PHYSICS 211C : CONDENSED MATTER PHYSICS HW ASSIGNMENT #5

(1) Compute the moments $\langle z | x^n | z \rangle$ and $\langle z | p^n | z \rangle$ for $p \in \{0, 1, 2, 3, 4\}$, where $|z\rangle$ is the coherent state defined in Eqn. 15.10 of the lecture notes. Express your answer in terms of Q and P, where $Q = 2\ell \operatorname{Re} z$ and $P = (\hbar/\ell) \operatorname{Im} z$.

Hint : Compute $\langle z | \exp(\lambda x) | z \rangle$ and $\langle z | \exp(\lambda p) | z \rangle$ and differentiate with respect to λ as needed.

(2) Consider the Hamiltonian

$$H = \frac{p^2}{2m} + \frac{k}{2d^2} (x^2 - d^2)^2 \quad ,$$

where *d* is a length scale. The potential V(x) represents a double well.

(a) Using your results from problem (1), obtain the Euclidean Lagrangian

$${\cal L}_{\rm E} = i \hbar \, {\rm Im} \, (\bar{z} \, \partial_\tau z) + {\cal H}(\bar{z},z) \quad , \label{eq:LE}$$

but express L_{E} in terms of $\{Q, P, \dot{Q}, \dot{P}\}$, and show that

$$L_{\mathsf{E}}(Q, P, \dot{Q}, \dot{P}) = iQ\dot{P} + H(Q, P)$$

(b) Where are the minima of H(Q, P) located? Under what conditions are there two minima at $Q = \pm Q_0$?

(c) Consider the tunneling problem in the case when there are two minima in H(Q, P). Compute the tunneling path between the minima by solving the Euler-Lagrange equations of motion derived from $L_{\rm E}$, *i.e.*

$$i \frac{\partial P}{\partial \tau} = -\frac{\partial H}{\partial Q}$$
 , $i \frac{\partial Q}{\partial \tau} = +\frac{\partial H}{\partial P}$

Analytically continue from P to $\mathcal{P} \equiv iP$ and find the equations governing the instanton path in the (Q, \mathcal{P}) plane.

(d) Show that $H(Q, P = -i\mathcal{P})$ is constant along the instanton path. Then find the difference in the action between the instanton path and the trivial path where $\mathcal{P}(\tau) = 0$ and $Q(\tau) = Q_0$ and compute the tunnel splitting between symmetric and antisymmetric states, discussed in §15.4.2 of the lecture notes.

(3) Verify Eqn. 15.54 of the lecture notes by finding the $O(\bar{z}_1^{2S} z_2^{2S})$ term of the matrix element in the (unnormalized) generalized coherent state

$$|z, \hat{\boldsymbol{\Omega}}\rangle \equiv e^{zua^{\dagger}} e^{zvb^{\dagger}} |0\rangle$$

where $z \in \mathbb{C}$. Show that $a | z, \hat{\Omega} \rangle = zu | z, \hat{\Omega} \rangle$ and $b | z, \hat{\Omega} \rangle = zv | z, \hat{\Omega} \rangle$, and $\langle z, \hat{\Omega} | z', \hat{\Omega}' \rangle = \exp[\bar{z}z'(\bar{u}u' + \bar{v}v')]$. (1)