## Ovasistatic phenomena in conductors

## assistatic Fields

body a study a << > = wavelength of B or E held

re wa << c eg w < 16Hz for a = 1cm.

Recall (Drude's model)  $\widetilde{\sigma}(\omega) = \overline{\sigma}_0 \frac{1}{1-i\omega\tau} \left(\overline{\sigma}_0 = \frac{ng^2\tau}{m}\right)$ 

So for W << T-1, &(w) = To = constant (independent of w).

For good conductors T-1 >> 2 (unless a is tiny) so we will

be in the regime where we can take T(w) = To.

Moreover, be good conductors to ~ 1018 Hz , o w to excl.

The problem we want to solve is Mir: put a conductor in an external time dependent magnetic field, Filt). What are the frields (both magnetic and electric) justide the conductor? Is there a resulting electric field outside the conductor? How i, Fi modified outside the conductor? What counts are produced in the conductor?

That a <<> > working in "near zoné", so Mere are no refardation effects to worry about.

Typical situation: conductor placed inside roil generating F.(t). Also conductor movins into (possibly constant) field Ito.

Simplification of Maxwell's nacroscopic equations:

$$\nabla \cdot \vec{D} = 0$$
 and  $\nabla \times \vec{E} + \vec{c} \frac{\partial \vec{D}}{\partial t} = 0$  sky the same

We want to use Faraday's law to give us  $\vec{E}$  from  $\vec{B}$ . Since  $\omega$  is small, we expect  $|\vec{E}| \sim \alpha |\vec{B}| \ll |\vec{B}|$ .

Now [DINIE] 22 | BIN | Till so DO N W B can be neglected in

Ampere's law:  $\vec{\nabla}_{x} \vec{l} \cdot \vec{l} - \frac{1}{2} \frac{\partial \vec{D}}{\partial t} = \frac{\alpha \vec{r}}{c} \vec{J} \implies \vec{\nabla}_{x} \vec{l} \vec{l} = \frac{u \vec{r}}{c} \vec{J}$ 

Note also Mat

Using Ohm'slaw

Now ♥. (490Ē)= V· (V×H)= O > J·Ē=0

and with \( \bar{V} \cdot \bar{D} = 4777 => \quad P = 0

=) No free charges in bulk of conductor, just as in electrostatics.



(This is not a surprise: we are taking wao in Maxwell equations for cenductors).

Summary: 
$$\vec{\nabla} \cdot \vec{D} = 0$$
  $\vec{\nabla} \times \vec{E} + \frac{1}{2} \frac{3\vec{D}}{3\vec{e}} = 0$   $\vec{\nabla} \times \vec{H} = \frac{u\pi}{3} \vec{\sigma} \cdot \vec{E}$   $\vec{\nabla} \cdot \vec{E} = 0$ 

Take 
$$\vec{\nabla}_{\times}(\vec{\nabla}_{\times}\vec{H}) = -\nabla^{2}\vec{H}$$

Alternatively, 
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = -\nabla^2 \vec{E}$$

$$\vec{\nabla}_{x}\left(-\frac{1}{c}\frac{3\vec{B}}{\delta t}\right) = -\frac{1}{c}M\frac{\partial}{\partial t}\vec{\nabla}_{x}\vec{H} = -\frac{47\sigma_{0M}}{c^{2}}\frac{\partial\vec{E}}{\partial t}$$

$$\vec{\nabla}^{1}\vec{\vec{E}} = \frac{\vec{u} \vec{r} \vec{\sigma}_{0} \vec{\mu}}{c^{2}} \vec{\partial} \vec{\vec{E}}$$

Each component of It and E satisfies the difuscion or heat conduction

$$\nabla^2 \Psi = \kappa \frac{\partial \Psi}{\partial t}$$

If 
$$\psi(\vec{r},t) = \psi(z,t)$$
 only hen  $\frac{\partial^2 \psi}{\partial z^2} = \kappa \frac{\partial \psi}{\partial t}$ 

To solve this let 
$$\Psi(z,t) = \int \frac{dk}{2\pi} \, \widehat{\varphi}(k,t) \, e^{ikz} \implies -k^2 \widehat{\psi} = k \frac{\partial \widehat{\varphi}}{\partial t} \implies \widehat{\varphi} = \widehat{\psi}_0 \, e^{-k^2} t$$

=> 
$$\psi(z,t)=\int \frac{dk}{2\pi} \psi_0 e^{-\frac{k^2}{k^2}t} e^{-\frac{k^2}{k^2}t}$$
; the exponent  $-\frac{k^2}{k^2}t + ikz^2 = -\frac{t}{k}(k-i\frac{kz^2}{2t})^2 - \frac{kz^2}{4t}$ 

$$\Rightarrow \psi(z,t) = \hat{\psi}_0 e^{-\frac{k}{4t}z^2/t} \int_{z_0}^{z_0} dz e^{-\frac{t}{k}z^2} = \psi_0 \int_{z_0}^{k} e^{\frac{t}{4t}z^2/t} \qquad \text{(1 have absorted a constant)}$$

Check: 
$$\frac{\partial^2 \psi}{\partial z^2} = \psi \int_{\overline{L}} \frac{\partial}{\partial z} \left( -\frac{k}{2} \frac{z}{\overline{L}} e^{-\frac{k}{4}z^2/t} \right) = \psi_0 \int_{\overline{L}} \left( -\frac{k}{2} \frac{1}{\overline{L}} + \left( \frac{k}{2} \frac{z}{\overline{L}} \right)^2 \right) e^{-\frac{k}{4}z^2/t}$$

30 case: using  $\psi(\varepsilon,t) = \chi(x) \gamma(y) Z(z)$ - X"+ X"+ = K ( X X + = Y + = Z)  $\Rightarrow \frac{1}{x} x'' = \frac{1}{x} x' + f_{x}(t) \quad \text{et.} \quad \text{with } f_{x}(t) + f_{y}(t) = 0$ For example, if filt)=0 we have three copies of the 10in (ase ψ = 40 1/2 e - K r3/2 These well known solutions are appropriate for diffession: as t-0+ Y(=,t) → S(=) and Y(=,t) → S(=) with a clear interpretation: put a pointlike "dop" of fluid and it dipres out, with distance of In the cases we study the problem is different. Imagine starting with a field 40(F) of t=0 (say an external field Matis braned off). What happens next? To Mis end, solve the eigenvale problem  $\nabla^2 \psi_{nr}^{(r)} = - \chi_{nr} \psi_{nr}^{(r)} \qquad n = 1, 2, \dots$ Then  $\psi(\vec{r},t) = \sum_{i} c_{i} e^{-(\partial_{i}/\mu)t} \psi_{i}(\vec{r})$  solves  $\nabla^{2} \psi = \kappa \frac{\partial \psi}{\partial t}$ and the ch's are chosen so Mgt 4(7,0) = 4(7) = 2 Cn 4n(7) (As usual, with eigensystems, (4,4m) = 0 if In 7 Im so one can orthonormalize the solutions so Cn = (4n, 40)). The important point is Mat Yn dies exponentially within a time I ~ K X, (assuming X, < X, <...). Since we expect 8, ~ O(1), the typical decay time is Traik = UTuo. a2 which for a ~ I cm and so ~ 1012 sec , m ~ 1, gives T ~ 10-3 sec.

Boundary carditions: (to solve problem fully) Assume boundaries are between conductor and vacuum.  $\sqrt[3]{x} \cdot \vec{E} + \frac{1}{2} \cdot \frac{\partial \vec{B}}{\partial t} = 0 \implies \vec{E}_{t,n} = \vec{E}_{t,n,t}$ PXH = UTOJE -> HILL = HILL J.B=O → Byon = Byin Note Mit with Mal Mis means Final for Bina Bout left who En.? Let says:  $\vec{\nabla} \cdot \vec{j} = 0$  and  $\vec{f}_{out} = 0 \Rightarrow \vec{f}_{vin} = 0$ and since En = of = Enin = O. Digression: Garg wasts a more refined version. From the previous unit, we had  $\overline{\nabla}$ .  $\widetilde{Z} = 47\widetilde{\rho}'$  where  $\widetilde{Z} = \widetilde{S}\widetilde{E}$  and  $\widetilde{S} = \widetilde{E} + i\frac{47\widetilde{o}}{35}$ and &' are charges from corrects not subject to Ohm's law (ie, not included in  $\vec{E} = \vec{\sigma}\vec{j}$ ). From Mis  $\hat{E}_{n,out} = \hat{\vec{S}}\hat{E}_{n,in}$  (for p'=0) From this we recover Engly = 0 (Mit is Engly ~ & Enout > 0 14 the approx.) If Z = surface charge density (use Z rather Mano, to avoid confusion with conductivity), then Znot- Zno = 472 (sign from n= extract pointing) Then, using En,17 = -i & En,out = Enout ()-i 4000) = 400 = En,out = (417 + i 40) = while Enin = -i w Enout = -i & Z

So where are we going with all Mis?

Put a surductor in an external quasistatic field (É or H)

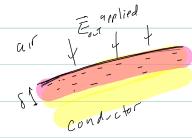
From the ditussion/hoat transfer equation we expect the fields

will not peretate the conductor much. For E it is clear, much

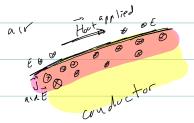
like in electrostatic case, charge at surface will screen. But

now the charge is spread over some "skin depth" & fixed

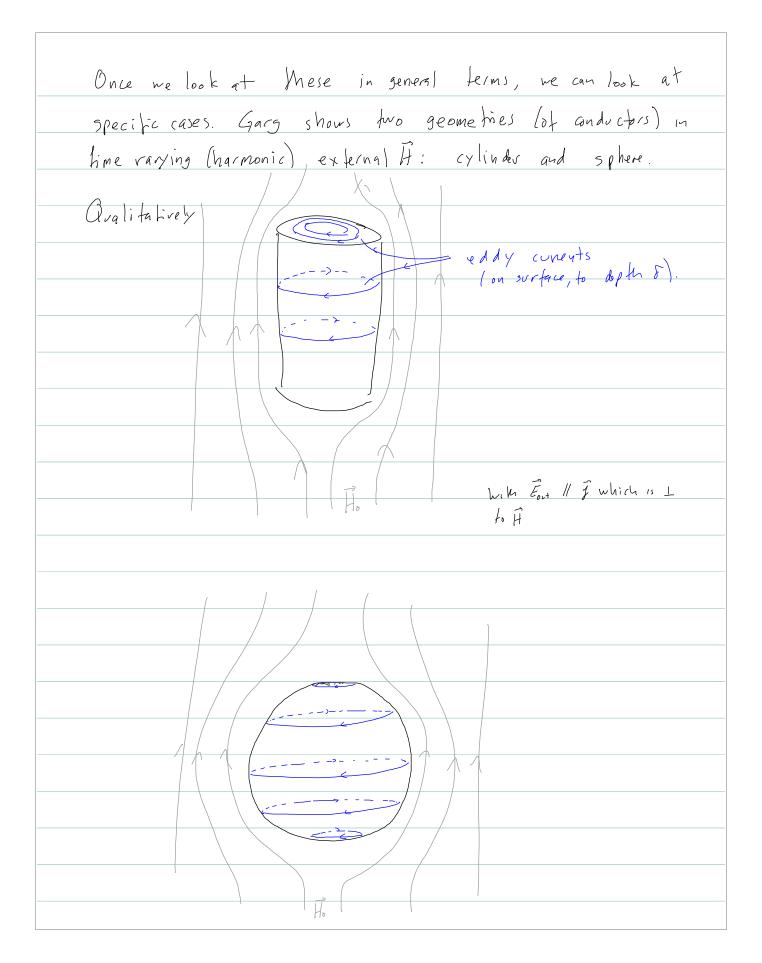
by diffusion equation.



For magnetic field to be scaeped we need a current on the surface -down to depth  $\delta$ . Since  $\vec{J} = \vec{\sigma} \vec{E}$  and  $\vec{J}_n = 0$  at boundary, we will have an  $\vec{E}_{t,in}$ , but then  $\vec{E}_{t,it} = \vec{E}_{t,in}$ , so also outside



So we want to understand the skin depth and these currents called eddy conents.



| We also wast to understand energy conservation:                                                  |
|--------------------------------------------------------------------------------------------------|
| We see (qbore pic's)                                                                             |
|                                                                                                  |
| S- LS EXT                                                                                        |
| Н                                                                                                |
| there is every flow into anductor. Where does it go?                                             |
| There is also energy dissipation, from $\vec{J} \cdot \vec{E} = \sigma \vec{E}$ in the cardictor |
| The energy Mot Mows in = empy dissipated.                                                        |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |
|                                                                                                  |

## Plane conductor

While  $a \to \infty$  is outside the regime we are stroying, we can look at a place conductor as a local approximation of a large but finite size conductor



Take u=1. Set boundary of conductor on XY plane, and conductor on Z70,

air (vaccoum)

230

Assume  $\vec{B}(=\vec{H}) = \vec{B}_0 \hat{X}$  (along plane;  $\vec{e}^{-i\omega t}$  dependence implicit) for z = 0 - 1 $\Rightarrow \vec{B} = \vec{B}_0 \hat{X}$  for z = 0 + 1 because  $\vec{B}_0 = \vec{B}_{out}$ .

The difussion equation is

For By, 2 with b.c. By, = 0 at 2=0 gives By, = 0.

For Bx, we look for a solution Mit depends on zonly, Bx = Box eikz

$$=) \qquad \qquad k^2 = i \frac{u_{\pi G_1} \omega}{c^2} \qquad \Rightarrow \qquad k = \pm \sqrt{i} \sqrt{\frac{u_{\pi G_2} \omega}{c^2}}$$

 $W_{i}W_{i} = \left(e^{i\pi l_{2}}\right)^{l_{1}} = e^{i\pi l_{4}} = \frac{1}{c_{2}}\left(1+i\right)$   $M_{ij}$  is  $k = \frac{1}{c_{1}}\left(1+i\right)\sqrt{\frac{2\pi\sigma_{0}\omega}{c^{2}}}$ 

This gives  $e^{\pm(i-1)\sqrt{\frac{72000}{c^2}}}$  ? The - sign solution gives  $B_x$  increasing with

2, which is unphysical. So keep only + sign:

where  $\delta = \frac{c}{\sqrt{2\pi\sigma_0\omega}}$  is the skin depth".

For Cue 300°K, 8(60Hz) ~ 8.5 mm, 8(100MHz) = 7 mm

From PxFi= upooF we can compute É:

$$\epsilon_{ijk} \partial_{j} B_{k} = \epsilon_{i2k} \partial_{j} B_{x} = \delta_{ijk} \partial_{j} \partial_{z} (B_{i} e^{-(1-i)^{2}/\delta}) = \delta_{ijk} \left[ -(1-i)^{\frac{1}{5}} B_{o} e^{-(1-i)^{2}/\delta} \right]$$

$$= \frac{1}{2} = \frac{1}{2} \frac{\partial}{\partial x} \left( \frac{1-x}{2} \right) \hat{y} e^{-(1-x)^{2}/5} = \frac{1}{2} \frac{\partial}{\partial y} = \frac{1}{2} \frac{\partial$$

where 
$$E_0 = -\frac{c \Omega_0}{u_7 r_0 \delta} (1-i)$$

Writing the fields as "real part of and restoring w-dependence we discover Dhase shift:

$$\vec{B} = B.\hat{x} e^{-2/\delta} \cos\left(\frac{z}{\delta} - \omega t\right)$$

(The phase shift is from 1-i = 52e-i7/4)

In addition \$ = \sir \vec{E} is now determined. Note that for S<< a the curent is confined to the "surface" of the conductor, and can be no kelled by a surface conent density  $\vec{k} = \begin{bmatrix} dz \vec{J} = 6.8. \hat{\gamma} & \frac{\delta}{1-i} = -\frac{cB_0}{42} & \hat{\gamma} \end{bmatrix}$ 

In  $\vec{k} = -\frac{cB_0}{4\pi}$  there is no  $\vec{\sigma}_0$   $\vec{k}$  is here to shield  $\vec{B}_{15}$ :

In the naive approach one has, from Ampere's law

$$\int da \, \vec{\nabla}_{x} \vec{B} = \frac{u_{0}}{c} \int da \, \vec{j}$$

out 
$$\int_{\Omega} \vec{\beta} \cdot d\vec{l} = (B_{int} - B_{out}) l = \frac{4\pi}{c} l K_{l}$$

We have  $K_1 = -\frac{c}{477}B_{out}$  so it must be that  $B_m = 0$ . In this

approximation By conegords to the our By at 2>>5, hence varishirsly small.

So Mat in the present case 
$$Z_s = \frac{(1-i)}{\sigma_o \delta}$$

Note also Mist, as expected |E|/|B|201:

$$\frac{|\vec{E}|}{|\vec{p}|} = \frac{c}{4p6} \cdot \frac{\sqrt{2}}{5} = \frac{c}{4p60} \cdot \frac{\sqrt{2n60}}{c} = \frac{\omega}{4p60} << 1$$

Energetics! Compute 3 out ; \( \vec{E}\_{tim} = \vec{E}\_{tout} \) gives \( \vec{E} \) out side conductor

$$\vec{S} = \frac{c}{4\pi} (\vec{E}_{\times} \vec{B}) = \frac{c}{4\pi} (\vec{E}_{0} \vec{B}_{0} \hat{y}_{\times} \hat{x}) = \frac{c}{4\pi} \vec{E}_{0} \left( -\frac{4\pi\sigma_{0} \vec{\sigma}}{c(1-\hat{\epsilon})} \vec{E}_{0} \right) (-\hat{\epsilon})$$

Brief review of averaging over time: complex fields a  $e^{i\omega t}$  are really  $\frac{1}{2}(ae^{-\omega t} + a^{\star}e^{i\omega t})$ . Then  $ab = \frac{1}{7}\int_{0}^{7}dt \, \frac{1}{4}(ae^{-i\omega t} + c.c)(be^{-i\omega t} + c.c)$ 

Time average S:

$$\overline{S} = \frac{1}{2} \operatorname{Re} \left( \frac{\sigma_o \delta}{1 - \lambda} E_o E_o^* \hat{z} \right) = \frac{1}{4} \sigma_o \delta |E_o|^2 \hat{z}$$

Let's compare with the energy dissipated. Work done per unit volume per unit time: J.E. Time averaged: \( \frac{1}{2} \) Re(J.E\*). work done in volume: \( \frac{1}{2} \) ladt)

\[
\begin{align\*}
\text{vork done / vnit suffice area} \]
\[
\begin{align\*}
\text{vork} \\
\text{vork} \\
\text{vork} \\
\text{vnit} \\
\tex work done / unit suffer area

de = \int dz \frac{1}{2} \text{Nel\$\varphi.E\$r})

atdA - ( d 2 ½ lb ( o, E.E\*)  $U_{Se} \quad \vec{E} = E_o \hat{\gamma} e^{-(1-z)\frac{2}{3}\delta} \qquad \qquad = \frac{1}{2} C_o |\vec{E}_o|^2 \int_0^\infty dz \ e^{-2\frac{2}{3}\delta}$ - 6 0, 8/E,12 Same as |3 | Preray flows in = energy dissipated. O Note one can also wite  $\vec{z}_s^1 = \frac{\sigma \delta}{1-i} = \frac{\sigma \delta}{2}$  (1+i) 50  $\frac{da}{dtdA} = \frac{1}{2} \operatorname{Rel}(\vec{z}_s) |\vec{E}_o|^2 = \frac{1}{2} \operatorname{Re}(\frac{1}{z_s} \vec{E}_o \cdot \vec{E}_o^*) = \frac{1}{2} \operatorname{Re}(\vec{k} \cdot \vec{E}_o)$ Lor sing |= = \frac{1}{18} = \frac{1}{47} \frac{1}{180} = \frac{1}{2} \left(\frac{1}{47}\right)^2 \frac{1}{180} \left(\frac{1}{180}\right)^2 = \frac{1}{2} \left(\frac{1}{47}\right)^2 \text{ReZs |B\_0|}^2

Fortside conductor? (10 hr 2<0)

As we said in the Introduction, it is given by Faraday's law

7xF -18B=0

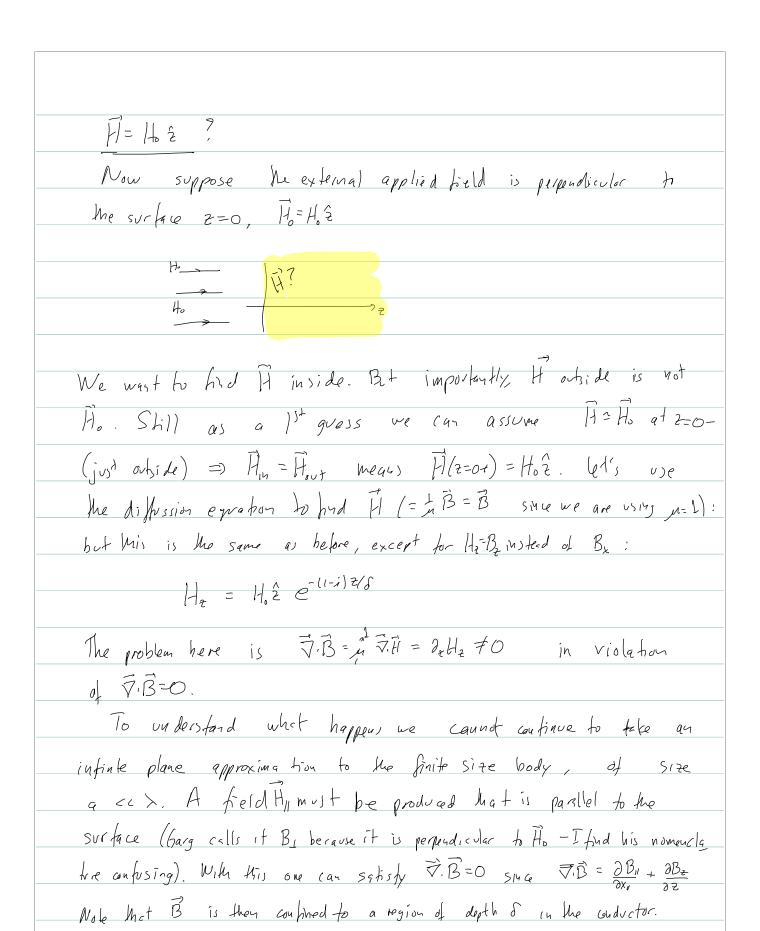
mmb,c. F(z=0-) = F.ý

By symmetry  $\vec{E} = \hat{y} E_y(z)$  only, and recall  $\vec{B} = \hat{x} B_0$ 

50 
$$(\vec{7} \times \vec{E})_{x} = -\frac{\partial}{\partial z} E_{y} = i \overset{\omega}{\sim} B_{0}$$

$$\lambda \frac{\omega}{2\pi} = c = \mathcal{E}_0 - 17i\left(\frac{2}{\lambda}\right)\beta_0$$

 $\delta(\omega)$ : Note  $\delta(\omega) = \frac{c}{(2100)\omega} \sim \frac{1}{100} \rightarrow \infty$  as  $\omega \rightarrow 0$  ! It would appear that in static case  $\vec{E}$  penetrates the whole conductor! But went  $|\vec{E}|/|\vec{B}| = \sqrt{\frac{\omega}{4200}} \rightarrow 0$  as  $\omega \rightarrow 0$ . So there is no field.



let's assume 5 << a ( the opposite limit S>9 is basically that of a =0, 1.e, magnetostatics). Then, in order to shield the bulk of the conductor from B we need a correct of in the skin. What breaks the symmetry in the xy plane if Ho=Ho2, ie, is the along 2 or \$? The answer is he finite size, as is easily seen from The picture: cungline induded Chinite Size And, of course Met means here is an E field (E= = 1). Note Mat Hy changes on scale of correture, which itself is the Scale of to size a of the body, while the changes over xile &

Note Mich His changes on scale of corration unich itself is the scale of the size a of the body, while the changes over scale S.

Since P.B=O we have the have the have a thing a few means now that close to the body H is nothing like the uniform applied Ho — on swares

that are not parallel to Ho.

| One can see this explicitly in analytic                  |
|----------------------------------------------------------|
| solhow of the cylinder and sphere problems               |
| (those shown in p. 7 of these notes), but we will not    |
| go through those calculations. The general principles is |
| what we are after, and that is enough to bigure          |
|                                                          |
| ort generally what happens is other geometies, egi       |
| 7                                                        |
|                                                          |
| To Mall                                                  |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |
|                                                          |