur in $\{+k, -k\}$ pairs, with the exception of $k = 0$ and $k = \pi$, which are unpaired.

<u>Case II</u>: $\sigma = +1$, N odd. We have $e^{ikN} = +1$, and the N allowed k values are

$$
k \in \pm \frac{2\pi}{N} \times \left\{ 1, \ldots, \frac{1}{2}(N-1) \right\} , \quad k = 0 .
$$
 (72)

Only $k = 0$ is unpaired.

<u>Case III</u>: $\sigma = 1$, N even. We have $e^{ikN} = -1$, and the N allowed k values are

$$
k \in \pm \frac{2\pi}{N} \times \left\{ \frac{1}{2}, \dots, \frac{1}{2}(N-1) \right\} \quad . \tag{73}
$$

All the crystal momenta are paired.

<u>Case IV</u>: $\sigma = 1$, N odd. We have $e^{ikN} = -1$, and the N allowed k values are

$$
k \in \pm \frac{2\pi}{N} \times \left\{ \frac{1}{2}, \ldots, \frac{1}{2}N - 1 \right\} , \quad k = \pi
$$
 (74)

Only $k = \pi$ is unpaired.

We may now write

$$
\hat{H} = -i \sum_{k} e^{-ik} \hat{\theta}_{k} \hat{\theta}_{-k} \n= -i \sum_{k \in (0,\pi)} \left(e^{ik} \hat{\theta}_{-k} \hat{\theta}_{k} + e^{-ik} \hat{\theta}_{k} \hat{\theta}_{-k} \right) - i \sum_{k \in U} e^{-ik} \hat{\theta}_{k}^{2} \n= \sum_{k \in (0,\pi)} 2 \sin k \hat{\theta}_{-k} \hat{\theta}_{k} - 2i \sum_{k \in (0,\pi)} e^{-ik} - i \sum_{k \in U} e^{-ik}
$$
\n(75)

where U denotes the set of unpaired (or self-paired) crystal momenta, *i.e.* the set of k for which $e^{ik} = e^{-ik}$. Note that $\{\hat{\theta}_{-k}, \hat{\theta}_{k'}\} = 2 \delta_{k,k'}$ and $\hat{\theta}_{-k} = \hat{\theta}_k^{\dagger}$ $\frac{1}{k}$, so we may define $\hat{\theta}_{-k} \equiv \sqrt{2} c_k^{\dagger}$ $\hat{\theta}_k \equiv \sqrt{2} c_k$, where c_k is a complex fermion. Thus, we have

$$
\hat{H} = \sum_{k \in (0,\pi)} 4 \sin k \, c_k^{\dagger} \, c_k + E_0 \quad , \tag{76}
$$

where

$$
E_0 = -2i \sum_{k \in (0,\pi)} e^{-ik} - i \sum_{k \in U} e^{-ik} . \tag{77}
$$

We now proceed to evaluate E_0 for our four cases.

<u>Case I</u>: Since $U = \{0, \pi\}$, we have $\sum_{k \in U} e^{-ik} = 0$. For $k \in (0, \pi)$ we may write $k = 2\pi\ell/N$ with $\ell \in \left\{1, \ldots, \frac{1}{2}N-1\right\}$. We then have

$$
E_0^{(I)} = -2i \sum_{\ell=1}^{\frac{N}{2}-1} e^{-2\pi i \ell/N} = -2 \operatorname{ctn}\left(\frac{\pi}{N}\right) \quad . \tag{78}
$$

Note that we have used the identity

$$
\sum_{\ell=1}^{J-1} x^{\ell} = \frac{x - x^J}{1 - x} \quad . \tag{79}
$$

<u>Case II</u>: We have $U = \{0\}$. For the main set $k \in (0, \pi)$ we may write $k = 2\pi\ell/N$ with $\ell \in \left\{1, \ldots, \frac{1}{2}\right\}$ $\frac{1}{2}(N-1)$. We then have

$$
E_0^{(\text{II})} = -2i \sum_{\ell=1}^{\frac{N+1}{2}-1} e^{-2\pi i\ell/N} - i = -2i \left(\frac{e^{-2\pi i/N} + e^{-i\pi/N}}{1 - e^{-2\pi i/N}} \right) - i = -\operatorname{ctn} \left(\frac{\pi}{2N} \right) . \tag{80}
$$

<u>Case III</u> : We have U = { \emptyset }. For $k \in (0, \pi)$ we may write $k = 2\pi \ell/N + \pi/N$ with $\ell \in \{0, \ldots, \frac{1}{2}N - 1\}.$ Then

$$
E_0^{\text{(III)}} = -2i \, e^{-i\pi/N} \sum_{\ell=0}^{\frac{N}{2}-1} e^{-2\pi\ell/N} = -2 \csc\left(\frac{\pi}{N}\right) \quad . \tag{81}
$$

<u>Case IV</u>: We have U = $\{\pi\}$. For $k \in (0, \pi)$ we may write $k = 2\pi\ell/N - \pi/N$ with $\ell \in \left\{1, \ldots, \frac{1}{2}\right\}$ $\frac{1}{2}(N-1)$. Thus,

$$
E_0^{(IV)} = -2i e^{i\pi/N} \sum_{\ell=1}^{\frac{N+1}{2}-1} e^{-2\pi i\ell/N} + i = -2i \left(\frac{e^{-i\pi/N} + 1}{1 - e^{-2\pi i/N}} \right) + i = -\operatorname{ctn} \left(\frac{\pi}{2N} \right) \quad . \tag{82}
$$

Note that in the $N \to \infty$ limit, in all four cases we have $E_0 = 2N/\pi + \mathcal{O}(1)$.

2 Jordan-Wigner Transformation

The Jordan-Wigner transformation is an equivalence, in one-dimensional lattice systems, between the $S=\frac{1}{2}$ $\frac{1}{2}$ SU(2) algebra and the algebra of spinless fermions. Explicitly, we have

$$
S_n^+ = \exp\left(i\pi \sum_{j=1}^{n-1} c_j^{\dagger} c_j\right) c_n^{\dagger}
$$

\n
$$
S_n^- = \exp\left(i\pi \sum_{j=1}^{n-1} c_j^{\dagger} c_j\right) c_n
$$

\n
$$
S_n^z = c_n^{\dagger} c_n - \frac{1}{2} .
$$
\n(83)

The inverse is then

$$
c_n^{\dagger} = \exp\left(i\pi \sum_{j=1}^{n-1} \left(S_j^z + \frac{1}{2}\right)\right) S_n^+
$$

$$
c_n = \exp\left(i\pi \sum_{j=1}^{n-1} \left(S_j^z + \frac{1}{2}\right)\right) S_n^- \quad .
$$
 (84)

Note that $e^{i\pi c^{\dagger}c}$ has eigenvalues ± 1 , and that

$$
c e^{i\pi c^{\dagger}c} = -c \quad , \quad c^{\dagger} e^{i\pi c^{\dagger}c} = c^{\dagger} \quad . \tag{85}
$$

Taking the Hermitian conjugate,

$$
e^{i\pi c^{\dagger}c}c^{\dagger} = -c^{\dagger} \quad , \quad e^{i\pi c^{\dagger}c}c = c \quad . \tag{86}
$$

The expression

$$
\exp\left(i\pi \sum_{j=1}^{n-1} \left(S_j^z + \frac{1}{2}\right)\right) = \prod_{j=1}^{n-1} \exp\left(i\pi \left(S_j^z + \frac{1}{2}\right)\right) \tag{87}
$$

is known as a Jordan-Wigner string.

The nearest-neighbor bilinear transverse spin interaction terms are

$$
S_n^+ S_{n+1}^- = c_n^{\dagger} e^{i\pi c_n^{\dagger} c_n} c_{n+1} = c_n^{\dagger} c_{n+1}
$$

\n
$$
S_n^- S_{n+1}^+ = c_n e^{i\pi c_n^{\dagger} c_n} c_{n+1}^{\dagger} = c_{n+1}^{\dagger} c_n
$$

\n
$$
S_n^+ S_{n+1}^+ = c_n^{\dagger} e^{i\pi c_n^{\dagger} c_n} c_{n+1}^{\dagger} = c_n^{\dagger} c_{n+1}^{\dagger}
$$

\n
$$
S_n^- S_{n+1}^+ = c_n e^{i\pi c_n^{\dagger} c_n} c_{n+1} = c_{n+1} c_n
$$
 (88)

On an N-site ring, however, on the 'last' link, which connects site N back to site 1, yields

$$
S_N^+ S_1^- = -e^{i\pi \hat{M}} c_N^{\dagger} c_1
$$

\n
$$
S_N^- S_1^+ = -e^{i\pi \hat{M}} c_1^{\dagger} c_N
$$

\n
$$
S_N^+ S_1^+ = -e^{i\pi \hat{M}} c_N^{\dagger} c_1^{\dagger}
$$

\n
$$
S_N^- S_1^+ = -e^{i\pi \hat{M}} c_1 c_N
$$
 (89)

where

$$
\hat{M} = \sum_{j=1}^{N} c_j^{\dagger} c_j \quad . \tag{90}
$$

Note that $e^{i\pi\hat{M}} = (-1)^{\hat{M}}$ must commute with every possible term we could write, since fermion number parity must be conserved.

2.1 Anisotropic XY model

Consider the anisotropic XY model in a perpendicular field on an N-site chain³, with

$$
\hat{H}_{\text{chain}} = \sum_{n=1}^{N-1} \left\{ J_x S_n^x S_{n+1}^x + J_y S_n^y S_{n+1}^y \right\} + h \sum_{n=1}^N S_n^z
$$
\n
$$
= \frac{1}{2} \sum_{n=1}^{N-1} \left\{ J_+ (c_n^\dagger c_{n+1} + c_{n+1}^\dagger c_n) + J_- (c_n^\dagger c_{n+1}^\dagger + c_{n+1} c_n) \right\} + h \sum_{n=1}^N (c_n^\dagger c_n - \frac{1}{2}) ,
$$
\n(91)

where $J_{\pm} = \frac{1}{2}$ $\frac{1}{2}(J_x \pm J_y)$. On an N-site ring, we add the term

$$
\Delta H = J_x S_N^x S_1^x + J_y S_N^y S_1^y
$$

= $-\frac{1}{2} e^{i\pi \hat{M}} \Big\{ J_+ (c_N^{\dagger} c_1 + c_1^{\dagger} c_N) + J_- (c_N^{\dagger} c_1^{\dagger} + c_1 c_N) \Big\}$ (92)

Since $e^{i\pi \hat{M}}$ commutes with \hat{H}_{chain} and with all fermion bilinears (hence with ΔH as well), we can specify the eigenvalues as $\eta \equiv e^{i\pi \hat{M}} = \pm 1$, which are the even and odd fermion

 3 See E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407 (1961).

number sectors, respectively. We then define

$$
c_1 \equiv \begin{cases} -c_{N+1} & \text{if } \eta = +1\\ +c_{N+1} & \text{if } \eta = -1 \end{cases} \tag{93}
$$

If we write

$$
c_n = \frac{1}{\sqrt{N}} \sum_k e^{ikn} c_k \quad , \tag{94}
$$

where the index n refers to real space and k to momentum space, we have the wave vector quantization rule $e^{ikN} = -\eta$, *i.e.* for even and odd sectors

$$
k_j = \begin{cases} 2\pi(j + \frac{1}{2})/N & \text{if } \eta = +1\\ 2\pi j/N & \text{if } \eta = -1 \end{cases}
$$
 (95)

Thus, the Hamiltonian becomes

$$
\hat{H}_{\text{ring}} = \sum_{k} \left\{ (J_{+} \cos k + h) c_{k}^{\dagger} c_{k} + \frac{1}{2} J_{-} e^{ik} c_{k}^{\dagger} c_{-k}^{\dagger} + \frac{1}{2} J_{-} e^{-ik} c_{-k} c_{k} \right\} + \frac{1}{2} N h
$$
\n
$$
= \sum_{k>0} \left(c_{k}^{\dagger} c_{-k} \right) \overbrace{\begin{pmatrix} \omega_{k} & \Delta_{k} \\ \Delta_{k}^{*} & -\omega_{k} \end{pmatrix}}^{H_{k}} \begin{pmatrix} c_{k} \\ c_{-k}^{\dagger} \end{pmatrix} ,
$$
\n(96)

where

$$
\omega_k = J_+ \cos k + h \qquad . \qquad \Delta_k = i J_- \sin k \qquad . \tag{97}
$$

Diagonalizing via a unitary transformation, we obtain

$$
\hat{H}_{\text{ring}} = \sum_{k} E_k \left(\gamma_k^{\dagger} \gamma_k - \frac{1}{2} \right) \quad , \tag{98}
$$

where the dispersion relation is

$$
E_k = \sqrt{\omega_k^2 + |\Delta_k|^2} = \sqrt{(J_+ \cos k + h)^2 + J_-^2 \sin^2 k} \quad . \tag{99}
$$

Note that $S_k^{\dagger} H_k S_k = \mathsf{diag}(E_k, -E_k)$, where

$$
S_k = \begin{pmatrix} u_k & -v_k^* \\ v_k & u_k \end{pmatrix} \tag{100}
$$

where

$$
u_k = \frac{E_k + \omega_k}{\sqrt{2E_k(E_k + \omega_k)}} \qquad , \qquad v_k = \frac{\Delta_k^*}{\sqrt{2E_k(E_k + \omega_k)}} \qquad . \tag{101}
$$

Thus,

$$
\gamma_k = u_k c_k - v_k^* c_{-k}^{\dagger} \n\gamma_k^{\dagger} = -v_k c_{-k} + u_k c_k^{\dagger}.
$$
\n(102)

Note that $u_{-k}=u_k=u_k^*$ while $v_{-k}=-v_k=v_k^*$, and that

$$
c_k = u_k \gamma_k + v_k^* \gamma_{-k}^{\dagger} \nc_k^{\dagger} = v_k \gamma_{-k} + u_k \gamma_k^{\dagger}.
$$
\n(103)

When we compute correlation functions, we use the fact that

$$
e^{i\pi c^{\dagger}c} = (c^{\dagger} + c)(c^{\dagger} - c) = -(c^{\dagger} - c)(c^{\dagger} + c) , \qquad (104)
$$

and, defining $A_j \equiv c_j^{\dagger} + c_j$ and $B_j \equiv c_j^{\dagger} - c_j$, Then the correlation functions are

$$
\rho_x(\ell) = \langle S_n^x S_{n+\ell}^x \rangle = \frac{1}{4} \langle B_n A_{n+1} B_{n+1} \cdots A_{n+\ell-1} B_{n+\ell-1} A_{n+\ell} \rangle
$$

\n
$$
\rho_y(\ell) = \langle S_n^y S_{n+\ell}^y \rangle = \frac{1}{4} (-1)^{\ell} \langle A_n B_{n+1} A_{n+1} \cdots B_{n+\ell-1} A_{n+\ell-1} B_{n+\ell} \rangle \qquad (105)
$$

\n
$$
\rho_z(\ell) = \langle S_n^z S_{n+\ell}^z \rangle = \frac{1}{4} \langle A_n B_n A_{n+\ell} B_{n+\ell} \rangle ,
$$

where, without loss of generality, we presume $\ell > 0$. These expressions may be evaluated using Wick's theorem,

$$
\langle \mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_{2m} \rangle = \sum_{\sigma \in \mathcal{C}_{2r}} (-1)^{\sigma} \langle \mathcal{O}_{\sigma(1)} \mathcal{O}_{\sigma(2)} \rangle \cdots \langle \mathcal{O}_{\sigma(2r-1)} \mathcal{O}_{\sigma(2r)} \rangle , \qquad (106)
$$

where σ is one of a special set of permutations \mathcal{C}_{2r} of the set $\{1, \ldots, 2r\}$ called *contractions*, which are arrangements of the $2r$ indices into r pairs. Exchanging any two pairs, or exchanging the indices within a pair results in the same contraction, so the number of such contractions is $|\mathcal{C}_{2r}| = (2r)!/(2r \cdot r!)$. Here $(-1)^{\sigma}$ is the sign of the permutation σ . As an example, for $r = 2$ there are $4!/(4 \cdot 2) = 3$ contractions. We then have

$$
\rho_z(\ell) = \frac{1}{4} \left\langle A_n B_n \right\rangle \left\langle A_{n+\ell} B_{n+\ell} \right\rangle - \frac{1}{4} \left\langle A_n A_{n+\ell} \right\rangle \left\langle B_n B_{n+\ell} \right\rangle + \frac{1}{4} \left\langle A_n B_{n+\ell} \right\rangle \left\langle B_n A_{n+\ell} \right\rangle \quad . \tag{107}
$$

Now we need the following:

$$
\langle A_n A_{n'} \rangle = \delta_{nn'} \qquad , \qquad \langle B_n B_{n'} \rangle = -\delta_{nn'} \qquad , \qquad \langle A_n B_{n'} \rangle \equiv G(n'-n) \qquad (108)
$$

The first two of these relations follow by inversion symmetry, *i.e.*

$$
\langle A_n A_{n'} \rangle = \langle A_{n'} A_n \rangle \Rightarrow \langle A_n A_{n'} \rangle = \frac{1}{2} \langle \{ A_n, A_{n'} \} \rangle = \delta_{nn'} \quad , \tag{109}
$$

with a corresponding argument showing $\langle B_n B_{n'} \rangle = -\delta_{nn'}$. We then have

$$
G(n'-n) = \langle (c_n^{\dagger} + c_n) (c_{n'}^{\dagger} - c_{n'}) \rangle
$$

= $\frac{1}{N} \sum_{k,k'} \left(\langle c_k^{\dagger} c_{k'}^{\dagger} \rangle - \langle c_{-k} c_{k'} \rangle + \langle c_{-k} c_{-k}^{\dagger} \rangle - \langle c_k^{\dagger} c_k \rangle \right) e^{ik(n'-n)}$
= $\frac{1}{N} \sum_k \left(u_k^2 - |v_k|^2 + 2u_k v_k \right) e^{-ikn} e^{ik'n'} = \frac{1}{N} \sum_k \left(\frac{\omega_k + \Delta_k}{E_k} \right) e^{ik(n'-n)}$ (110)

for $n \neq n'$, and at $T = 0$. Note that $\langle B_{n'}A_n \rangle = -G(n-n')$ for $n \neq n'$ and that $G(0) = 1-2\nu$ where $\nu = \langle c_j^{\dagger}$ $\langle c_j^{\dagger} c_j \rangle$ is the fermion occupation per site, which is translationally invariant. Thus, we have

$$
\rho_z(\ell) = \frac{1}{4} G^2(0) - \frac{1}{4} G(\ell) G(-\ell) \tag{111}
$$

The transverse spin correlations may be expressed as determinants, viz.

$$
\rho_x(\ell) = \det \begin{pmatrix} G(1) & G(2) & \cdots & G(\ell) \\ G(0) & G(1) & \cdots & G(\ell-1) \\ \vdots & \vdots & \ddots & \vdots \\ G(2-\ell) & G(3-\ell) & \cdots & G(1) \end{pmatrix}
$$
(112)

and

$$
\rho_y(\ell) = \det \begin{pmatrix} G(-1) & G(0) & \cdots & G(\ell - 2) \\ G(-2) & G(-1) & \cdots & G(\ell - 3) \\ \vdots & \vdots & \ddots & \vdots \\ G(-\ell) & G(1 - \ell) & \cdots & G(-1) \end{pmatrix} .
$$
 (113)

Matrices like these which are constant along the diagonals are called *Toeplitz matrices*. A matrix M is Toeplitz if $M_{i,j} = M_{i+1,j+1} = m(i - j)$.

2.2 Majorana representation of the JW transformation

With Eqn. 65, which describes how one can write a single Dirac fermion with operators c and c^{\dagger} in terms of two Majorana fermions α and β , *i.e.* $\alpha = c + c^{\dagger}$ and $\beta = i(c - c^{\dagger})$, we can write the JW transformation as follows:

$$
X_n = (i \alpha_1 \beta_1) (i \alpha_2 \beta_2) \cdots (i \alpha_{n-1} \beta_{n-1}) \alpha_n
$$

\n
$$
Y_n = (i \alpha_1 \beta_1) (i \alpha_2 \beta_2) \cdots (i \alpha_{n-1} \beta_{n-1}) \beta_n
$$

\n
$$
Z_n = -i \alpha_n \beta_n
$$
 (114)

Here we write (X_n, Y_n, Z_n) for the Pauli matrices (σ_n^x, σ_n^y) σ_n^y, σ_n^z) = $(2S_n^x, 2S_n^y)$ $_n^y, 2S_n^z$). Note that $X_n Y_n = i Z_n$. Thus, we have written the N spin operators along the chain in terms of 2N Majorana fermions $\{\alpha_1, \beta_1, \dots, \alpha_N, \beta_N\}$, and, through the relations $\alpha_n = c_n + c_n^{\dagger}$ and $\beta_n = i(c_n - c_n^{\dagger})$, in terms of N Dirac fermions $\{(c_1, c_1^{\dagger})\}$ $\ket{\stackrel{\dagger}{1}},\ldots, (c^{}_N,c^{\dagger}_N)$ $\binom{\dagger}{N}$. Note that

$$
i\,\alpha_n\,\beta_n = -Z_n = \exp(i\pi c_n^\dagger c_n) = 1 - 2\,c_n^\dagger c_n \quad , \tag{115}
$$

and we thereby recover Eqn. 84.